

Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals

J.E. E Martin, T. Tacail, T. E. Cerling, V. Balter

▶ To cite this version:

J.E. E Martin, T. Tacail, T. E. Cerling, V. Balter. Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals. Earth and Planetary Science Letters, 2018, 503, pp.227-235. 10.1016/j.epsl.2018.09.026 . hal-02568580

HAL Id: hal-02568580 https://hal.science/hal-02568580

Submitted on 9 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Calcium isotopes in enamel of modern and Plio-Pleistocene East African
2	mammals
3	J.E.Martin ^a , T.Tacail ^a , T.E.Cerling ^b , V.Balter ^a
4	
5	^a Laboratoire de Géologie de Lyon: Terre, Planète, Environnement, UMR CNRS 5276
6	(CNRS, ENS, Université Lyon1), Ecole Normale Supérieure de Lyon, 69364 Lyon
7	cedex 07, France
8	
9	^b Department of Geology and Geophysics & Department of Biology, University of
10	Utah, Salt Lake City, Utah 84112, USA
11	
12	Abstract
13	Calcium isotope analyses show a depletion of heavy calcium isotopes in vertebrates,
14	compared to food sources along each trophic step. Recent studies show considerable
15	variability of the calcium isotopic composition of bone and teeth in modern mammals,
16	leading to inconclusive interpretations regarding the utility of Ca isotopes for trophic
17	inference in mammal-dominated terrestrial ecosystems. Here, we analyzed modern
18	enamel samples from the Tsavo National Park (Kenya), and fossil enamel samples
19	dated from ca. 4 Ma to 1.6 Ma from the Turkana Basin (Kenya). We found a
20	constancy of taxa ordering between the modern and fossil datasets, suggesting that the
21	diagenesis of calcium isotopes is minimal in fossils. In modern herbivore samples
22	using similar digestive physiologies, browsers are enriched in ⁴⁴ Ca compared to
23	grazers. Both grazer and browser herbivore tooth enamel is enriched in ⁴⁴ Ca relative
24	to carnivores by about +0.30‰. Used together, carbon and calcium isotope
25	compositions may help refine the structure of the C_3 and C_4 trophic chains in the fossil

record. Due to their high preservation potential, combining both carbon and calcium
isotope systems represent a reliable approach to the reconstruction of the structure of
past ecosystems.

29

30 1. Introduction

31 Calcium (Ca) is a major element (~40% weight) in carbonate hydroxylapatite 32 (CHA): the inorganic phase of vertebrate phosphatic tissues (i.e., bone, enamel and dentine). Ca isotope ratios, ${}^{44}Ca/{}^{40}Ca$ (here expressed as $\delta^{44/42}Ca$, see details 33 34 thereafter), in vertebrate phosphatic tissues were first measured by means of thermal ionization mass spectrometry (Russell et al., 1978; Skulan et al., 1997; Skulan et al., 35 36 1999; Clementz et al., 2003). Ca stable isotope ratios have not been measured 37 routinely by means of multi collector inductively coupled plasma mass spectrometry (MC-ICPMS) due to a major isobaric interference on ${}^{40}Ca^+$ by ${}^{40}Ar^+$, and polyatomic 38 and doubly charged interferences on ⁴²Ca⁺, ⁴³Ca⁺ and ⁴⁴Ca⁺ beams (Wieser et al., 39 40 2004; Valdes et al., 2014; Tacail et al., 2016). Subsequent improvements of the Ca 41 purification chemistry and in MC-ICPMS analytics further encouraged the interest of 42 Ca isotope systematics in recent and fossil vertebrate samples with an emphasis at 43 understanding mammal, fish and reptile biology and reconstruction of associated 44 trophic chains (Clementz et al. 2003; Chu et al., 2006, Reynard et al., 2010, 2011, 45 2013; Heuser et al., 2011; Melin et al., 2014; Martin et al., 2015, 2017a, 2017b; Tacail 46 et al., 2017a; Hassler et al., 2018).

47 Two direct implications of the high Ca content in CHA stimulate the interest
48 for the analysis of Ca isotopes. The first is that minute amount of phosphatic tissue,
49 typically 100 μg, is necessary to process the measurement of Ca isotope ratios
50 accurately. Such a small amount of sample opens perspectives for the use of sample

51 leftovers or the almost non-destructive sampling of precious fossils. The second is that 52 only extreme diagenesis, with more than 80% of reworked CHA, is predicted to have 53 an effect on the original Ca isotope composition (Martin et al., 2017a). These 54 calculations are made using water-rock interactions and assume that secondary 55 calcium carbonates are leached accordingly. Collagen nitrogen is rarely preserved in 56 fossils older than the Holocene or Late Pleistocene so that its potential as a trophic 57 indicator in the deep past is precluded. Therefore, measuring Ca isotope ratios have 58 the potential to allow reconstructing past trophic chains in vertebrate fossils of 59 Pleistocene age and older. So far, only trace elements, mainly the strontium-calcium 60 and barium-calcium ratios (Balter et al., 2001; Sponheimer and Lee-Throp, 2006) 61 have been used to this end, but trace elements have the disadvantage to be potentially 62 altered by diagenetic processes (Reynard and Balter, 2014).

63 Trophic level reconstruction using Ca isotopes is based on the reasoning that 64 the whole body tissues of vertebrates are depleted in heavy Ca isotopes relative to 65 diet. The main observation is that bone Ca is depleted in heavy isotopes by -0.54‰ in average (expressed as $\delta^{44/42}$ Ca) when compared to dietary Ca in mammals (Skulan 66 67 and DePaolo 1999, Chu et al., 2006, Hirata et al., 2008, Tacail et al., 2014, Heuser et 68 al., 2016). This systematic and well-conserved offset argues in favor of a shared 69 physiological effect on Ca isotope fractionation in mammal tissues. The depletion in 70 heavy Ca isotopes is variable among organs, but taking blood as a baseline, Tacail et 71 al. (2017b), based on a compilation of available data in mammals (Skulan and 72 DePaolo 1999; Morgan et al. 2012; Tacail et al. 2014; Channon et al. 2015; and Heuser et al. 2016) on various organisms including humans, calculated a Ca isotopic 73 offset $\delta^{44/42}$ Ca between blood and diet of -0.30 ± 0.13‰ (1SD). The observed trophic 74

level effects in ecosystems could thus be explained by the propagation of thisphysiology-related isotopic fractionation from a trophic level to another.

77 Indeed, calcium isotope ratios were shown to decrease with trophic level 78 position in marine ecosystems by Skulan et al. (1997) and this finding was later 79 confirmed (Clementz et al. 2003; Martin et al., 2015; 2017b). Early work proposed a 80 model to understand the relationship between dietary and mineralized calcium 81 (Skulan and DePaolo, 1999) but subsequent studies raised some issues in interpreting 82 calcium isotope values in terms of trophic fractionation, notably in terrestrial 83 environments. Melin et al. (2014) studied calcium isotope ratios for terrestrial 84 mammal ecosystems and concluded that while confirming the decrease in Ca isotope 85 ratios in large carnivores, they also observed isotopic insensitivity to trophic levels 86 between small faunivores and low trophic levels, suggesting limited applications of 87 Ca isotopes in past ecosystems. Moreover the application of Ca isotopes for trophic 88 level reconstruction in past continental ecosystems, including dinosaur fauna, was not 89 conclusive (Heuser et al., 2011) although a recent study at regional scales permitted to 90 distinguish between food sources between predatory dinosaurs (Hassler et al. 2018). 91 Recent work offered encouraging perspectives in a Pleistocene mammalian fauna 92 (Martin et al., 2017a) but some outliers remain difficult to interpret and may be so 93 under the suspicion that physiological processes might be at play (Tacail et al. 2017a). 94 Also, complexation of Ca with aqueous compounds (e.g. citrates, oxalates) potentially 95 plays a role in isotopic fractionation between various plant or animal organs (Moynier 96 and Fujii, 2017). Physiological differences have been previously discussed between 97 fish and marine mammals (Martin et al. 2015) underlining the difficulty to interpret 98 mammalian calcium isotope variability solely under the light of a trophic effect on

99 fractionation processes. Importantly, a comprehensive framework of Ca isotope 100 distribution in modern terrestrial mammals is lacking. 101 In an effort to fill this gap, the present work reports Ca isotope ratios of 102 modern enamel samples from the Tsavo National Park and from Turkana Basin 103 (Kenya) (n = 64), and fossil enamel samples (n = 51) dated from *ca*. 4 Ma to 1.6 Ma from the Turkana Basin (Kenya). The ^{44/42}Ca and ^{43/42}Ca isotope ratios are compared 104 with carbon isotope $({}^{13}C/{}^{12}C)$, oxygen isotope $({}^{18}O/{}^{16}O)$, strontium-calcium (Sr/Ca), 105 and barium-calcium (Ba/Ca) ratios. 106 107 108 2. Methods 109 110 2.1. Samples 111

112 Tsavo National Park is situated in southern Kenya (ca. 3.4 S, 38.6 E, 550 m elevation) and has a mean annual temperature of 25 °C and 550 mm annual rainfall 113 114 (Climatological Statistics for East Africa, 1975); it is a semi-desert bushland with 115 riparian woodland (White, 1985). Samples of mammals were collected between 1997 116 and 2011 and include the long-term collections at the Tsavo Research Center near Voi; samples in this collection date back to the 1960s. Fossil samples from the 117 118 Turkana Basin were collected from the National Museums of Kenya and the Turkana 119 Basin Institute. Ages of fossils are based on the stratigraphic and geochronologic 120 work of Brown and McDougall (2011). Both modern and fossil materials were collected as part of a paleoecology project reported earlier (Cerling et al., 2015). For 121 122 all samples, powdered enamel was collected using a low-speed dental drill. 123

126	We compared samples that had undergone the standard pre-treatment used in light
127	stable isotope studies to remove organic matter and calcium carbonate (3% $\mathrm{H_2O_2}$
128	followed by 0.1 M acetic acid as in Passey et al, 2002). Samples were analyzed for
129	$\delta^{13}C$ and $\delta^{18}O$ using digestion by 100% H_3PO_4 and analyzed on an isotope ratio mass
130	spectrometer using the standard ‰ notation where
131	$\delta^{13}C(\%) = (R_{\text{sample}}/R_{\text{standard}} - 1)*1000 (1)$
132	where R_{sample} and $R_{standard}$ are the ${}^{13}C/{}^{12}C$ ratios in the sample and standard,
133	respectively. An analogous equation defines δ^{18} O. The isotope standard VPDB
134	(Vienna-PDB) is used for both carbon and oxygen isotopes.
135	The remaining powdered samples were treated in the clean lab at LGLTPE,
136	ENS de Lyon, France. For each dissolved sample, a fraction was taken for
137	concentration analyses and another fraction was kept for purification of calcium.
138	Concentration analyses were performed by means of inductively coupled plasma mass
139	spectrometer (ICP-MS Agilent Technologies 7500 Series) for trace elements such as
140	Sr, Ba, U, and major elements were measured on an inductively coupled plasma
141	atomic emission spectrometer ICP-AES (Thermo electron corporation ICAP 6000).
142	Measurements were controlled through a set of blanks and standards such as
143	SRM1486. Calcium was purified following the protocol described in previous work
144	using Eichrom Sr-specific resin (Sr-spec Eichrom®) and cation-exchange resin (AG-
145	50WX-12) with ultrapure solutions of nitric and hydrochloric acids as elution agents
146	(see details in Tacail et al. 2014; Martin et al. 2015; 2017a; 2017b). The purified
147	fraction was measured for Ca isotopes on a Thermo Neptune Plus MC-ICPMS at
148	medium resolution in static mode. Delta values were obtained using the standard

- 150 plasma standard solution (Alfa Aesar) (Tacail et al., 2014, 2016, 2017a; Martin et al.,
- 151 2015, 2017a, 2017b; Hassler et al., 2018). SRM1486 was used as a secondary
- 152 standard during each analytical sequence. Uncertainties are reported in Table S1 and
- 153 represent 2 standard deviations of these analyses. $\delta^{44/42}$ Ca values are defined as:

154
$$\delta^{44/42}Ca(\%) = (({}^{44}Ca/{}^{42}Ca_{sample})/({}^{44}Ca/{}^{42}Ca_{ICP Ca Lyon})-1)* 1000 (2)$$

- 155 where $\delta^{44/42}$ Ca is the normalized difference in per mil (‰) between a sample and our
- 156 in-house ICP Ca Lyon standard. In this work, all measurements are expressed in
- 157 $\delta^{44/42}$ Ca (Table S1) and we invite the reader to refer to supplementary material (Figure
- 158 S1, Table S2) for details regarding conversions of data from the literature. Calcium
- 159 isotope values are often expressed as $\delta^{44/40}$ Ca values in the literature. As a guideline,
- 160 the magnitude of variations of $\delta^{44/42}$ Ca is almost exactly half that of $\delta^{44/40}$ Ca.
- 161 SRM1486 yielded a value of -1.047 ± 0.013 2SE (± 0.13 2SD, n = 101), which is
- 162 undistinguishable from all SRM1486 samples measured at LGLTPE, with an average
- 163 value of -1.024 ± 0.006 ‰ (n = 404, 2SE, Tacail et al., 2014, 2016, 2017a, Martin et
- 164 al., 2015, 2017a, 2017b, Hassler et al., 2018) and reported $\delta^{44/42}$ Ca values in 5 other
- 165 studies (-1.009 \pm 0.026‰, 2SE, Heuser and Eisenhauer 2008, Heuser et al. 2011,
- 166 Heuser et al. 2016). More details on the compositions of reference materials are
- 167 available in Table S2. All measured samples plotted in a $\delta^{44/43}$ Ca versus $\delta^{44/42}$ Ca space
- 168 fall on a line with a slope of 0.514 ± 0.026 , 2SE, in good agreement with the 0.5067
- 169 slope predicted by the linear approximation of exponential mass-dependent
- 170 fractionation (Fig. 1).
- 171
- 172 **3. Results**

Herbivores in both the modern and fossil samples range from browsers ($\delta^{13}C < -8\%$) 173 to grazers ($\delta^{13}C > -1\%$; see discussion in Cerling et al 2015); hippos are mixed 174 feeders in this modern Tsavo ecosystem. For the Turkana Basin fossil dataset, the 175 176 time span sampled is from *ca*. 4 to 1 Myr. A few taxa change their diets through this 177 time period and some taxa at the genus level are present only in the fossil record. The 178 elephantids Loxodonta and Elephas were grazers in the fossil record but modern 179 Loxodonta is a browser in modern ecosystems in East Africa (see Table S1 and S2 180 and discussion in Cerling et al 1999, 2015) with Elephas being extinct in Africa 181 today.

183 Lee-Thorp (2006) observed that grazers have higher Sr/Ca and Ba/Ca ratios than
184 browsers. This observation is not confirmed here in the East African modern
185 mammals of Tsavo (Fig S2). Noteworthy, we found that rhinos from this sample suite
186 have extremely high Sr/Ca ratios with typical Sr contents that are one order of
187 magnitude higher than in others animals (Fig S2). In agreement with the literature

In the savanna mammals of the South African Kruger Park, Sponheimer and

188 (Balter, 2004; Peek and Clementz, 2012), however, the Sr/Ca and Ba/Ca ratios are

189 lower in carnivores than in herbivores in the modern dataset (Fig S2).

190 Fossil samples at Turkana are affected by diagenesis by the addition of trace

191 metals: there is a strong positive correlation between Ba and Mn concentrations ($R^2 =$

192 0.417, $p^{***} < 10^{\circ}$; Fig S4C; Table 1) and between Sr and U (U; $R^2 = 0.247, p^{**} =$

193 0.0004; Fig S4D; Table 1). As a consequence, the Sr/Ca and Ba/Ca ratios do not

194 discriminate carnivores from herbivores in this particular fossil assemblage (Fig S3).

195 In addition, the Sr/Ca and Ba/Ca ratios are correlated at Turkana ($R^2=0.225$, $p^{**}=$

196 0.0008, Fig. S4B) while this correlation is not observed in the recent Tsavo fauna (Fig

197 S4A).

198 That the Sr/Ca and Ba/Ca are correlated in fossil samples suggest a common 199 diagenetic process for Sr and Ba. Likely, this diagenetic process involved the addition 200 of a U and Mn-rich phase, which also contains Sr and Ba, explaining the overall 201 increase by a factor of 1.7 and 3.3 of the Sr/Ca and Ba/Ca ratios, respectively, 202 between modern and fossil samples. Mg/Ca ratios are not significantly different 203 between modern and fossil samples. We conclude that our results show that diagenetic processes have altered the concentrations of Sr and Ba, and therefore the potential for 204 isotopic alteration of the ⁸⁷Sr/⁸⁶Sr ratio in fossil materials must be evaluated carefully. 205 206 Inversely, the relative sensitivity of trace and major elements to diagenesis can 207 be used to ascertain that little or no diagenesis has occurred for major elements if the 208 trace elements normalized to calcium show ratios similar to modern samples. This is 209 most probably the case for South African Plio-Pleistocene fossils for which original 210 Sr/Ca and Ba/Ca patterns are apparently preserved (Sponheimer et al., 2006; Balter et al., 2012). 211

The $\delta^{44/42}$ Ca values range from -2.00% to -0.98% in the modern dataset of 212 Tsavo/Turkana (Fig. 2A) and from -1.77‰ to -0.94‰ in the fossil dataset of Turkana 213 (Fig. 3A). In both cases, carnivores exhibit the lowest $\delta^{44/42}$ Ca values, but hippos also 214 have guite low values, between hyenas and felids. Equids have $\delta^{44/42}$ Ca values that 215 216 fall in the variability of the felid carnivores, both in the modern and fossil datasets. In the modern dataset, suids exhibit similar $\delta^{44/42}$ Ca values to equids, while fossils suids 217 have relatively high $\delta^{44/42}$ Ca values. Bovids, elephants and giraffes in the modern 218 dataset have $\delta^{44/42}$ Ca values more positive than equids, carnivores and hippos, 219 although one equid outlier shows a $\delta^{44/42}$ Ca value close to -1‰. The highest $\delta^{44/42}$ Ca 220 221 values are from rhinos and some of the other herbivores such as one giraffe, one 222 equid, a few elephants and bovids for the modern taxa analyzed (Fig. 2A). In the

fossil dataset, however, the fossil giraffes, bovids, rhinos and elephants have undistinguishable $\delta^{44/42}$ Ca values (Fig. 3A).

225 Therefore, diagenesis appears to affect some trace elements (Ba, Mn, possibly 226 Sr) but not for Ca-isotope ratios. The existence of a correlation between modern and fossil $\delta^{44/42}$ Ca values (Fig. S5) implies that diagenesis of the Ca isotope ratios at 227 228 Turkana is weak otherwise no correlation would have been obtained. Diagenesis of Ca isotopes is expected to be minimal in most cases, because phosphatic tissues are so 229 230 rich in Ca that only extreme diagenesis (discussion above), which would modify the 231 stoichiometry of CHA, would be able to overprint the original Ca isotope composition 232 (Martin et al., 2017a).

233 **4. Discussion**

234 Recent data of calcium isotope compositions in enamel suggest a strong potential 235 as a paleodietary indicator in marine settings (Skulan et al., 1997, Clementz et al., 236 2003; Martin et al., 2015; 2017b). On continents, however, data exhibit generally more complex patterning due, probably, to heterogeneous isotopic sources in soils and 237 238 further fractionation in plants (Skulan and De Paolo, 1999; DePaolo 2004; Melin et 239 al., 2014). Melin et al. (2014) analyzed the calcium isotope ratios of 21 bone samples 240 from two modern mammalian communities in northern Borneo and northwestern 241 Costa Rica: they observe a depletion of heavy calcium isotopes up the trophic chains 242 involving two large vertebrate predators (one Felis bengalensis individual in Borneo 243 and one *Panthera onca* individual in Costa Rica). Melin et al. (2014) concluded a lack 244 of sensitivity of Ca isotopes to carnivory. Although tooth or bone samples from large 245 predators are indeed difficult to secure, larger datasets including more of them are 246 required to further explore this issue. 247 Our Ca isotope measurements arise from two modern datasets of mammals 248 living at Tsavo National Park and at Turkana, both from Kenya; these datasets 249 comprise 64 samples from individuals covering 9 different families of large mammals 250 with 18 grazers, 21 browsers, 7 mixed feeders and 18 carnivores (Table 1). We 251 considered several different digestive physiologies in the herbivore mammals of our

252 dataset: ruminant foregut, non-ruminant foregut and hindgut. However, we found no

253 statistically significant differences between groups. Although recent finds have

highlighted that fractionation of calcium isotopes in the body mainly occurs from

renal activity (Tacail et al. 2017b), it will be worth to expand the dataset and further

256 explore potential links between digestive physiology and isotopic variability.

257 Comparisons of $\delta^{44/42}$ Ca values with respect to body mass are premature with our

258 current dataset; such studies should also include renal and digestive physiology as 259 well as the C_3/C_4 mix of diet while also comparing for body mass. Here, 1) we discuss 260 a Trophic Level Effect (TLE) as recorded in tooth enamel of modern mammals, 261 underlining significant differences in Ca and C isotope values between some 262 carnivores and herbivores; 2) we highlight that variability in mammal resource use 263 such as plants, soils and waters needs to be considered to account for the observed 264 variability in Ca isotope values of their tissues and may be related to differences in 265 calcium isotope ratios between grazers and browsers; and 3) we infer fossil mammal 266 Ca isotopic ecology in light of the knowledge derived from the modern samples.

267

268 4.1. $\delta^{44/42}$ Ca and the Trophic Level Effect (TLE) in modern mammals

269 Carnivores exhibit an important variability of the Ca isotope composition being the lightest samples of the dataset but also overlapping with herbivore Ca isotope values. 270 271 except some of the very large herbivores, i.e. rhinos, giraffes and elephants (Fig. 2A). 272 We report a carnivore-prey offset of 0.24‰ when considering all carnivores versus 273 herbivores of the modern dataset, and an offset of 0.33‰ when considering Panthera 274 leo and Crocuta crocuta from Tsavo versus all modern herbivores. Therefore, a 275 carnivore-prey offset of about 0.3‰ seems to characterize mammalian faunas. For the 276 limited samples we have analyzed, the two modern felids from Tsavo, Panthera leo (n = 9) and *Panthera pardus* (n = 4) have differing $^{44/42}$ Ca ratios, *P. leo* being the most 277 278 depleted in heavy Ca isotopes (-1.63 \pm 0.09‰, 1SD) similarly to the single hyenid 279 Crocuta crocuta from Tsavo whereas P. pardus is enriched in heavy Ca isotopes

- 280 (-1.46 \pm 0.16‰, 1SD). In the modern dataset from Turkana, *C. crocuta* (n = 2) is also
- the most depleted in heavy Ca but in this ecosystem, P. leo (n = 2) is notably enriched
- in heavy Ca (-1.18 \pm 0.01, 1SD), more so than *P. pardus* from Tsavo. Large

283	carnivores are flexible in their diet and their feeding habits may vary from one region
284	to another. Considering only P. leo and C. crocuta at Tsavo, carnivores possess
285	significant lower $\delta^{44/42}$ Ca values than all herbivores, except the hippos (see discussion
286	below). Bone is often a significant component of the diet of hyenids but also of <i>P. leo</i> .
287	Across felid taxa, proportions of meat versus bone vary (Van Valkenburgh, 1996),
288	indicating bone consumption needs to be considered as a non-negligible supplier of
289	dietary calcium. Even a small amount of dietary bone ingested would shift the values
290	toward light Ca (Heuser et al. 2011), and could explain the low $\delta^{44/42}Ca$ values
291	observed in our dataset for P. leo and C. crocuta. More calcium isotope data-points
292	are needed to test for a potential isotope scattering among carnivores according to
293	their feeding ecology. Based on behavioural observations, a dietary overlap exists
294	between C. crocuta and P. leo (Hayward, 2006) and may help explain that both taxa
295	display some of the most depleted Ca isotope values of the dataset. In the Pleistocene
296	of France, <i>C. crocuta</i> possesses the most $\delta^{44/42}$ Ca-depleted value of the dataset
297	(Martin et al. 2017a), confirming our observations on <i>C. crocuta</i> from modern Kenya.
298	The δ^{13} C distribution clearly distinguishes C ₄ from C ₃ trophic chains (Fig. 2B)
299	and used with $\delta^{44/42}$ Ca values provides further insights into niche partitioning.
300	Browsing herbivores, composed of a few bovids, giraffes, rhinos and elephants
301	exhibit high and low $\delta^{44/42}Ca$ and $\delta^{13}C$ values, respectively. They are separated in the
302	$\delta^{44/42}$ Ca versus δ^{13} C space from a group of predators, here represented by leopards,
303	which show similar δ^{13} C values but lower $\delta^{44/42}$ Ca values (Fig. 2B). That <i>P. pardus</i>
304	avoids prey living in open habitats has been reported in the wild (Hayward et al.
305	2006b) and the isotopic distribution reported here indicates that some of the
306	herbivores mentioned above, especially small bovids, could represent potential prey
307	of the leopards. The preferred prey of the leopards have body masses not exceeding

308	25 kg (Hayward et al. 2006b) and therefore are not elephants, rhinos or giraffes.
309	Further work is needed to sample and assess $\delta^{44/42}Ca$ values for forest-dwelling small
310	mammals such as small bovids (e.g., duikers, dik-diks, other neotragins) or primates,
311	all of which are recognized prey of <i>P. pardus</i> and known to generally possess
312	depleted δ^{13} C values (around -12 to -15‰) (Cerling et al. 2004). On the other hand,
313	another group of herbivores comprising most of the larger bovids, suids and equids
314	occupy a distinct $\delta^{13}C$ distribution indicating a C ₄ source for predators represented by
315	<i>P. leo</i> , as indicated by their lower $\delta^{44/42}$ Ca values, corresponding to the expected
316	dietary shift in $\delta^{44/42}$ Ca values between consumer and prey.
317	Hippos do not follow the trends observed in other herbivores and have very
318	low $\delta^{44/42}$ Ca values typical of carnivores. Such measurements are difficult to reconcile
319	with a TLE given their known grazing ecology (Cerling et al. 2008); however, hippos
320	are semi-aquatic and thus have different physiological adaptations than all the other
321	non-aquatic mammals; influences on bone density and associated bone mass balance
322	may affect their $\delta^{44/42}\mbox{Ca}$ values. Although hippos have been occasionally observed to
323	exhibit carnivory (Dudley et al. 2016) the observations are so sparse to suggest that
324	carnivory is unlikely to have an observable Ca-isotope effect in hippos.

325

4.2. Ca isotope variability in environmental sources 326

327

Drinking water represents a source of calcium for mammals with concentrations 328

ranging between 15 and 150 ppm in modern-day streams (Tipper et al. 2016). Ca 329

isotopes do not fractionate in a significant extent during geological processes leading 330

to rather homogeneous isotope compositions in rocks, being sedimentary, 331

332 metamorphic, plutonic or volcanic (Tipper et al., 2016). The Turkana modern and 333 fossil ecosystems are located around Lake Turkana and are comprised primarily of 334 fluvial Quaternary sediments derived primarily from Ethiopian Tertiary and 335 Quaternary volcanic rocks. The Tsavo ecosystem is located between Mombasa and 336 Nairobi and consists of metamorphic basement in the east (all of Tsavo East NP and 337 most of Tsavo West NP) with some Quaternary basalts in the western part of Tsavo 338 West NP. If local Ca-isotope variations are found between different substrates, studies combining $\delta^{44/42}$ Ca values with ⁸⁷Sr/⁸⁶Sr may be useful to study fossil 339 340 assemblages.

341 At the bottom of the trophic structure, mammalian herbivores source most of 342 their calcium from plants. Contrary to geological processes, reviewing the literature 343 shows that Ca isotopes fractionate in a significant extent between monocotyledons 344 (including grasses) and leaves of dicotyledons (Fig. 4), thus representing an important source of isotopic variability. Roots of plants preferentially take up light Ca isotopes. 345 346 and there is a further fractionation in favor of heavy isotopes with variable amplitude 347 in leaves of dicotyledons, while this process is subdued or absent in monocotyledons 348 (Cenki-Tok et al. 2009, Holmden and Bélanger 2010). This leads to a difference of +0.31‰ ($p^{***} < 10^{-4}$) between whole monocotyledon plant tissue and the leaves of 349 dicotyledons. This $\delta^{44/42}$ Ca difference implies that grass and sedge consumers, i.e. 350 grazers, should have a $\delta^{44/42}$ Ca value lower by about 0.3% compared to the browsing 351 352 leave-eaters; this is generally true for the modern Tsavo dataset (Fig. 2). If different plant parts (i.e., roots, shoots, leaves) have different $\delta^{44/42}$ Ca values, those differences 353 may be passed on to the consumer and this would be a useful tool for understanding 354 355 fossil diet partitioning.

This recognized isotopic difference between plant types, being passed on to herbivores, eventually gets passed on to the next trophic level, i.e. carnivores. We 358 expect that carnivores feeding on grazers should exhibit different calcium isotopic 359 compositions than carnivores feeding on browsers and this is supported by our 360 modern dataset with lions and hyaenas showing more negative values ($-1.65 \pm$ 361 0.10%, 1SD, n = 10) than leopards (-1.46 ± 0.16\%, 1SD, n = 4). Despite some scattering in $\delta^{44/42}$ Ca values among predators, it becomes clear 362 363 that in a modern ecosystem such as Tsavo, P. pardus feeds on prey with higher $\delta^{44/42}$ Ca values, and that *P. leo* and *C. crocuta* primarily feed on prey with lower 364 $\delta^{44/42}$ Ca values. Remarkably, there is a tight $\delta^{44/42}$ Ca versus δ^{13} C clustering of all the 365 366 taxa in the modern Tsavo panel, suggesting that Ca and C isotope ratios are driven, at least partially by common processes. The concomitant use of $\delta^{44/42}$ Ca and δ^{13} C values 367 provides for the first time an encouraging perspective on carnivore niche partitioning 368 between C₃ and C₄ prev. Certainly, more $\delta^{44/42}$ Ca measurements covering specific 369 feeding ecologies among modern felids are required to further discuss the use of 370 371 calcium isotopes and decipher niche partitioning among large carnivores. 372

373 *4.3. Palaeoecological inferences using Ca isotopes*

374

The taxonomic distribution of the Ca isotope ratios have similar ordering for modern 375 and fossil East African faunas (Fig. 2A and Fig. 3A). Comparing the $\delta^{44/42}$ Ca values 376 377 in modern Tsavo and fossil Turkana on a family taxon basis leads to a good correlation ($R^2 = 0.621$, $p^* = 0.012$, Fig. 5) with an observed compression in the 378 $\delta^{44/42}$ Ca range possibly due to differing feeding ecologies between fossil and modern 379 analogues, as evidenced by high $\delta^{44/42}$ Ca values for fossil suids and saber-tooth cats. 380 381 Plio-Pleistocene assemblages from Turkana in northern Kenya are from ca. 4.1 382 Ma to 1.4 Ma, a period well after the rise of C₄ ecosystems (Cerling et al., 1997), but

in a time where there were significant changes in dietary guilds represented in the
fossil record (Cerling et al., 2015). The fossil Turkana ecosystem had similar
taxonomic lineages as the modern Turkana ecosystem: bovids, elephantids, giraffids,
equids, rhinocerotids. Fossil hyenids and felids were analyzed from Turkana; those
fossil carnivora taxa include those with no modern analogues such as saber tooth
felids.

389 The $\delta^{44/42}$ Ca and δ^{13} C relationships are preserved for some taxonomic groups, 390 but not for all groups, when comparing the modern and fossil assemblages (Figure 2 391 and Figure 3). Most taxonomic groups have similar rankings for $\delta^{44/42}$ Ca for fossil 392 versus modern samples (Figure 5) suggesting a conservative ecology and/or 393 physiology. Although most taxonomic groups have similar δ^{13} C values through time, 394 some notable exceptions, such as elephantids and rhinocerotids, show similar $\delta^{44/42}$ Ca 395 values in spite of differing δ^{13} C values for the data considered here.

Bovids and equids have similar δ^{13} C and $\delta^{44/42}$ Ca values for both modern and 396 397 fossil faunas although differences are noted. The fossil tragelaphins (Taurotragus and 398 *Tragelaphus*) had higher grass components in their diets than the modern ones from 399 Tsavo, and likewise the fossil alcelaphins (Megalotragus) had a slightly higher 400 browse content than do modern alcelaphins from East Africa (see Cerling et al., 2015). Equids had similar δ^{13} C values for both modern and fossil samples. Fossil and 401 modern bovids have similar $\delta^{44/42}$ Ca values, but modern equids have $\delta^{44/42}$ Ca values 402 403 slightly different than fossil equids.

The comparison between modern and fossil elephantids and rhinocerotids is noted here. Although the $\delta^{44/42}$ Ca values are comparable, the diets of the studied samples are quite different, unlike all other fossil-modern comparisons in this study. Both elephantid fossil *Elephas* and *Loxodonta* were grazers, but modern *Loxodonta* is 408 primarily a browser (Cerling et al. 2015). The abundant fossil rhinocerotid 409 *Ceratotherium* was a grazer and was analyzed as part of this study; the modern rhinocerotid Diceros was a browser (Cerling et al., 2015) and was analyzed as well. 410 For these lineages, $\delta^{44/42}$ Ca values are similar for fossil and modern comparisons, in 411 412 spite of the dietary (grazing versus browsing) differences. Clearly, further 413 comparison within the elephantid and rhinocerotids for both modern and fossil faunas is needed to understand why $\delta^{44/42}$ Ca values in these groups appears to be 414 conservative across dietary differences. 415 Modern suids, represented by *Phacochoerus aethiopicus*, have $\delta^{44/42}$ Ca values 416

417 (-1.48 \pm 0.04‰, 1SD, n = 3) significantly different from fossil suids (-1.09 \pm 0.11‰,

418 1SD, n = 3). The fossil dataset includes three genera (*Kolpochoerus*, *Metridiochoerus*

419 and *Notochoerus*) and there is little variation in their respective Ca isotope values.

420 Modern *P. aethiopicus* are mostly herbivorous, feeding on grass. More specimens of

421 fossil suids, especially contemporaneous lineages is needed to determine if Ca-

422 isotopes can distinguish different feeding strategies, such as using underground

423 storage organs, versus grass stems or leaves (Fig. 4).

It is noteworthy that the ⁴⁴Ca-enrichment observed for carnivores between 424 425 Turkana fossils and modern Tsavo samples is linked to five out of fourteen fossil samples (Fig. 5), with $\delta^{44/42}$ Ca values above -1.2‰, which represent very high values 426 427 even considering the modern Tsavo carnivores. Excluding these five samples, it can be noted that fossil and recent carnivores have identical $\delta^{44/42}$ Ca values (Fig. 5) 428 implying that those hyaenids and felids already occupied similar niches as modern C. 429 430 *crocuta* and *P. leo*. There are no pure C₃ carnivores in this dataset of fossil Turkana 431 carnivores that fill the niche of extent leopards. All the fossil Turkana carnivores

432 examined in this paper relied on herbivores with a mixed C₃-C₄ diet and cover a wide433 time range.

The group (n = 5) of fossil carnivores with extremely ⁴⁴Ca-enriched values 434 (Fig. 3) includes four felids with two individuals of the genus *Dinofelis* (-1.17 \pm 435 436 0.10% and $-1.03 \pm 0.22\%$), one machairodontid of the genus *Homotherium* (-1.08 ± 437 0.15‰) and one indeterminate felid (-1.09 \pm 0.12 ‰). Three of them are characterized 438 by saber-shaped canines, the function of which has been interpreted to deliver a 439 weaker bite force than P. leo (McHenry et al. 2007). According to our carbon isotope 440 data, this group of felids fed on herbivores that consumed a mixture of C₃-C₄ plants or the diet was a mix of grazers and browsers. The high $\delta^{44/42}$ Ca values of Turkana 441 442 saber-tooth cats imply an absence of bone consumption, probably reflecting 443 adaptation to exclusive flesh-eating. Even considering such a derived feeding preference toward meat-based diet, the $\delta^{44/42}$ Ca values for this group of felids remain 444 high and applying an offset of about +0.3‰ (see 4.1) indicates a prey source with a 445 $\delta^{44/42}$ Ca enamel value around -0.8‰, i.e. not measured in our dataset. A provocative 446 explanation would be that these carnivores relied mainly on an unanalyzed group of 447 448 prey. As tempting as it may seem, two outliers may contradict such hypotheses and are represented by a machairodontine (saber-tooth) with low $\delta^{44/42}$ Ca value (-1.53 ± 449 0.12‰) as well as a hyenid with a particularly high $\delta^{44/42}$ Ca value (-0.93 ± 0.13‰), 450 both of which should be expected to respectively display high and low $\delta^{44/42}$ Ca values 451 instead. Alternatively, the model of Skulan and DePaolo (1999) could explain high 452 $\delta^{44/42}$ Ca values in some carnivores if a large proportion of ingested calcium ends up 453 454 mineralized, in other words resulting in no fractionation between mineral and diet. Clearly, more data are needed to fully cover the range of $\delta^{44/42}$ Ca variations in modern 455 mammals, but the present study already gives encouraging grounds for first order 456

- 457 paleoecological reconstructions. Tighter time intervals for the fossil record would be
- 458 beneficial for understanding past relationships in $\delta^{44/42}$ Ca space, and additional studies
- 459 of modern ecosystems are also needed.

460 Acknowledgements

462	We thank the Government of Kenya for permission to sample modern and fossil
463	samples, the Kenya Wildlife Service for assistance in the field, and the National
464	Museums of Kenya. Samples were collected with grants from the US National
465	Science Foundation, the Packard Foundation, and the LSB Leakey Foundation. We
466	also thank CNRS (Tellus-Rift) and ENS-Lyon for support of this project. We thank
467	two anonymous reviewers for their insightful comments on the last version of this
468	work.
469	
470	References
471	Bagard, M.L., Schmitt, A.D., Chabaux, F., Pokrovsky, O.S., Viers, J., Stille, P.,
472	Labolle, F. and Prokushkin, A.S., 2013. Biogeochemistry of stable Ca and radiogenic
473	Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia.
474	Geochimica et Cosmochimica Acta, 114, 169-187.
475	
476	Balter, V., Person, A., Labourdette, N., Drucker, D., Renard, M., & Vandermeersch,
477	B. (2001). Les Néandertaliens étaient-ils essentiellement carnivores? Résultats
478	préliminaires sur les teneurs en Sr et en Ba de la paléobiocénose mammalienne de
479	Saint-Césaire. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and
480	<i>Planetary Science</i> , <i>332</i> (1), 59-65.
481	
482	Balter, V. (2004). Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial
483	mammalian trophic chains. Oecologia, 139(1), 83-88.
484	

485	Balter, V	V., Braga,	, J., Télouk	, P., &	Thackeray, J.	F. (2012). Evidence	for dietary
		,	,	, .,				

- change but not landscape use in South African early hominins. *Nature*, 489(7417),
 558-560.
- 488
- 489 Brown FH, Mcdougall I (2011) Geochronology of the Turkana depression of northern
- 490 Kenya and southern Ethiopia. *Evolutionary Anthropology* 20.6: 217-227.
- 491 Cenki-Tok, B., Chabaux, F., Lemarchand, D., Schmitt, A. D., Pierret, M. C., Viville,
- 492 D., Bagard, M.-L., & Stille, P. (2009). The impact of water-rock interaction and
- 493 vegetation on calcium isotope fractionation in soil-and stream waters of a small,
- 494 forested catchment (the Strengbach case). *Geochimica et Cosmochimica Acta*, 73(8),
- 495 2215-2228.
- 496
- 497 Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann,
- 498 V., & Ehleringer, J. R. (1997). Global vegetation change through the
- 499 Miocene/Pliocene boundary. Nature, 389(6647), 153-158.
- 500
- 501 Cerling TE, JM Harris, and MG Leakey (1999) Browsing and grazing in modern and
- 502 fossil proboscideans. *Oecologia* 120: 364–374.
- 503 Cerling, T. E., Hart, J. A., Hart, T.B. 2004. Stable isotope ecology in the Ituri Forest.
- 504 Oecologia 138:5–12.
- 505
- 506 Cerling, T. E., Harris, J. M., Hart, J. A., Kaleme, P., Klingel, H., Leakey, M. G.,
- 507 Levin, N.E. Lewison, R.L. & Passey, B. H. (2008). Stable isotope ecology of the
- 508 common hippopotamus. *Journal of Zoology*, 276(2), 204-212.

510	Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, Harris JM, Hart JA,
511	Kirera FM, Kaleme P, Leakey LN, Leakey MG, Levin NE, Manthi FK, Passey BH,
512	Uno KT (2015) Dietary changes of large herbivores in the Turkana Basin, Kenya
513	from 4 to 1 million years ago. Proceedings of the National Academy of Sciences. 112:
514	11467-11472.
515	
516	Channon, M. B., Gordon, G. W., Morgan, J. L., Skulan, J. L., Smith, S. M., & Anbar,
517	A. D. (2015). Using natural, stable calcium isotopes of human blood to detect and
518	monitor changes in bone mineral balance. Bone, 77, 69-74.
519	
520	Chu, N. C., Henderson, G. M., Belshaw, N. S., & Hedges, R. E. (2006). Establishing
521	the potential of Ca isotopes as proxy for consumption of dairy products. Applied
522	geochemistry, 21(10), 1656-1667.
523	
524	Clementz, M. T., Holden, P., & Koch, P. L. (2003). Are calcium isotopes a reliable
525	monitor of trophic level in marine settings?. International Journal of
526	Osteoarchaeology, 13(1-2), 29-36.
527	
528	Climatological Statistics for East Africa (1975) Climatological Statistics for East
529	Africa. East African Meteorological Department, Nairobi.
530	
531	DePaolo, D. J. (2004). Calcium isotopic variations produced by biological, kinetic,
532	radiogenic and nucleosynthetic processes. Reviews in mineralogy and geochemistry,
533	55(1), 255-288.

534

535

536

537

in African landscapes. Mammal Review, 46(3), 191-203. 538 539 540 Farkaš, J., Déjeant, A., Novák, M. and Jacobsen, S.B., 2011. Calcium isotope 541 constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of 542 combining stable (δ 44/42Ca) and radiogenic (ϵ Ca) signals. *Geochimica et* 543 Cosmochimica Acta, 75:7031-7046. 544 Gussone, N., and A. Heuser. "Biominerals and biomaterial." In Calcium Stable 545 546 Isotope Geochemistry, pp. 111-144. Springer, Berlin, Heidelberg, 2016. 547 548 Hassler, A., Martin, J.E., Amiot, R., Tacail, T., Arnaud Godet, F., Allain, R., Balter, 549 V. 2018. Calcium isotopes offer clues on resource partitioning among Cretaceous 550 predatory dinosaurs. Proceedings of the Royal Society B. 285: 20180197. 551 552 Hayward, M. W. (2006). Prey preferences of the spotted hyaena (Crocuta crocuta) and 553 degree of dietary overlap with the lion (Panthera leo). Journal of Zoology, 270(4),

Dudley, J. P., Hang'Ombe, B. M., Leendertz, F. H., Dorward, L. J., Castro, J.,

Subalusky, A. L., & Clauss, M. (2016). Carnivory in the common hippopotamus

Hippopotamus amphibius: implications for the ecology and epidemiology of anthrax

555

554

606-614.

- 556 Hayward, M. W., Henschel, P., O'brien, J., Hofmeyr, M., Balme, G., & Kerley, G. I.
- 557 H. (2006b). Prey preferences of the leopard (*Panthera pardus*). Journal of Zoology,
 558 270(2), 298-313.
- 559
- 560 Heuser, A., & Eisenhauer, A. (2008). The calcium isotope composition (δ44/40Ca) of
- 561 NIST SRM 915b and NIST SRM 1486. Geostandards and Geoanalytical Research,

562 32(3), 311-315.

- Heuser, A., Tütken, T., Gussone, N., & Galer, S. J. (2011). Calcium isotopes in fossil
- 565 bones and teeth—Diagenetic versus biogenic origin. Geochimica et Cosmochimica
- 566 *Acta*, 75(12), 3419-3433.
- 567
- 568 Heuser, A., Eisenhauer, A., Scholz-Ahrens, K. E., & Schrezenmeir, J. (2016).
- 569 Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological
- 570 model for Ca homeostasis in humans. *Isotopes in environmental and health studies*,
- 571 *52*(6), 633-648.
- 572

```
Heuser, A., A.-D. Schmitt, N. Gussone, and F. Wombacher. "Analytical methods." In
Calcium Stable Isotope Geochemistry, pp. 23-73. Springer, Berlin, Heidelberg, 2016.
```

- 576 Hindshaw, R. S., B. C. Reynolds, J. G. Wiederhold, M. Kiczka, R. Kretzschmar, and
- 577 B. Bourdon. (2013). Calcium isotope fractionation in alpine plants. *Biogeochemistry*578 112, no. 1-3:373-388.
- 579

- 580 Hirata, T., Tanoshima, M., Suga, A., Tanaka, Y. K., Nagata, Y., Shinohara, A., &
- 581 Chiba, M. (2008). Isotopic analysis of calcium in blood plasma and bone from mouse
- samples by multiple collector-ICP-mass spectrometry. *Analytical Sciences*, 24(11),
- 583 1501-1507.
- 584
- 585 Holmden, C., & Bélanger, N. (2010). Ca isotope cycling in a forested ecosystem.
- 586 *Geochimica et Cosmochimica Acta*, 74(3), 995-1015.
- 587
- 588 Martin, J. E., Tacail, T., Adnet, S., Girard, C., & Balter, V. (2015). Calcium isotopes
- 589 reveal the trophic position of extant and fossil elasmobranchs. *Chemical Geology*,
- *415*, 118-125.
- 591
- Martin, J. E., Tacail, T., & Balter, V. (2017a). Non-traditional isotope perspectives in
 vertebrate palaeobiology. *Palaeontology*. 60 :485–502.
- 594
- 595 Martin, J. E., Vincent, P., Tacail, T., Khaldoune, F., Jourani, E., Bardet, N., & Balter,
- 596 V. (2017b). Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure
- 597 Prior to the K/Pg Extinction. *Current Biology*. 27: 1641-1644.
- 598
- 599 McHenry, C.R., Wroe, S., Clausen, P.D., Moreno, K., Cunningham, E. 2007.
- 600 Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-
- 601 resolution 3D computer simulation. *Proceedings of the National Academy of Sciences*.
- 602 104: 16010-16015.
- 603

604	Melin, A.	D., Crov	wley, B.	E., Broy	vn, S. T.,	Wheatley,	P. V.	Moritz,	G. L.,	Yu, Y	
		,			, ~ ,			,,	~		- ,

- 605 Bernard, H., DePaolo, D.J., Jacobson, A.D. & Dominy, N. J. (2014). Calcium and
- 606 carbon stable isotope ratios as paleodietary indicators. American journal of physical
- 607 *anthropology*, 154(4), 633-643.
- 608
- Moore, J., Jacobson, A.D., Holmden, C. and Craw, D., 2013. Tracking the
- 610 relationship between mountain uplift, silicate weathering, and long-term CO2
- 611 consumption with Ca isotopes: Southern Alps, New Zealand. Chemical Geology,
- 612 *341*,110-127.
- 613
- 614 Morgan, J. L., Skulan, J. L., Gordon, G. W., Romaniello, S. J., Smith, S. M., &
- 615 Anbar, A. D. (2012). Rapidly assessing changes in bone mineral balance using natural
- 616 stable calcium isotopes. Proceedings of the National Academy of Sciences, 109(25),
- 617 9989-9994.
- 618
- 619 Moynier, F., and T. Fujii. (2017). Calcium isotope fractionation between aqueous
- 620 compunds relevant to low-temperature geochemistry, biology and medicine. *Scientific*
- 621 Reports, 7, 44255.
- 622
- 623 Page, B., D., Thomas D. Bullen, and Myron J. Mitchell. (2008). Influences of calcium
- availability and tree species on Ca isotope fractionation in soil and vegetation.
- 625 Biogeochemistry 88, no:1-13.
- 626

627	Passev BH. MI	E Perkins, MR	Voorhies.	TE Cerling.	JM Harris.	and ST	Tucker, 2	2002.
		,			,		,	· · ·,

628 Timing of C₄ biomass expansion and environmental change in the Great Plains: an

630

- 631 Peek, S., & Clementz, M. T. (2012). Sr/Ca and Ba/Ca variations in environmental and
- 632 biological sources: A survey of marine and terrestrial systems. *Geochimica et*
- 633 *Cosmochimica Acta*, 95, 36-52.

634

- 635 Reynard, L. M., Henderson, G. M., & Hedges, R. E. M. (2010). Calcium isotope
- ratios in animal and human bone. *Geochimica et Cosmochimica Acta*, 74(13), 37353750.

638

- 639 Reynard, L. M., Henderson, G. M., & Hedges, R. E. M. (2011). Calcium isotopes in
- 640 archaeological bones and their relationship to dairy consumption. Journal of
- 641 Archaeological Science, 38(3), 657-664.

642

- 643 Reynard, L. M., Pearson, J. A., Henderson, G. M., & Hedges, R. E. M. (2013).
- 644 Calcium isotopes in juvenile milk-consumers. *Archaeometry*, 55(5), 946-957.

645

- 646 Reynard, B., & Balter, V. (2014). Trace elements and their isotopes in bones and
- 647 teeth: Diet, environments, diagenesis, and dating of archeological and paleontological
- 648 samples. *Palaeogeography, Palaeoclimatology, Palaeoecology, 416*, 4-16.

⁶²⁹ isotopic record from fossil horses. *Journal of Geology* 110: 123–140.

- 650 Russell, W. A., & Papanastassiou, D. A. (1978). Calcium isotope fractionation in ion-
- exchange chromatography. *Analytical Chemistry*, *50*(8), 1151-1154.
- 652
- 653 Schmitt, A.D., Chabaux, F. and Stille, P., (2003). The calcium riverine and
- 654 hydrothermal isotopic fluxes and the oceanic calcium mass balance. *Earth and*
- 655 Planetary Science Letters, 213, 503-518.
- 656
- 657 Skulan, J., DePaolo, D. J., & Owens, T. L. (1997). Biological control of calcium
- 658 isotopic abundances in the global calcium cycle. *Geochimica et Cosmochimica Acta*,
- *659 61*(12), 2505-2510.
- 660
- 661 Skulan, J., & DePaolo, D. J. (1999). Calcium isotope fractionation between soft and
- 662 mineralized tissues as a monitor of calcium use in vertebrates. *Proceedings of the*
- 663 National Academy of Sciences, 96(24), 13709-13713.
- 664
- 665 Sponheimer, M., & Lee-Thorp, J. A. (2006). Enamel diagenesis at South African
- 666 Australopith sites: Implications for paleoecological reconstruction with trace
- 667 elements. *Geochimica et Cosmochimica Acta*, 70(7), 1644-1654.
- 668
- 669 Tacail, T., Albalat, E., Télouk, P., & Balter, V. (2014). A simplified protocol for
- 670 measurement of Ca isotopes in biological samples. *Journal of Analytical Atomic*
- 671 Spectrometry, 29(3), 529-535.
- 672

- Tacail, T., Télouk, P., & Balter, V. (2016). Precise analysis of calcium stable isotope
- 674 variations in biological apatites using laser ablation MC-ICPMS. Journal of
- 675 Analytical Atomic Spectrometry, 31(1), 152-162.
- 676
- Tacail T, Thivichon-Prince B, Martin JE, Charles C, Viriot L, Balter V. 2017a.
- 678 Assessing human weaning practices with calcium isotopes in tooth enamel.
- 679 Proceedings of the National Academy of Sciences. 27: 1641–1644.
- 680 Tacail T, Balter V, Pelletier S, Barbesier M, Hernandez J-A, Jaouen K, Lafage-
- 681 Proust M-H, Lamboux A, Soulage C, Télouk P, Wegrzyn J, Albarède F & Fouque D.
- 682 2017b. A Comprehensive Box-Model for Calcium Isotopes in Humans. Goldschmidt
- 683 Conference, August 13-18, Paris.
- Tipper, E. T., Schmitt, A. D., Gussone, N. (2016). Global Ca Cycles: Coupling of
- 685 Continental and Oceanic Processes. In Calcium Stable Isotope Geochemistry (pp.
- 686 173-222). Springer Berlin Heidelberg.
- 687
- 688 Valdes, M. C., Moreira, M., Foriel, J., Moynier, F. (2014). The nature of Earth's
- building blocks as revealed by calcium isotopes. Earth and Planetary Science Letters,
- 690 394:135–145.
- 691
- 692 Van Valkenburgh, B. 1996. Feeding behavior in free-ranging, large African
- 693 carnivores. Journal of Mammalogy. 77:240–254.

- 695 White F (1983) *The vegetation of Africa: a descriptive memoir to accompany the*
- 696 UNESCO/AETFAT/UNSO vegetation map of Africa by F White. Natural Resources
- 697 Research Report XX, UNESCO, Paris, France.
- 698 Wiegand, B.A., Chadwick, O.A., Vitousek, P.M. and Wooden, J.L., 2005. Ca cycling
- and isotopic fluxes in forested ecosystems in Hawaii. *Geophysical Research Letters*,
- 700 *32*(11).
- 701
- 702 Wieser, M. E., Buhl, D., Bouman, C., & Schwieters, J. (2004). High precision calcium
- isotope ratio measurements using a magnetic sector multiple collector inductively
- coupled plasma mass spectrometer. Journal of Analytical Atomic Spectrometry, 19(7),
- 705 844-851.

706

707

708 Figure captions.

Figure 1. Three-isotope-plot for all data measured in this study, with $\delta^{43/42}$ Ca (‰) as a function of $\delta^{44/42}$ Ca (‰) relative to *ICP Ca Lyon* bracketing standard. The samples and standards fall on a line with a slope of 0.518 ± 0.028 (2SE), indistinguishable from the 0.507 slope predicted by the exponential mass-dependent fractionation law (red stippled line). Error bars correspond to 2SD. The blue line corresponds to the regression line. The red shaded area corresponds to the 95% confidence interval on the regression line.

716

Figure 2. A, $\delta^{44/42}$ Ca variability by taxonomic groups (‰, rel. *ICP Ca Lyon*),

arranged by increasing average values, as measured in tooth enamel of a mammalian

assemblage from the modern ecosystem of Tsavo, Kenya. **B**, $\delta^{44/42}$ Ca as a function of

721	distinction between Hyenidae + P. leo and P. pardus. Abbreviations: t, tragelaphine
722	bovids.
723	
724	Figure 3. A, Calcium isotope variability by taxonomic grouping of fossil assemblage
725	of Turkana Basin, Kenya. B , $\delta^{44/42}$ Ca as a function of δ^{13} C measured from tooth
726	enamel from the same fossil assemblage. Abbreviations: a, alcelaphine bovids.
727	
728	Figure 4. Calcium isotope variability compared between soils, browser and grazer
729	tooth enamel and their potential source foods, i.e. plant parts including roots, shoots,
730	leaves/fruits and whole Poacea (data for soils and plants derived from Bagard et al.
731	2013; Chu et al. 2006; Farkas et al. 2011; Gussone and Heuser, 2016; Heuser et al.,
732	2016; Hindshaw et al. 2013; Holmden et al. 2010; Moore et al. 2013; Page et al. 2008;
733	Schmitt et al. 2003; Skulan and DePaolo, 1999; Tacail et al. 2014; Wiegand et al.
734	2005). Student t-test P values are indicated: $**P = 0.001-0.01$; and $***P < 0.001$.
735	
736	Figure 5. $\delta^{44/42}$ Ca in fossil tooth enamel from Turkana Basin compared to $\delta^{44/42}$ Ca of
737	modern tooth enamel from Tsavo for similar taxonomic groups.
738	
739	
740	
741	
742	
743	
744	

 δ^{13} C measured from tooth enamel from the same modern assemblage. Note the spatial

745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		
756		
757		
758		
759		
760		
761		
762		
763		
764		
765		
766		
767		
768		
769		

770 Supplementary data

771

772 Conversion of literature data to ICP Ca Lyon

All standards and datasets from the literature expressed in $\delta^{44/40}$ Ca values were converted to $\delta^{44/42}$ Ca by dividing by 2.048, as calculated using the exponential massdependent fractionation law (e.g. Russell et al., 1978, Maréchal et al., 1999).

776

The measured $\delta^{44/42}$ Ca values of 4 international Ca isotope standards expressed with 777 respect to SRM915a standard were compared to 71 values from the literature as 778 compiled from 52 publications. The constant difference of -0.518 ± 0.025 ‰ 779 780 between standards measured against SRM915a versus ICP Ca Lyon (Figure S1) was 781 used to calculate the corresponding isotope compositions of international standards 782 from the literature with respect to ICP Ca Lyon, as well as to compare our dataset to 783 literature dataset published against SRM915a, Seawater, SRM915b, SRM1486, CaF2 784 GEOMAR, BSE and the CaCO3 standard described in Skulan et al. (1997). All the measured and compiled $\delta^{44/42}$ Ca values of Ca standards and reference materials are 785 786 summarized in Table S2.

787

values (expressed as $\delta^{44/42}$ Ca and $\delta^{43/42}$ Ca in % relative to standard ICP Ca-Lyon),

carbon and oxygen isotope values as well as concentrations and concentration ratios

791 for some major and trace elements.

792

Table S2. Table summarizing the isotope compositions of all 7 standards or reference
materials measured or converted to *ICP Ca Lyon*. Underlined values are the values

used to convert literature datasets from a given reference material to ICP Ca Lyonwhen necessary.

797

Supp. Figure 1. Literature $\delta^{44/42}$ Ca average values (‰, rel. *SRM915a*) as a function of 798 measured $\delta^{44/42}$ Ca average values (‰, rel. *ICP Ca Lvon*) of 4 international Ca isotope 799 800 standards (Seawater, SRM915a, SRM915b and SRM1486). This value is thus used to 801 convert literature datasets expressed against SRM915a to ICP Ca Lyon. The blue line 802 is the regression line for which the equation is given in blue. The dotted line is the identity line (y = x); the dotted grey line is the line with slope 1 and y-intercept of 803 804 0.518‰. The 0.518‰ value is the one used for conversions of datasets initially 805 expressed relative to SRM915a. Error bars are 2SE (95% confidence interval from the 806 Student's t-test).

807

808 Supp. Figure 2. Log10(Sr/Ca) ratios in the modern mammal assemblage of Tsavo,

Kenya represented by A, family groups and by B, ecological groups. Log10(Ba/Ca)

810 ratios in the modern mammal assemblage of Tsavo, Kenya represented by C, family

811 groups and by **D**, ecological groups.

812

813 Supp. Figure 3. A, Log10(Sr/Ca) and B, Log10(Ba/Ca) ratios in the fossil mammal
814 assemblage of Turkana Basin, Kenya represented by family.

815

816 **Supp. Figure 4.** Trace element concentrations measured from tooth enamel samples

817 from modern and fossil mammals analyzed in this study. Green corresponds to

818 herbivores and red corresponds to carnivores. A, Ba/Ca ratios as a function of Sr/Ca

819 ratios from the modern mammalian assemblage; **B**, Ba/Ca ratios as a function of

- 820 Sr/Ca ratios from the fossil mammalian assemblage of Turkana Basin; C, Mn as a
- 821 function of Ba from the fossil mammalian assemblage of Turkana Basin; **D**, U as a
- 822 function of Sr from the fossil mammalian assemblage of Turkana Basin.
- 823
- 824 Supp. Figure 5. Comparison of $\delta^{44/42}$ Ca values measured on pairs of treated versus
- 825 untreated samples (in ‰, relative to *ICP Ca Lyon* standard). The blue line is the
- 826 identity line. Error bars are 2SD.

TSAVO_TURKANA TSAVD	A family Rhinocerotidae	genus_species Diceros bicomis	DIGESTIVE.PHYSIOLOGY HINDGUT	ecology613C browser	MOD_FOS MODERN	S sample_ID treat_untreat K98-Tsv-128 untreated	geol_fm D. NaN	ATE_MY_I NA	NaN m3	δ13C -12	5180 -0.4	δ44/42Ca (%) -1.07	25D 0.13	643/42Ca (%) -0.56	2SD 0.16	δ44/42Ca_AV_SRM915a -0.56	n 3	Ca/P (AES) Mg/Ca (AES) Sr/Ca Ba/Ca Ca (%) Mn (ppm) U (ppm) 2.1 0.003842 0.007178 0.000216 33.9 20.5 NA
TSAVD	Rhinocerotidae	Diceros_bicomis	HINDGUT	browser	MODERN	K98-Tsv-129 untreated	NaN	NA	NaN m3	-11.4	2.8	-1.14	0.05	-0.63	0.07	-0.63	3	2.1 0.005383 0.00932 0.000093 36.1 9 NA
TSAVD	Rhinocerotidae	Diceros_bicomis	HINDGUT	browser	MODERN	K98-Tsv-130 untreated	NaN	NA	NaN m3	-10.6	-0.5	-1 -0.98	0.06	-0.49	0.12	-0.46	3	2.1 0.003225 0.007169 0.000455 37.6 15.6 NA 2.1 0.00409 0.008029 0.000249 36.2 14.8 NA
TSAVD TSAVD	Giraffidae Giraffidae	Giraffa_camelopardalis Giraffa_camelopardalis	RUMINANT_FOREGUT RUMINANT_FOREGUT	browser	MODERN	K99-136-Tsv untreated K08-Tsv-209e untreated	NaN	NA NA	NaN M3 NaN NaN	-14.2	3.3	-1.34	0.08	-0.7	0.09	-0.83 -0.74	3	2.1 0.008442 0.000959 0.000889 25.7 12.3 NA 2 0.006951 0.000768 0.000125 35.1 8.4 NA
TSAVD	Elephantidae	Loxodonta_africana	HINDGUT	browser	MODERN	K98-Tsv-112 untreated	NaN	NA	NaN m3	-8.7	0	-1.12	0.11	-0.55	0.11	-0.6	3	2.1 0.006215 0.001281 0.000154 33.1 9.5 NA
TSAVO	Elephantidae	Loxodonta_africana	HINDGUT	browser	MODERN	K08-Tsv-214e untreated	NaN	NA	NaN NaN	-11.3	0.4	-1.22	0.06	-0.61	0.09	-0.72	3	2.1 0.006053 0.00102 0.00008 35 7.1 NA 2.1 0.006064 0.001434 0.000148 32.8 35.7 NA
TSAVD TSAVD	Bovidae Bovidae	Taurotragus_oryx Tragelaphus imberbis	RUMINANT_FOREGUT RUMINANT_FOREGUT	browser	MODERN	K00-Tsv-121 untreated K00-Tsv-126 untreated	NaN	NA NA	NaN M2 NaN P4	-9.9 -11.6	3.4 5.1	-1.19	0.05	-0.6	0.07	-0.67	4	2.1 0.004164 0.000727 0.000156 34.9 24.4 NA 2 0.005805 0.0007 0.000126 35.1 37.8 NA
TSAVD	Bovidae Elophantidae	Tragelaphus_imberbis	RUMINANT_FOREGUT	browser	MODERN	K00-Tsv-232 untreated	NaN	NA	NaN m3	-12.6	1.6	-1.35	0.04	-0.69	0.1	-0.83	4	2.1 0.003952 0.000573 0.000147 32.5 58.3 NA
TSAVO	Elephantidae	Loxodonta_africana	NaN	browser	MODERN	K98-tsv-118 untreated	NaN	NA	NaN m3	-12.9	0.6	-1.0	0.15	-0.63	0.13	-0.7	3	NA NA NA NA NA NA NA
TSAVD TSAVD	Elephantidae Rhinocerotidae	Loxodonta_africana Diceros NaN	NaN	browser	MODERN	K98-tsv-115 untreated K99-tsv-137 untreated	NaN	NA NA	NaN m5 (=m2) NaN M2	-9.3 -11.2	0.3	-1.42	0.05	-0.74	0.11	-0.9	2	NA NA NA NA NA NA NA NA NA NA NA NA NA
TSAVD	Rhinocerotidae	Diceros_NaN Giraffa_comelocoardalic	NaN	browser	MODERN	K99-tsv-138 untreated	NaN	NA	NaN m3	-9.5	0.2	-1.08	0.14	-0.58	0.05	-0.56	4	NA NA NA NA NA NA NA
TSAVO	Giraffidae	Giraffa_camelopardalis	NaN	browser	MODERN	K00-tsv-112 untreated	NaN	NA	NaN p2	-11.8	3.7	-1.33	0.02	-0.63	0.09	-0.81	3	NA NA NA NA NA NA NA
TSAVD TSAVD	Giraffidae Giraffidae	Giraffa_camelopardalis Giraffa_camelopardalis	NaN	browser	MODERN	K00-tsv-131 untreated K00-tsv-147 untreated	NaN	NA NA	NaN p2 NaN p2	-10.8	3.9 3.9	-1.24	0.04	-0.61	0.01	-0.72	3	NA NA NA NA NA NA NA NA NA NA NA NA NA
TSAVD	Hyaenidae	Crotuta_crotuta	CARNIVORE	carnivore	MODERN	K00-Tsv-120 untreated	NaN	NA	NaN P2	-8.8	-2	-1.81	0.21	-0.91	0.12	-1.29	3	2.1 0.00507 0.000628 0.000136 34.6 21.7 NA
TSAVO	Felidae	Panthera_pardus	CARNIVORE	carnivore	MODERN	08-Tsv-203-m untreated	NaN	NA	NaN m3	-12.8	-2.3	-1.68	0.09	-0.86	0.05	-1.16	3	2.1 0.007102 0.001148 0.000107 36.7 14.9 NA
TSAVO	Felidae	Panthera_pardus Panthera_pardus	CARNIVORE	carnivore	MODERN	K08-Tsv-205-c untreated	NaN	NA	NaN C NaN C	-14.3	-2.1	-1.51 -1.44	0.09	-0.68	0.1	-0.92	6	2.1 0.007232 0.000966 0.00014 35.1 35.8 NA 2.1 0.008222 0.000945 0.000091 33.5 11.6 NA
TSAVD	Felidae	Panthera_leo	CARNIVORE	carnivore	MODERN	K00-Tsv-119 untreated	NaN	NA	NaN I	-6.8	1	-1.76	0.15	-0.9	0.12	-1.24	5	2.1 0.005356 0.000623 0.000172 34.6 32.5 NA
TSAVO	Felidae	Panthera_leo	CARNIVORE	carnivore	MODERN	K00-Tsv-801 untreated	NaN	NA	NaN m1	-4.1	1	-1.58	0.08	-0.78	0.07	-1.06	3	2 0.00651 0.000613 0.000127 29.3 24 NA
TSAVO	Felidae	Panthera_leo	CARNIVORE	carnivore	MODERN	K00-Tsv-802 untreated K00-Tsv-803 untreated	NaN	NA	NaN m1 NaN m1	-5.8	-0.2	-1.75	0.17	-0.9	0.05	-1.23	6	2.1 0.005895 0.00052 0.000065 34.9 56.9 NA 2.1 0.006015 0.000526 0.000205 33.3 28.1 NA
TURKANA	Felidae Felidae	Panthera_leo Panthera_leo	NaN	carnivore	MODERN	MK-OM 8976 untreated MK-OM 8976 treated	NaN	NA NA	NaN It C NaN It C	-3.7	1.7	-1.2	0.13	-0.67	0.02	-0.68	3	2.1 0.009893 0.00127 0.00089 34.2 61.4 0 2.1 0.011012 0.001494 0.000117 29.2 42.9 0
TURKANA	Hyaenidae	Crocuta_crocuta	NaN	carnivore	MODERN	MK-OM 8997 untreated	NaN	NA	NaN It P4	-7.9	-1.9	-1.66	0.15	-0.82	0.16	-1.14	4	2.1 0.0069 0.00151 0.00006 36 37.5 0
TURKANA TSAVO	Hyaenidae Felidae	Crocuta_crocuta Panthera_leo	NaN	carnivore	MODERN MODERN	MK-OM 8997 treated K00-tsv-800 untreated	NaN	NA NA	NaN It P4 NaN P4	-7.9 -4.6	-1.9	-1.7 -1.48	0.09	-0.94	0.11 0.17	-1.19 -0.96	3	2.1 0.007144 0.00156 0.00007 35.7 44.1 NA NA NA NA NA NA NA NA NA
TSAVD	Felidae	Panthera_leo	NaN	carnivore	MODERN	K00-tsv-806 untreated	NaN	NA	NaN m1	-5.5	0.8	-1.65	0.13	-0.82	0.23	-1.13	3	NA NA NA NA NA NA NA
TSAVO	Felidae	Panthera_leo	NaN	carnivore	MODERN	K00-tsv-810 untreated	NaN	NA	NaN dm1	-6.9	1.3	-1.57	0.18	-0.81	0.14	-1.05	3	NA NA NA NA NA NA
TSAVD TSAVD	Equidae Equidae	Equus_burchelli Equus_burchelli	HINDGUT	grazer grazer	MODERN MODERN	K98-Tsv-139 untreated K98-Tsv-141 untreated	NaN	NA NA	NaN M3 NaN M3	0.5	6 5.9	-1.56	0.05	-0.75	0.09	-1.04	3	2 0.005642 0.001728 0.000125 35.3 6.5 NA 2 0.005131 0.001828 0.000119 34.4 8.6 NA
TSAVD	Equidae	Equus_burchelli	HINDGUT	grazer	MODERN	K98-Tsv-142 untreated	NaN	NA	NaN P4	0.2	3.8	-1.43	0.05	-0.73	0.12	-0.91	3	2.1 0.00843 0.001597 0.000127 29.4 18.3 NA
TSAVO	Bovidae	Kobus_ellisiprymnus	RUMINANT_FOREGUT	grazer	MODERN	K00-Tsv-122 untreated K00-Tsv-123 untreated	NaN	NA	NaN M3	-0.9	2.6	-1.54	0.21	-0.77	0.09	-0.82	6	2.1 0.00541 0.000466 0.000252 34.2 42.7 NA
TSAVD TSAVD	Bovidae Bovidae	Kobus_ellisiprymnus Oryx_beisa	RUMINANT_FOREGUT RUMINANT_FOREGUT	grazer grazer	MODERN MODERN	K00-Tsv-127 untreated K98-Tsv-156 untreated	NaN	NA NA	NaN P4 NaN m3	0.5 -0.6	2.8	-1.25	0.09	-0.58 -0.62	0.19	-0.73 -0.57	3	2.1 0.004594 0.000688 0.000398 35.7 17.7 NA 2.1 0.006751 0.000601 0.00029 35.5 11.3 NA
TSAVD	Bovidae	Oryx_beisa	RUMINANT_FOREGUT	grazer	MODERN	K98-Tsv-162 untreated	NaN	NA	NaN M2	0.4	1.5	-1.24	0.14	-0.61	0.3	-0.72	3	2.1 0.006125 0.000832 0.000235 35.1 8.4 NA
TSAVO	Suidae	Phacochoerus_aethiopicus	HINDGUT	grazer	MODERN	:08-Tsv-215-1 untreated	NaN	NA	NaN c	0.5	2.1	-1.46	0.13	-0.71	0.18	-0.94	3	2 0.015824 0.000681 0.000223 31.9 21.7 NA
TSAVD TSAVD	Suidae Bovidae	Phacochoerus_aethiopicus Syncerus_caffer	HINDGUT RUMINANT_FOREGUT	grazer grazer	MODERN MODERN	K08-Tsv-216e untreated K00-Tsv-133 untreated	NaN	NA NA	NaN NaN NaN P2	1.2	0.1	-1.53 -1.35	0.06	-0.82 -0.68	0.13	-1.01 -0.83	6 5	2 0.004893 0.000795 0.00026 29.7 208.2 NA 2.1 0.004325 0.000987 0.000186 36.2 15.9 NA
TSAVD	Bovidae	Syncerus_caffer	RUMINANT_FOREGUT	grazer	MODERN	K98-Tsv-144 untreated	NaN	NA	NaN P2	1.3	2.1	-1.42	0.1	-0.82	0.2	-0.9	3	2.1 0.006029 0.000756 0.000399 35.2 7.3 NA
TSAVO	Bovidae	Syncerus_caffer	RUMINANT_FOREGUT	grazer	MODERN	K98-Tsv-146 untreated	NaN	NA	NaN M3	2.3	1.3	-1.27	0.05	-0.63	0.11	-0.76	3	2.1 0.005762 0.000859 0.000233 35.5 6.3 NA
TSAVD TSAVD	Bovidae Equidae	Syncerus_caffer Equus burchelli	RUMINANT_FOREGUT NaN	grazer grazer	MODERN MODERN	K98-Tsv-152 untreated K00-tsv-115 untreated	NaN	NA NA	NaN P4 NaN I	1.5	1.9	-1.39	0.06	-0.75	0.09	-0.87 -0.55	3	2.1 0.005008 0.000717 0.000162 34.8 13.3 NA NA NA NA NA NA NA NA NA
TSAVD	Equidae	Equus_burchelli	NaN NON RUMINANT EOREGUT	grazer mixed fooder	MODERN	K00-tsv-116 untreated	NaN	NA	NaN p3	-0.2	1.7	-1.68	0.07	-0.84	0.03	-1.16	3	NA NA NA NA NA NA NA NA NA
TSAVO	Hippopotamidae	Hippopotamus_amphibius	NON_RUMINANT_FOREGUT	mixed_feeder	MODERN	K00-Tsv-200 untreated	NaN	NA	NaN m3	-1.8	-1.8	-1.52	0.04	-1.07	0.09	-1 -1.49	3	2.1 0.005397 0.000582 0.000217 35.4 88.4 NA 2.1 0.00636 0.001959 0.000215 35 122.8 NA
TSAVD TSAVD	Hippopotamidae Hippopotamidae	Hippopotamus_amphibius Hippopotamus_amphibius	NON_RUMINANT_FOREGUT NON_RUMINANT_FOREGUT	mixed_feeder mixed_feeder	MODERN MODERN	-Tsv-201 460/ untreated K08-Tsv-208e untreated	NaN	NA NA	NaN C NaN NaN	-6.6 -2.9	-4.4	-1.6 -1.63	0.07	-0.83 -0.82	0.09	-1.08 -1.12	4	2.1 0.0053 0.001169 0.000169 35.2 46.7 NA 2 0.007425 0.001662 0.000131 33.5 14.3 NA
TSAVD	Elephantidae	Loxodonta_africana	HINDGUT	mixed_feeder	MODERN	K98-Tsv-110 untreated	NaN	NA	NaN p2	-7.1	0.7	-1.13	0.17	-0.6	0.22	-0.61	4	2.1 0.006221 0.001491 0.000136 36.2 10 NA
TSAVO	Elephantidae	Loxodonta_africana	NaN	mixed_feeder	MODERN	K98-tsv-119 untreated	NaN	NA	NaN m6	-6.8	1	-1.4	0.1	-0.69	0.13	-0.88	3	NA NA NA NA NA NA NA
TURKANA TURKANA	Giraffidae Giraffidae	Giraffa_cf. jumae Giraffa_stillei	NaN	browser browser	FOSSIL	CNM-ER 6344I treated KNM-ER 932 treated	Lonyumon KBS	NA NA	4.1 It M 1.89-1.64 rUM3	-11.6 -11.4	2.1 3.2	-1.26 -1.19	0.08	-0.61 -0.59	0.12	-0.74 -0.67	3	2 0.004442 0.002708 0.000351 36.4 35.4 6.4 2.2 0.004884 0.001867 0.010412 34.4 775 7.6
TURKANA	Giraffidae Giraffidae	Giraffa_pygmaea Giraffa_stillei	NaN	browser	FOSSIL	KNM-ER 1489 treated KNM-FR 1488 treated	Lokochot	NA NA	3.40-3.2 LM3 3.40-3.2 m frag	-11.8	4.8	-1.35	0.04	-0.67	0.05	-0.83	3	2.1 0.007599 0.001848 0.000625 33.9 502 6.3 2.1 0.004954 0.002145 0.000739 32.2 721 4.5
TURKANA	Giraffidae	Giraffa_stillei	NaN	browser	FOSSIL	KNM-ER 932 treated	KBS	NA	1.89-1.64 IUM3	-12.1	3.8	-0.95	0.15	-0.46	0.15	-0.43	4	2.1 0.004343 0.003405 0.000704 39.8 393 31
TURKANA TURKANA	Bovidae Bovidae	NaN_NaN NaN_NaN	NaN	browser	FOSSIL	KNM-ER 499 untreated f14432 untreated	Okote KBS	NA NA	1.64-1.39 m2 1.89-1.64 NaN	-8.8 -9.6	-1.7	-1.17 -1.33	0.09 NA	-0.62	0.1 NA	-0.65 -0.81	4	2.1 0.0064 0.002921 0.001363 22.3 945 8.8 2.1 0.010559 0.001464 0.000357 18.3 276.9 6.2
TURKANA	Deinotheridae Felidae	Deinotherium_bozasi NaN_NaN	NaN	browser	FOSSIL	WT 3617 treated INM_EB 60964 untreated	Kanapoi KBS	NA NA	4.1 m or M 1.89-1.64 P4 or n4	-12.4	-1.8	-0.96	0.12	-0.5	0.11	-0.44	3	2.2 0.005198 0.003281 0.000417 34.8 432.6 19.9 2.2 0.008405 0.002552 0.000884 41.5 691.3 3.4
TURKANA	Felidae	NaN_NaN	NaN	carnivore	FOSSIL	INM-ER 60964 treated	KBS	NA	1.89-1.64 P4 or p4	-3	-2.2	-1.48	0.12	-0.7	0.14	-0.96	3	2.2 0.007729 0.002346 0.000919 36.8 715.1 3.5
TURKANA TURKANA	Felidae Felidae	Dinofelis?_NaN Dinofelis?_NaN	NaN	carnivore carnivore	FOSSIL	CNM-ER 6295! untreated CNM-ER 6295! treated	Upper Burgi Upper Burgi	NA NA	2-1.89 m frag 2-1.89 m frag	-4.8 -4.8	0	-1.17 -1.03	0.1	-0.64 -0.54	0.16	-0.65	3	2.2 0.00875 0.005764 0.001183 38.3 759.1 13.2 2.2 0.007527 0.005231 0.001138 37.6 770 14.6
TURKANA	Hyaenidae Hyaenidae	NaN_NaN NaN_NaN	NaN	carnivore	FOSSIL	INM-ER 6096: untreated INM-ER 6096: untreated	NaN	NA NA	KBS or UBM rt P4 1.89-1.64 rt n3	-5.1	-2.2	-0.94	0.14	-0.46	0.17	-0.42	3	2.3 0.003954 0.005221 0.001499 32.4 1102.3 44.7 2.2 0.004267 0.002246 0.000544 29.6 793.5 3.3
TURKANA	Hyaenidae	cf. Crocuta_NaN	NaN	carnivore	FOSSIL	INM-ER 60931 treated	KBS	NA	1.89-1.64 It P4	-2.8	0.4	-1.57	0.16	-0.84	0.19	-1.05	4	2.1 0.00518 0.003676 0.001065 32.9 915 1.7
TURKANA	Felidae	Crocuta_utra Machairodontinae_NaN	NaN	carnivore	FOSSIL	CNM-ER 6096: treated	Nos or Ukote Upper Burgi	NA	2-1.89 rt C	-0.6	-1.1	-1.54 -1.53	0.09	-0.73	0.19	-1.02 -1.01	3	2.2 0.0041b1 0.003/45 0.000/24 2/.1 646.1 12.6 2.1 0.005375 0.00171 0.00054 36.3 672.1 7.8
TURKANA TURKANA	Felidae Felidae	NaN_NaN Homotherium NaN	NaN	carnivore	FOSSIL	NM-ER 60971 treated (NM-ER 6100: treated	NaN Upper Burgi	NA NA	NaN rt P4 2-1.89 rt m1	-3.8 -3.9	1.4	-1.09 -1.08	0.12	-0.58 -0.53	0.11	-0.57	4	2.1 0.00532 0.002336 0.000861 34 1420.9 1.5 2.2 0.006449 0.002944 0.000431 41.5 231.4 9.3
TURKANA	Hyaenidae	Parahyaena_howelli	NaN	carnivore	FOSSIL	INM-KP 32552 treated	Kanapoi	NA	4.1 lt p3	-6.1	-0.4	-1.42	0.05	-0.69	0.09	-0.91	3	2.2 0.005 0.002109 0.000352 42.5 887.2 2.8
TURKANA	Hyaenidae Hyaenidae	Crocuta_NaN Crocuta_sp.	NaN	carnivore	FOSSIL	NM-WT 1685 treated	iddle Lomeks	NA	3.1 to 2.8 If C 3.4 to 3.1 It p2	-5.1	-4.9	-1.77	0.11	-0.9	0.05	-1.25 -1.14	3	2.2 0.004/94 0.003484 0.000/14 36.6 872.5 43 2.2 0.00392 0.002298 0.000895 36.1 2114.7 15.4
TURKANA TURKANA	Elephantidae Rhinocerotidae	Elephas_NaN Ceratotherium NaN	NaN	grazer grazer	FOSSIL	WT 4124 kk-1 treated f6038 control treated	Kanapoi Upper Burgi	NA NA	4.1 m or M 2-1.89 m frag	-0.7	-0.2	-1.25	0.19	-0.63 -0.53	0.2	-0.73 -0.59	5	2.2 0.00418 0.002088 0.000263 36.2 527 15.9 2.1 0.003248 0.003013 0.001156 39.6 1890.4 4.3
TURKANA	Suidae	Notochoerus_jaegeri	NaN	grazer	FOSSIL	NM-WT 6428 untreated	NaN	NA	NaN M3	NA.	NA	-1.2	0.09	-0.59	0.05	-0.68	2	2.1 0.008014 0.002241 0.001588 16.5 508.7 17.2
TURKANA TURKANA	Suidae Equidae	Notochoerus_euilus Equus_grevyi?	NaN	grazer grazer	FOSSIL	rend-W1 6425 untreated KNM-ER 2680 treated	NaN Okote	NA NA	NaN M3 1.64-1.39 UP3 or UP4	NA 0.5	NA -1	-U.96 -1.3	0.13	-0.51	0.02	-u.44 -0.79	3 5	2.1 0.004405 0.003616 0.001187 22.2 489.3 8.1 2.2 0.007466 0.00546 0.00072 31.3 686.8 5.6
TURKANA TURKANA	Hippopotamidae Equidae	Hippopotamus_karumensis Equus erevvi?	NaN	grazer grazer	FOSSIL	KNM-ER 4887 treated KNM-ER 2066 treated	Upper Burgi Okote	NA NA	2-1.89 LM3 1.64-1.39 UM1 or UM2	-0.1 0.7	-4.5 1.6	-1.53	0.13	-0.81	0.08	-1.01 -0.87	5 3	2.2 0.005395 0.001894 0.000535 35.8 1311.5 8.4 2.1 0.006616 0.004028 0.000749 30.5 671 17.9
TURKANA	Bovidae	Megalotragus_isaaci	NaN	grazer	FOSSIL	KNM-ER 1035 untreated	Okote	NA	1.64-1.39 M	1	2.2	-1.59	NA	-0.88	NA	-1.08	i	2.1 0.004688 0.002806 0.000717 27.2 112 4.9
TURKANA TURKANA	Bovidae Bovidae	Nan_NaN Nan_NaN	NaN	grazer grazer	FOSSIL	f11046 untreated	UKOTE	NA NA	2.64-1.39 M2 2-1.89 NaN	0.1	2.1	-1.03	0.09	-0.54	0.05 0.09	-u.51 -0.69	3	2.2 0.004442 0.002604 0.000804 17.6 406.6 5.9 2.2 0.004337 0.001331 0.000493 22.4 273.8 2.8
TURKANA TURKANA	Bovidae Bovidae	Megalotragus_isaaci Megalotragus_isaaci	NaN	grazer grazer	FOSSIL	KNM-ER 515 untreated KNM-ER 2543 untreated	KBS Okote	NA NA	1.89-1.64 M 1.64-1.39 M ²	0.4	3.8 5.1	-0.94	0.06	-0.47	0.03	-0.43	3	2.2 0.004988 0.004386 0.000987 30.9 788.1 21.3 2.2 0.004102 0.00282 0.000633 30.7 683.6 6.3
TURKANA	Equidae	Equus_Koobiforensis	NaN	grazer	FOSSIL	KNM-ER 1242 treated	KBS	NA	1.89-1.64 UM3	0.5	3.7	-1.35	0.1	-0.69	0.04	-0.83	3	2.1 0.003958 0.002449 0.000315 35.5 632.5 8.8
TURKANA TURKANA	Equidae Suidae	Equus_Koobiforensis Notochoerus_euilis	NaN	grazer grazer	FOSSIL	KNM-ER 1271 treated KNM-ER 225 treated	Upper Burgi Lokochot	NA NA	2-1.89 UM1 or UM2 3.40-3.2 m frag	-0.1 -0.6	-1.1	-1.34 -1.26	0.19	-0.71 -0.67	0.13	-0.82 -0.74	5 4	2.1 U.00649 0.002187 0.000705 28.5 1172.1 4 2.2 0.003573 0.002102 0.000232 37.1 806.4 3.2
TURKANA TURKANA	Elephantidae Equidae	Elephas recki_recki Hipparion_sp.	NaN	grazer grazer	FOSSIL FOSSI	KNM-ER 5871 treated KNM-ER 5359 treated	Upper Burgi KBS	NA NA	2-1.89 m or M 1.89-1.64 UM1 or UM2	0.3	-1 7.1	-1.23	0.17	-0.61	0.11	-0.72 -0.87	4	2.2 0.00468 0.002368 0.000201 38.9 279.8 19.1 2.2 0.004891 0.003493 0.000836 34.8 610.7 3.9
TURKANA	Suidae	Metridiochoerus_andrewsi	NaN	grazer	FOSSIL	KNM-ER 3696 treated	Upper Burgi	NA	2-1.89 M3	0	2	-1.03	0.05	-0.52	0.05	-0.51	3	2.2 0.005307 0.002931 0.001043 38.3 1540.8 12.2
TURKANA TURKANA	Suidae Suidae	Kolpochoerus_heseloni Kolpochoerus_heseloni	NaN	mixed_feeder mixed_feeder	FOSSIL	INM-ER 61501 untreated INM-ER 61501 treated	Lonyumon	NA NA	4.1 M3 4.1 M3	-5 -5	-3.7	-1.09	0.1	-0.52	0.15	-0.57	3	2.2 UJU48 0.002163 0.000788 30.5 745.9 8.6 2.1 0.004601 0.001913 0.000765 35.6 963.1 10.1
TURKANA	Elephantidae Hinoportamidae	Loxodonta_adaurora Hinnonotamus_protoamehibio	NaN s NaN	mixed_feeder	FOSSIL	WT 3833 treated KNM-FR 4119 treated	Kanapol	NA NA	4.1 m or M 3.40.3.2 m from	-1.1	2.2	-1.29	0.12	-0.64	0.12	-0.77	5	2 0.005159 0.002133 0.000599 36.7 563 13.9 2.2 0.003917 0.001957 0.000628 37.7 1240 9.6
TURKANA	Equidae	Equus_grevyi?	NaN	mixed_feeder	FOSSIL	KNM-ER 2672 treated	Okote	NA	1.64-1.39 UM1 or UM2	-1.1	2.8	-1.33	0.04	-0.7	0.04	-0.81	3	2.2 0.005695 0.003552 0.000335 26.6 463.5 29.1
TURKANA TURKANA	Hippopotamidae Bovidae	Hippopotamus_karumensis NaN_NaN	NaN	mixed_feeder mixed_feeder	FOSSIL	KNM-ER 2186 treated KNM-ER 4350 untreated	KBS Okote	NA NA	1.89-1.64 m frag 1.64-1.39 m1	-1.8 -6.1	-4.1	-1.47 -1.27	0.14	-0.78 -0.61	0.08	-0.96 -0.75	3	2.1 0.004337 0.00154 0.00035 35.4 349.9 6.8 2.1 0.005908 0.002162 0.0006 24.7 359.7 2.2
TURKANA	Equidae	Hipparion_hasumense	NaN	mixed_feeder	FOSSIL	KNM-ER 2788 untreated	ulu Bor - Low	NA	3-2.52 LM	-1.2	-2.7	-1.34	0.11	-0.69	0.1	-0.82	3	2.2 0.00467 0.002867 0.000489 23.7 363.7 15 2.1 0.002861 0.001497 0.000454 23.9 232.2 (1
TURKANA	Bovidae	NaN_NaN	NaN	mixed_feeder	FOSSIL	f12085 untreated	UBM	NA	2-1.89 NaN	-7.6	-1.0	-1.25	NA NA	-0.72	NA	-0.74	1	2.1 0.013293 0.001703 0.00043 21.8 256 2.4
TURKANA	Elephantidae	Elephas_ekorensis	NaN	mixed_feeder	FOSSIL	wr 3614 treated	Kanapoi	NA	4.1 m or M	-2.5	1.1	-1.2	0.13	-0.58	0.15	-0.69	4	2.2 U.UU4856 0.002546 0.000397 33.6 475.2 14.1

Mothod	n	δ ^{44/42} Ca (‰)	2SD	2SE	δ ^{44/42} Ca (‰) rel. Literature Ref. Mat.		Conv. to ICP Ca Lyon	References
Wethou		rel. ICP Ca Lyon					by adding :	
Measured	17 meas.	0.412	0.107	0.027	-	-	-	32, 51, 52
Converted	39 ref.	0.397	0.057	0.009	0.916	rel. SRM915a	-0.518	1-5, 8-11, 13, 20-30, 36, 40, 41, 43, 44, 45, 49, 50, 54, 55, 57, 59
Measured	26 meas.	-0.144	0.101	0.020	-	-		32, 51-53
Converted	7 refs.	-0.146	0.073	0.034	0.372	rel. SRM915a	-0.518	6, 11, 15, 20, 40, 42, 58
Measured	5 meas.	-0.520	0.100	0.062	-	-	-	53
Used for conversion	-	-0.518	-	-	0.000	rel. SRM915a	-0.518	
Measured	101 meas.	-1.047	0.130	0.013	-	-	-	This study
Measured	404 meas.	-1.024	0.125	0.006	-	-	-	14, 33-34, 51-53
Converted	5 refs.	-1.009	0.041	0.026	-0.490	rel. SRM915a	-0.518	15, 18, 19, 31
Converted	13 refs.	0.180	0.041	0.013	0.698	rel. SRM915a	-0.518	5, 12, 13, 16, 17, 22, 36, 39, 44, 45, 54
Converted	5 refs.	-0.036	0.021	0.013	0.482	rel. SRM915a	-0.518	7, 35, 37, 38, 46
Converted	2 refs.	-0.023	0.041	NA	-0.435	rel. Seawater	+0.412	47, 48
	Method Measured Converted Measured Used for conversion Measured Converted Converted Converted Converted	Method n Measured 17 meas. Converted 39 ref. Measured 26 meas. Converted 7 refs. Measured 5 meas. Used for conversion - Measured 101 meas. Measured 5 refs. Converted 13 refs. Converted 5 refs. Converted 2 refs.	Method η δ ^{-4/-2} Ca (%) rel. (P Ca Lyon Measured 17 meas. Converted 0.412 39 ref. 0.432 0.397 Measured 26 meas. 7 refs. -0.144 -0.146 Measured 5 meas. -0.520 -0.520 Used for conversion - -0.518 Measured 101 meas. 5 refs. -1.047 Measured 1024 -1.024 Converted 5 refs. -1.009 Converted 13 refs. 0.180 Converted 5 refs. -0.036 Converted 2 refs. -0.023	Method n 50 ^{m//2} (Ca (%e)) rel. (PC G Uyon 2 SD Measured 17 meas. 0.412 0.107 Converted 39 ref. 0.397 0.057 Measured 26 meas. -0.144 0.101 Converted 7 refs. -0.146 0.073 Measured 5 meas. -0.520 0.100 Used for conversion - -0.518 - Measured 101 meas. -1.047 0.130 Measured 101 meas. -1.024 0.125 Converted 5 refs. -1.009 0.041 Converted 13 refs. 0.180 0.041 Converted 5 refs. -0.036 0.021 Converted 2 refs. -0.023 0.041	Method n 5 ⁶⁷⁺² Ca (%) rel. <i>ICP Calyon</i> 25D 25E Measured 17 meas. <i>ICP Calyon</i> 0.007 0.027 Converted 39 ref. 0.397 0.057 0.009 Measured 26 meas. -0.144 0.101 0.020 Measured 26 meas. -0.146 0.073 0.034 Measured 5 meas. -0.520 0.100 0.062 Used for conversion - -0.518 - - Measured 101 meas. -1.047 0.130 0.013 Measured 101 meas. -1.047 0.125 0.006 Converted 5 refs. -1.009 0.041 0.026 Converted 13 refs. 0.180 0.041 0.013 Converted 5 refs. -0.036 0.021 0.013 Converted 5 refs. -0.036 0.021 0.013 Converted 2 refs. -0.023 0.041 NA	Method n 5 ^{64/42} Ca (%o) rel. <i>ICP Calyon</i> 2SD 2SE 6 ⁶⁷ rel. Measured 17 meas. 0.412 0.107 0.027 - Converted 39 ref. 0.397 0.057 0.009 0.916 Measured 26 meas. -0.144 0.101 0.020 - Converted 7 refs. -0.146 0.073 0.034 0.372 Measured 5 meas. -0.520 0.100 0.062 - Used for conversion - -0.518 - - 0.000 Measured 101 meas. -1.047 0.130 0.013 - Measured 101 meas. -1.024 0.125 0.006 - Converted 5 refs. -1.009 0.041 0.026 -0.490 Converted 13 refs. 0.180 0.041 0.013 0.698 Converted 5 refs. -0.036 0.021 0.013 0.482 Converted 2 refs. -0.023 <th>Method η δ^{4/3/2}Ca (%) rel.<i>ICP</i> Ca <i>yon</i> 2SD 2SE δ^{-1/3/2}Ca (%) rel.<i>Utrature Ref.</i> Measured 17 meas. 0.412 0.107 0.027 - - Converted 39 ref. 0.397 0.057 0.009 9.916 rel.<i>SRM</i>915a Measured 26 meas. -0.144 0.101 0.020 - - Converted 7 refs. -0.146 0.073 0.034 0.372 rel. SRM915a Measured 5 meas. -0.520 0.100 0.062 - - Used for conversion - -0.518 - - 0.000 rel. SRM915a Measured 101 meas. -1.047 0.130 0.013 - - Measured 101 meas. -1.024 0.125 0.006 - - Measured 101 meas. -1.024 0.125 0.006 - - Converted 5 refs. -1.009 0.041 0.013 0.698 rel. SRM915a<th>Method n $\delta^{w/vLC}a$ (%) rel. ICP Ca Lyon 2SD 2SE $\delta^{w/uL}Ca$ (%) rel. Uterature Ref. Mot. Conv. to ICP Ca Lyon Measured 17 meas. 0.412 0.107 0.027 - - Converted 39 ref. 0.397 0.057 0.009 0.916 rel. SRM915a -0.518 Measured 26 meas. -0.144 0.101 0.020 - - - Converted 7 refs. -0.146 0.073 0.034 0.372 rel. SRM915a -0.518 Measured 5 meas. -0.520 0.100 0.062 - - - Used for conversion - -0.518 - - 0.000 rel. SRM915a -0.518 Measured 101 meas. -1.047 0.130 0.013 - - - Measured 101 meas. -1.047 0.125 0.006 - - - Measured 101 meas. -1.047 0.126 0.040 rel. SRM915a</th></th>	Method η δ ^{4/3/2} Ca (%) rel. <i>ICP</i> Ca <i>yon</i> 2SD 2SE δ ^{-1/3/2} Ca (%) rel. <i>Utrature Ref.</i> Measured 17 meas. 0.412 0.107 0.027 - - Converted 39 ref. 0.397 0.057 0.009 9.916 rel. <i>SRM</i> 915a Measured 26 meas. -0.144 0.101 0.020 - - Converted 7 refs. -0.146 0.073 0.034 0.372 rel. SRM915a Measured 5 meas. -0.520 0.100 0.062 - - Used for conversion - -0.518 - - 0.000 rel. SRM915a Measured 101 meas. -1.047 0.130 0.013 - - Measured 101 meas. -1.024 0.125 0.006 - - Measured 101 meas. -1.024 0.125 0.006 - - Converted 5 refs. -1.009 0.041 0.013 0.698 rel. SRM915a <th>Method n $\delta^{w/vLC}a$ (%) rel. ICP Ca Lyon 2SD 2SE $\delta^{w/uL}Ca$ (%) rel. Uterature Ref. Mot. Conv. to ICP Ca Lyon Measured 17 meas. 0.412 0.107 0.027 - - Converted 39 ref. 0.397 0.057 0.009 0.916 rel. SRM915a -0.518 Measured 26 meas. -0.144 0.101 0.020 - - - Converted 7 refs. -0.146 0.073 0.034 0.372 rel. SRM915a -0.518 Measured 5 meas. -0.520 0.100 0.062 - - - Used for conversion - -0.518 - - 0.000 rel. SRM915a -0.518 Measured 101 meas. -1.047 0.130 0.013 - - - Measured 101 meas. -1.047 0.125 0.006 - - - Measured 101 meas. -1.047 0.126 0.040 rel. SRM915a</th>	Method n $\delta^{w/vLC}a$ (%) rel. ICP Ca Lyon 2SD 2SE $\delta^{w/uL}Ca$ (%) rel. Uterature Ref. Mot. Conv. to ICP Ca Lyon Measured 17 meas. 0.412 0.107 0.027 - - Converted 39 ref. 0.397 0.057 0.009 0.916 rel. SRM915a -0.518 Measured 26 meas. -0.144 0.101 0.020 - - - Converted 7 refs. -0.146 0.073 0.034 0.372 rel. SRM915a -0.518 Measured 5 meas. -0.520 0.100 0.062 - - - Used for conversion - -0.518 - - 0.000 rel. SRM915a -0.518 Measured 101 meas. -1.047 0.130 0.013 - - - Measured 101 meas. -1.047 0.125 0.006 - - - Measured 101 meas. -1.047 0.126 0.040 rel. SRM915a

References

1 Amini et al. 2008 Geoch. Cosm. Acta. 72(16), 4107-4122. 2 Amini et al. 2009 Geostand. Geoanal. Res. 33(2), 231-247 3 Böhm et al. 2006 Geoch. Cosm. Acta. 70(17), 4452-4462. 4 Chang et al. 2004 Biochem. Biophys. Res. Comm. 323(1), 79-85 5 Cobert et al. 2011 Rapid Comm. Mass Spec. 5(19), 2760-2768. 6 Colla et al. 2013 Geoch. Cosm. Acta. 121, 363-373. 7 Fantle 2015 Geoch, Cosm, Acta, 148, 378-401. 8 Farkas et al. 2007 Earth. Planet. Sci. Lett. 253(1-2), 96-111. 9 Farkas et al. 2007 Geoch. Cosm. Acta. 71(21), 5117-5134. 10 Farkas et al. 2011 Geoch. Cosm. Acta. 75(22), 7031-7046. 11 Feng et al. 2016 Geostand. Geoanal. Res. 41(1) 12 Gussone et al. 2003 Geoch. Cosm. Acta. 67(7), 1375-1382. 13 Harouaka et al. 2014 Geoch. Cosm. Acta. 184, 114-131. 14 Hassler et al. 2018 Proc. Roy. Soc. B 285(1876), 20180197. 15 Heuser and Eisenhauer 2008 Geostand. Geoanal. Res. 32(3) 16 Heuser et al. 2002 Int. J. Mass. Spec. 220(3), 385-397. 17 Heuser et al. 2005 Paleoceano. Paleoclim. 20(2). 18 Heuser et al. 2011 Geoch. Cosm. Acta. 75(12), 3419-3433 19 Heuser et al. 2016 Isotopes. Environ. Health Stud. 52(6), 633-648. 20 Hindshaw et al. 2011 Geoch. Cosm. Acta. 75(1), 106-118. 21 Hindshaw et al. 2013 Earth. Planet. Sci. Lett. 374, 173-184 22 Hippler et al. 2003 Geostand. Newslett. 27(1), 13-19. 23 Holmden et al. 2010 Geoch. Cosm. Acta. 74(3), 995-1015. 24 Holmden et al. 2012 Geoch. Cosm. Acta. 83, 179-194. 25 Huang et al. 2010 Earth. Planet. Sci. Lett. 292(3-4), 337-344. 26 Huang et al. 2012 Geoch. Cosm. Acta. 77, 252-265. 27 Jacobson and Holmden 2008 Earth. Planet. Sci. Lett. 28 Jacobson et al. 2015 Earth. Planet. Sci. Lett. 416, 132-142. 29 Kasemann et al. 2008 Earth. Planet. Sci. Lett. 270(3-4), 349-353. 30 Lehn and Jacobson 2015 J. Anal. At. Spec. 30(7), 1571-1581. 31 Li et al. 2015 Chem. Geol. 422, 1-12. 32 Martin et al. 2015 Chem. Geol.415, 118-125 33 Martin et al. 2017a Curr. Biol. 27,1641-1644 34 Martin et al. 2017b Palaeontology 60, 485-502. 35 Melin et al. 2014 American J. Phys. Anthr. 154(4), 633-643. 36 Mueller et al. 2011 Geoch. Cosm. Acta. 75(8), 2088-2102. 37 Nielsen et al. 2012 Handbook Environ. Isotope. Geochem. 105-124 38 Nielsen and DePaolo 2013 Geoch. Cosm. Acta. 118, 276-294. 39 Ockert et al. 2013 Geoch. Cosm. Acta. 112, 374-388 40 Reynard et al. 2011 Geoch. Cosm. Acta. 75(13), 3726-3740. 41 Romaniello et al. 2015 J. Anal. At. Spec. 30(9), 1906-1912. 42 Schiller et al. 2012 J. Anal. At. Spec. 27(1), 38-49. 43 Schmitt et al. 2003 Geoch. Cosm. Acta. 67(14), 2607-2614.
44 Schmitt et al. 2009 J. Anal. At. Spec. 24(8), 1089-1097. 45 Schmitt et al. 2013 Geoch. Cosm. Acta. 110, 70-83. 46 Simon and DePaolo 2010 Earth. Planet. Sci. Lett. 289(3-4), 457-466.
 47 Skulan and DePaolo 1999 Proc. Nat. Acad. Sci. 96(24), 13709-13713. 48 Skulan et al. 1997 Geoch. Cosm. Acta. 61(12), 2505-2510. 49 Skulan et al. 2007 Clin. Chem. 53(6), 1155-1158. 50 Steuber and Buhl 2006 Geoch. Cosm. Acta. 70(22), 5507-5521. 51 Tacail et al. 2014 J. Anal. At. Spec. 29(3), 529-535 52 Tacail et al. 2016 J. Anal. At. Spec. 31(1), 152-162. 53 Tacail et al. 2017 Proc. Nat. Acad. Sci. 201704412. 54 Teichert et al. 2009 Earth. Planet. Sci. Lett. 279(3), 373-382. 55 Tipper et al. 2010 Global Biogeochem. Cycles 24(3). 56 Used for conversion 57 Wieser et al. 2004 J. Anal. At. Spec. 19(7), 844-851. 58 Wombacher et al. 2009 J. Anal. At. Spec. 24(5), 627-636. 59 Zhu et al. 2015 Geostand. Geoanal. Res. 40(2).

