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An ε-regularity result for optimal transport maps between continuous densities

The aim of this short note is to extend the recent variational proof of partial regularity for optimal transport maps to the case of continuous densities.

Introduction

The aim of this short note is to extend the partial regularity result for optimal transport maps obtained in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] to the case of continuous densities (rather than Hölder continuous). The interest lies in the proof rather than in the result in itself since it is known to hold under the weaker assumption that the densities are bounded from above and below [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF]. Indeed, we show that for the squared Euclidean cost, both the variational approach to regularity theory for the Monge-Ampère equation recently developed in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF][START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF][START_REF] Miura | Sharp boundary ε-regularity of optimal transport maps[END_REF] and the one of [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] lead to the same result. We must however emphasize that the major achievement of [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] is the treatment of arbitrary cost functions (see [START_REF] Otto | Variational approach to regularity of optimal transport maps: general cost functions[END_REF] for the extension of the variational approach to that setting). Our main ε-regularity theorem is the following (compare with [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]Th. 4.3]): Theorem 1.1. Let ρ 0 and ρ 1 be densities with compact support i and T be the optimal transport map from ρ 0 to ρ 1 for the squared Euclidean cost on R d . For every α ∈ (0, 1), there exists ε(α, d) > 0 such that if for some R > 0,

1 (2R) d+2 B 2R |T -x| 2 ρ 0 + 1 -ρ 0 2 L ∞ (B 2R ) + 1 -ρ 1 2 L ∞ (B 2R ) ≤ ε, then T is of class C 0,α in B R . * Université
de Paris, CNRS, Sorbonne-Université, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France, michael.goldman@u-paris.fr i we assume compactness of the supports for simplicity. The statement is valid as soon as an optimal transport map exists (see [START_REF] Villani | Topics in optimal transportation[END_REF]).
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With this ε-regularity result at hand and arguing as for [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Th. 1.1], it is not hard to prove that T is a C 0,α homeomorphism outside of a set of measure zero if ρ 0 and ρ 1 are continuous.

Theorem 1.2. For E and F two bounded open sets, let ρ 0 : E → R + and ρ 1 : F → R + be two continuous densities with equal masses, both bounded and bounded away from zero and let T be the optimal transport map between ρ 0 and ρ 1 . Then, there exist open sets E ⊆ E and F ⊆ F with |E\E | = |F \F | = 0 and such that for every α ∈ (0, 1), T is a C 0,α homeomorphism between E and F .

The proof of Theorem 1.1 follows very closely the proof of [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Th. 1.2]. It is based on a Campanato iteration scheme which uses at his heart an harmonic approximation result (see Proposition 3.1). The main difference with [5, Th. 1.2] lies in the iteration argument (see Theorem 3.5 below). Indeed, for continuous densities the linear part of the affine transformations introduced in the excess improvement by tilting estimate do not necessarily converge to the identity. This causes the possible blow-up of the C 1,α -norms.

Notation

In the paper we will use the following notation. The symbols ∼, , indicate estimates that hold up to a global constant C, which typically only depends on the dimension d and the Hölder exponent α (if applicable). For instance, f g means that there exists such a constant with f ≤ Cg, f ∼ g means f g and g f . An assumption of the form f 1 means that there exists ε > 0, typically only depending on dimension and the Hölder exponent, such that if f ≤ ε, then the conclusion holds. We write |E| for the Lebesgue measure of a set E. When no confusion is possible, we will drop the integration measures in the integrals. For R > 0 and x 0 ∈ R d , B R (x 0 ) denotes the ball of radius R centered in x 0 . When x 0 = 0, we will simply write B R for B R (0). We will also use the notation -

B R f := 1 |B R | B R f.
Let ρ 0 and ρ 1 be two densities with compact support in R d and equal mass. We say that T is an optimal transport map between ρ 0 and ρ 1 if it minimizes

W 2 (ρ 0 , ρ 1 ) := min T ρ 0 =ρ 1 R d |T -x| 2 ρ 0 , (2.1) 
where by a slight abuse of notation T ρ 0 denotes the push-forward by T of the measure ρ 0 dx. We refer the reader to [START_REF] Villani | Topics in optimal transportation[END_REF] for the existence, uniqueness and characterization of such maps.

3 Proof of Theorem 1.1

Let T be the minimizer of (2.1). As in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], the proof of Theorem 1.1 is based on the decay properties of the excess energy

E(ρ 0 , ρ 1 , T, R) := R -2 - B R |T -x| 2 ρ 0 . (3.1)
As already alluded to, the main ingredient for the proof of Theorem 1.1 is the following harmonic approximation result (which by scaling we state for R = 1).

Proposition 3.1. For every 0 < τ 1, there exists ε(τ, d) > 0 and C(τ, d) > 0 such that if E(ρ 0 , ρ 1 , T, 1) + 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) ≤ ε, (3.2) 
then there exists a function ϕ harmonic in B 1/2 , such that

B 1/2 |T -(x + ∇ϕ)| 2 ρ 0 ≤ τ E(ρ 0 , ρ 1 , T, 1) + C 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) (3.3) 
and sup

B 1/2 |∇ϕ| 2 E(ρ 0 , ρ 1 , T, 1) + 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) . (3.4) 
Proof. To simplify notation let E := E(ρ 0 , ρ 1 , T, 1) and

D := 1-ρ 0 2 L ∞ (B 1 ) + 1-ρ 1 2 L ∞ (B 1
) . The claim is an almost direct application of [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]Th. 1.5]. Notice first that for i = 0, 1,

W 2 ρ i B 1 , ρ i (B 1 ) |B 1 | χ B 1 + ρ i (B 1 ) |B 1 | -1 2 1 -ρ i 2 L ∞ (B 1 ) . (3.5)
Therefore, [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]Th. 1.5] gives the existence of a radius R ∈ (3/4, 4/5), a constant c ∈ R and a couple (ρ, j) solving in the distributional sense the continuity equation ii

∂ t ρ + ∇ • j = 0 on R d × (0, 1) and ρ(•, 0) = ρ 0 , ρ(•, 1) = ρ 1 (3.6) such that the following holds. If Φ solves ∆Φ = c in B R and ν • ∇Φ = ν • 1 0 jdt on ∂B R ,
where ν denotes the external normal to ∂B R , then

B 1/2 |T -(x + ∇Φ)| 2 ρ 0 ≤ τ E + CD
ii note that (ρ, j) is actually the solution of the Eulerian version of (2.1), see [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]. 

B 1/2 |T -(x + ∇ϕ)| 2 ρ 0 E(ρ 0 , ρ 1 , T, 1) d+2 d+1 + 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) . Lemma 3.3. For g ∈ L ∞ (B 1 ), every solution solution ϕ of ∆ϕ = g in B 1 and ν • ∇ϕ = 1 H d-1 (∂B 1 ) B 1 g on ∂B 1 , satisfies sup B 1 |∇ϕ| 2 g 2 L ∞ (B 1 ) .
Proof. This follows from global Schauder estimates [START_REF] Troianiello | Elliptic differential equations and obstacle problems[END_REF]Th. 3.16 (iii)] and the fact that if g ∈ L ∞ (B 1 ), then g is in the Morrey space L 2,d-2(1-α) (B 1 ) for every 0 < α < 1 (see [START_REF] Troianiello | Elliptic differential equations and obstacle problems[END_REF]).

We now prove that as in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Prop. 3.6], this estimate implies an "excess improvement by tilting"-estimate. Even though the proof is similar to the one in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], we include it for the reader's convenience. Proposition 3.4. For every β ∈ (0, 1) there exist ε(d, β) > 0, θ = θ(d, β) > 0 and C θ (d, β) > 0 with the property that for every R > 0 such that

E(ρ 0 , ρ 1 , T, R) + 1 -ρ 0 2 L ∞ (B R ) + 1 -ρ 1 2 L ∞ (B R ) ≤ ε, (3.7) 
there exist a symmetric matrix M with det M = 1 and a vector b with

|M -Id| 2 + 1 R 2 |b| 2 E(ρ 0 , ρ 1 , T, R) + 1 -ρ 0 2 L ∞ (B R ) + 1 -ρ 1 2 L ∞ (B R ) , (3.8) 
such that, letting x := M -1 x, ŷ := M (y -b) and then T (x) := M (T (x) -b), ρ0 (x) := ρ 0 (x) and ρ1 (ŷ) := ρ 1 (y), (3.9)

we have

E(ρ 0 , ρ1 , T , θR) ≤ θ 2β E(ρ 0 , ρ 1 , T, R) + C θ 1 -ρ 0 2 L ∞ (B R ) + 1 -ρ 1 2 L ∞ (B R ) . (3.10)
Proof. By a rescaling x = R -1 x, which amounts to the re-definition T ( x) := R -1 T (R x) (which preserves optimality) and b := R -1 b, we may assume that R = 1.

As above, we introduce the notation

E := E(ρ 0 , ρ 1 , T, 1) and D := 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 )
. Let τ ∈ (0, 1) to be fixed later and then ϕ be the harmonic function given by Proposition 3.1. Define b := ∇ϕ(0), A := ∇ 2 ϕ(0) and set M := e -A/2 , so that det M = 1. Using (3.4) from Proposition 3.1 and the mean value property for harmonic functions, we see that (3.8) is satisfied.

Defining ρi and T as in (3.9) we have by (3.8) and (3.7)

- B θ | T -x| 2 ρ0 = - M B θ |M (T -b) -M -1 x| 2 ρ 0 - B 2θ |T -(M -2 x + b)| 2 ρ 0 - B 2θ |T -(x + ∇ϕ)| 2 ρ 0 + - B 2θ |(M -2 -Id -A)x| 2 ρ 0 + - B 2θ |∇ϕ -b -Ax| 2 ρ 0 - B 2θ |T -(x + ∇ϕ)| 2 ρ 0 + θ 2 |M -2 -Id -A| 2 + sup B 2θ |∇ϕ -b -Ax| 2 .
Recalling M = e -A/2 , A = ∇ 2 ϕ(0), and b = ∇ϕ(0), we obtain

θ -2 - B θ | T -x| 2 ρ0 (3.3) θ -(d+2) (τ E + C τ D) + |∇ 2 ϕ(0)| 4 + θ 2 sup B 2θ |∇ 3 ϕ| 2 (3.4) θ -(d+2) (τ E + C τ D) + (E + D) 2 + θ 2 (E + D) τ θ -(d+2) + θ 2 E + C τ θ -(d+2) D,
where we used the harmonicity of ∇ϕ and the fact that E + D θ 2 (recall that θ has not been fixed yet). We may thus find a constant C(d) > 0 such that

θ -2 - B θ | T -x| 2 ρ0 ≤ C τ θ -(d+2) + θ 2 E + C τ θ -(d+2) D.
We now fix θ(d, β) such that Cθ 2 ≤ 1 2 θ 2β , which is possible because β < 1. We finally choose τ 1 such that also Cτ θ -(d+2) ≤ 1 2 θ 2β , which concludes the proof of (3.10).

We may finally prove our main ε-regularity result. As already pointed out in the introduction, it is in this iteration argument that the proof departs from the one in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]. Indeed, under the assumption that the densities are merely continuous, the distance to the identity of the linear transformations M in (3.8) are not decaying and we need to compensate the possible blow-up of the cumulated linear transformations by downgrading the C 1,α estimates to C 0,α estimates. A similar argument is used in [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. Notice that the Campanato iteration itself is somewhat simpler here compared to [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Prop. 3.7] since we do not need to introduce an extra dilation factor at every step to propagate the smallness assumption on the data. Theorem 3.5. For every α ∈ (0, 1), if

E(ρ 0 , ρ 1 , T, 2R) + 1 -ρ 0 2 L ∞ (B 2R ) + 1 -ρ 1 2 L ∞ (B 2R ) 1, (3.11) then T is of class C 0,α in B R .
Proof. By scale invariance, we may assume that R = 1. Let us fix α ∈ (0, 1). By Campanato's theory, see [3, Th. 5.5], we have to prove that (3.11) implies sup

x 0 ∈B 1 sup r≤ 1 2 min b 1 r 2α - Br(x 0 ) |T -b| 2 1. (3.12) 
Let us first notice that (3.11) implies that for every x 0 ∈ B 1

E := - B 1 (x 0 ) |T -x| 2 ρ 0 1 and 1 -ρ 0 2 L ∞ (B 1 (x 0 )) + 1 -ρ 1 2 L ∞ (B 1 (x 0 )) 1. (3.13)
Therefore, in order to prove (3.12), it is enough to show that (3.13) implies that for r ≤ Without loss of generality we may now assume that x 0 = 0. To simplify notation, we let

ε := E + 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 )
.

Fix from now on β ∈ (0, 1) and let θ(d, β) be given by Proposition 3.4. Thanks to (3.13), Proposition 3.4 applies and there exist a (symmetric) matrix M 1 of unit determinant and a vector b

1 such that T 1 (x) := B 1 (T (M 1 x)-b 1 ), ρ 1 0 (x) := ρ 0 (M 1 x) and ρ 1 1 (x) := ρ 1 (M -1 1 x+b 1 ) satisfy E 1 := E(ρ 1 0 , ρ 1 1 , T 1 , θ) ≤ θ 2β E + C θ 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) ≤ (θ 2β + C θ )ε. (3.15)
If T is a minimizer of (2.1), then so is T 1 with (ρ 0 , ρ 1 ) replaced by (ρ 1 0 , ρ 1 1 ). Indeed, because det M 1 = 1, T 1 sends ρ 1 0 on ρ 1 1 and if T is the gradient of a convex function ψ then T 1 = ∇ψ 1 where ψ 1 (x) := ψ(M 1 x) -b 1 • M 1 x is also a convex function, which characterizes optimality [9, Th. 2.12]. Moreover, since by (3.8), we have

|M 1 -Id| 2 ε and |b 1 | 2 θ 2 ε, if ε is small enough then M 1 B θ ⊆ B 1 and M -1 1 B θ + b 1 ⊆ B 1 , 1 -ρ 1 0 2 L ∞ (B θ ) + 1 -ρ 1 1 2 L ∞ (B θ ) ≤ 1 -ρ 0 2 L ∞ (B 1 ) + 1 -ρ 1 2 L ∞ (B 1 ) ≤ ε. (3.16)
Therefore, we may iterate Proposition 3.4, K > 1 times to find a sequence of (symmetric) matrices M k with det M k = 1, a sequence of vectors b k and a sequence of maps T k such that setting for 1

≤ k ≤ K, T k (x) := M k (T k-1 (M k x) -b k ), ρ k 0 (x) := ρ k-1 0 (M k x) and ρ k 1 (x) := ρ k-1 1 (M -1 k x + b k ), we have 1 -ρ k 0 2 L ∞ (B θ k ) + 1 -ρ k 1 2 L ∞ (B θ k ) ≤ ε (3.17) E k := E(ρ k 0 , ρ k 1 , T k , θ k ) ≤ θ 2β E k-1 + C θ ε, (3.18) |M k -Id| 2 E k-1 + ε, (3.19) 1 θ 2(k-1) |b k | 2 E k-1 + ε.
(3.20)

A simple induction argument shows that from (3.18) we get

E k ≤ θ 2kβ E + C θ k-1 j=0 θ 2βj ε ε (3.21)
and so (3.19) and (3.20) lead to

max(|M k | 2 , |M -1 k | 2 ) ≤ (1 + C √ ε) and |b k | 2 θ 2k ε. (3.22)
In particular, this implies that M K B θ K ⊆ B θ K-1 and M -1 K B θ K + b K ⊆ B θ K-1 so that we may keep iterating Proposition 3.4.

Letting,

A k := M k M k-1 • • • M 1 and d k := k i=1 M k M k-1 • • • M i b i , we see that T k (x) = A k T (A * k x) -d k . By (3.22), max(|A k | 2 , |A -1 k | 2 ) ≤ (1 + C √ ε) k . (3.23)
We first estimate by definition of T k , the fact that det A k = 1 and 1 

-ρ k 0 L ∞ (B θ k ) 1, - A * k (B θ k ) |T + A -1 k d k | 2 - A * k (B θ k ) |T -A -1 k A - * k x + A -1 k d k | 2 + - A * k (B θ k ) |A -1 k A - * k x| 2 - B θ k |A -1 k (T k -x)| 2 + θ 2k |A -1 k | 2 |A -1 k | 2 (E k + 1) θ 2k
A * k (B θ k ) |T + A -1 k d k | 2 (1 + C √ ε) k(d+2) θ 2k .
Since α and θ are fixed, if ε is small enough, then 1 + C √ ε ≤ θ -2(1-α) d+2(1+α) so that

θ 2 (1 + C √ ε) d+2 ≤ θ 1 + C √ ε 2α
From this (3.14) follows, which concludes the proof of (3.12).

2 |∇Φ| 2 ERemark 3 . 2 .

 2232 + D. Using (3.6) and integration by parts, it is readily seen that we must have c = -B R (ρ 0 -ρ 1 ) and thus |c| 2 D. Taking ϕ := Φ -c 2d |x| 2 and using triangle inequality we get (3.3) and (3.4). Instead of appealing to [4, Th. 1.5] whose proof is quite long and intricate, one could alternatively give a direct proof of Proposition 3.1 following almost verbatim the proof of [5, Prop. 3.5]. One would only need to replace the use of [5, Lem. 2.2], which required the densities to be Hölder continuous, by Lemma 3.3 below. With respect to (3.3), this would lead to the slightly more quantitative statement

  0 )|T -b| 2 r 2α .(3.14)
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 3 23)&(3.21)(1 + C √ ε) k θ 2k .Now if ε is small enough, (3.23) yields B
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