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An ε−regularity result for optimal transport maps
between continuous densities
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May 9, 2020

Abstract

The aim of this short note is to extend the recent variational proof of partial regularity
for optimal transport maps to the case of continuous densities.

1 Introduction

The aim of this short note is to extend the partial regularity result for optimal transport
maps obtained in [5] to the case of continuous densities (rather than Hölder continuous).
The interest lies in the proof rather than in the result in itself since it is known to hold
under the weaker assumption that the densities are bounded from above and below [2].
Indeed, we show that for the squared Euclidean cost, both the variational approach to
regularity theory for the Monge-Ampère equation recently developed in [5, 4, 6] and the
one of [1] lead to the same result. We must however emphasize that the major achievement
of [1] is the treatment of arbitrary cost functions (see [7] for the extension of the variational
approach to that setting). Our main ε−regularity theorem is the following (compare with
[1, Th. 4.3]):

Theorem 1.1. Let ρ0 and ρ1 be densities with compact supporti and T be the optimal
transport map from ρ0 to ρ1 for the squared Euclidean cost on Rd. For every α ∈ (0, 1),
there exists ε(α, d) > 0 such that if for some R > 0,

1

(2R)d+2

∫
B2R

|T − x|2ρ0 + ‖1− ρ0‖2L∞(B2R)
+ ‖1− ρ1‖2L∞(B2R)

≤ ε,

then T is of class C0,α in BR.

∗Université de Paris, CNRS, Sorbonne-Université, Laboratoire Jacques-Louis Lions (LJLL), F-75005
Paris, France, goldman@math.univ-paris-diderot.fr

iwe assume compactness of the supports for simplicity. The statement is valid as soon as an optimal
transport map exists (see [9]).
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With this ε-regularity result at hand and arguing as for [5, Th. 1.1], it is not hard to
prove that T is a C0,α homeomorphism outside of a set of measure zero if ρ0 and ρ1 are
continuous.

Theorem 1.2. For E and F two bounded open sets, let ρ0 : E → R+ and ρ1 : F → R+ be
two continuous densities with equal masses, both bounded and bounded away from zero and
let T be the optimal transport map between ρ0 and ρ1. Then, there exist open sets E ′ ⊆ E
and F ′ ⊆ F with |E\E ′| = |F\F ′| = 0 and such that for every α ∈ (0, 1), T is a C0,α

homeomorphism between E ′ and F ′.

The proof of Theorem 1.1 follows very closely the proof of [5, Th. 1.2]. It is based
on a Campanato iteration scheme which uses at his heart an harmonic approximation
result (see Proposition 3.1). The main difference with [5, Th. 1.2] lies in the iteration
argument (see Theorem 3.5 below). Indeed, for continuous densities the linear part of the
affine transformations introduced in the excess improvement by tilting estimate do not
necessarily converge to the identity. This causes the possible blow-up of the C1,α−norms.

2 Notation

In the paper we will use the following notation. The symbols ∼, &, . indicate estimates
that hold up to a global constant C, which typically only depends on the dimension d
and the Hölder exponent α (if applicable). For instance, f . g means that there exists
such a constant with f ≤ Cg, f ∼ g means f . g and g . f . An assumption of the
form f � 1 means that there exists ε > 0, typically only depending on dimension and
the Hölder exponent, such that if f ≤ ε, then the conclusion holds. We write |E| for the
Lebesgue measure of a set E. When no confusion is possible, we will drop the integration
measures in the integrals. For R > 0 and x0 ∈ Rd, BR(x0) denotes the ball of radius R
centered in x0. When x0 = 0, we will simply write BR for BR(0). We will also use the
notation

−
∫
BR

f :=
1

|BR|

∫
BR

f.

Let ρ0 and ρ1 be two densities with compact support in Rd and equal mass. We say that
T is an optimal transport map between ρ0 and ρ1 if it minimizes

W 2(ρ0, ρ1) := min
T]ρ0=ρ1

∫
Rd
|T − x|2ρ0, (2.1)

where by a slight abuse of notation T]ρ0 denotes the push-forward by T of the measure
ρ0dx. We refer the reader to [9] for the existence, uniqueness and characterization of such
maps.
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3 Proof of Theorem 1.1

Let T be the minimizer of (2.1). As in [5], the proof of Theorem 1.1 is based on the decay
properties of the excess energy

E(ρ0, ρ1, T, R) := R−2−
∫
BR

|T − x|2ρ0. (3.1)

As already alluded to, the main ingredient for the proof of Theorem 1.1 is the following
harmonic approximation result (which by scaling we state for R = 1).

Proposition 3.1. For every 0 < τ � 1, there exists ε(τ, d) > 0 and C(τ, d) > 0 such that
if

E(ρ0, ρ1, T, 1) + ‖1− ρ0‖2L∞(B1)
+ ‖1− ρ1‖2L∞(B1)

≤ ε, (3.2)

then there exists a function ϕ harmonic in B1/2, such that∫
B1/2

|T − (x+∇ϕ)|2ρ0 ≤ τE(ρ0, ρ1, T, 1) + C
(
‖1− ρ0‖2L∞(B1)

+ ‖1− ρ1‖2L∞(B1)

)
(3.3)

and
sup
B1/2

|∇ϕ|2 . E(ρ0, ρ1, T, 1) + ‖1− ρ0‖2L∞(B1)
+ ‖1− ρ1‖2L∞(B1)

. (3.4)

Proof. To simplify notation let E := E(ρ0, ρ1, T, 1) and D := ‖1−ρ0‖2L∞(B1)
+‖1−ρ1‖2L∞(B1)

.

The claim is an almost direct application of [4, Th. 1.5]. Notice first that for i = 0, 1,

W 2

(
ρi B1,

ρi(B1)

|B1|
χB1

)
+

(
ρi(B1)

|B1|
− 1

)2

. ‖1− ρi‖2L∞(B1)
. (3.5)

Therefore, [4, Th. 1.5] gives the existence of a radius R ∈ (3/4, 4/5), a constant c ∈ R and
a couple (ρ, j) solving in the distributional sense the continuity equationii

∂tρ+∇ · j = 0 on Rd × (0, 1) and ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 (3.6)

such that the following holds. If Φ solves

∆Φ = c in BR and ν · ∇Φ = ν ·
∫ 1

0

jdt on ∂BR,

where ν denotes the external normal to ∂BR, then∫
B1/2

|T − (x+∇Φ)|2ρ0 ≤ τE + CD

iinote that (ρ, j) is actually the solution of the Eulerian version of (2.1), see [4].
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and
sup
B1/2

|∇Φ|2 . E +D.

Using (3.6) and integration by parts, it is readily seen that we must have

c = −
∫
BR

(ρ0 − ρ1)

and thus |c|2 . D. Taking ϕ := Φ− c
2d
|x|2 and using triangle inequality we get (3.3) and

(3.4).

Remark 3.2. Instead of appealing to [4, Th. 1.5] whose proof is quite long and intricate,
one could alternatively give a direct proof of Proposition 3.1 following almost verbatim the
proof of [5, Prop. 3.5]. One would only need to replace the use of [5, Lem. 2.2], which
required the densities to be Hölder continuous, by Lemma 3.3 below. With respect to (3.3),
this would lead to the slightly more quantitative statement∫

B1/2

|T − (x+∇ϕ)|2ρ0 . E(ρ0, ρ1, T, 1)
d+2
d+1 + ‖1− ρ0‖2L∞(B1)

+ ‖1− ρ1‖2L∞(B1)
.

Lemma 3.3. For g ∈ L∞(B1), every solution solution ϕ of

∆ϕ = g in B1 and ν · ∇ϕ =
1

Hd−1(∂B1)

∫
B1

g on ∂B1,

satisfies
sup
B1

|∇ϕ|2 . ‖g‖2L∞(B1)
.

Proof. This follows from global Schauder estimates [8, Th. 3.16 (iii)] and the fact that
if g ∈ L∞(B1), then g is in the Morrey space L2,d−2(1−α)(B1) for every 0 < α < 1 (see
[8]).

We now prove that as in [5, Prop. 3.6], this estimate implies an “excess improvement
by tilting”-estimate. Even though the proof is similar to the one in [5], we include it for
the reader’s convenience.

Proposition 3.4. For every β ∈ (0, 1) there exist ε(d, β) > 0, θ = θ(d, β) > 0 and
Cθ(d, β) > 0 with the property that for every R > 0 such that

E(ρ0, ρ1, T, R) + ‖1− ρ0‖2L∞(BR)
+ ‖1− ρ1‖2L∞(BR)

≤ ε, (3.7)

there exist a symmetric matrix M with detM = 1 and a vector b with

|M − Id|2 +
1

R2
|b|2 . E(ρ0, ρ1, T, R) + ‖1− ρ0‖2L∞(BR)

+ ‖1− ρ1‖2L∞(BR)
, (3.8)
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such that, letting x̂ := M−1x, ŷ := M(y − b) and then

T̂ (x̂) := M(T (x)− b), ρ̂0(x̂) := ρ0(x) and ρ̂1(ŷ) := ρ1(y), (3.9)

we have

E(ρ̂0, ρ̂1, T̂ , θR) ≤ θ2βE(ρ0, ρ1, T, R) + Cθ
(
‖1− ρ0‖2L∞(BR)

+ ‖1− ρ1‖2L∞(BR)

)
. (3.10)

Proof. By a rescaling x̃ = R−1x, which amounts to the re-definition T̃ (x̃) := R−1T (Rx̃)

(which preserves optimality) and b̃ := R−1b, we may assume that R = 1.
As above, we introduce the notation

E := E(ρ0, ρ1, T, 1) and D := ‖1− ρ0‖2L∞(B1)
+ ‖1− ρ1‖2L∞(B1)

.

Let τ ∈ (0, 1) to be fixed later and then ϕ be the harmonic function given by Proposition
3.1. Define b := ∇ϕ(0), A := ∇2ϕ(0) and set M := e−A/2, so that detM = 1. Using (3.4)
from Proposition 3.1 and the mean value property for harmonic functions, we see that (3.8)
is satisfied.

Defining ρ̂i and T̂ as in (3.9) we have by (3.8) and (3.7)

−
∫
Bθ

|T̂ − x̂|2ρ̂0 = −
∫
MBθ

|M(T − b)−M−1x|2ρ0

. −
∫
B2θ

|T − (M−2x+ b)|2ρ0

. −
∫
B2θ

|T − (x+∇ϕ)|2ρ0 +−
∫
B2θ

|(M−2 − Id− A)x|2ρ0

+−
∫
B2θ

|∇ϕ− b− Ax|2ρ0

. −
∫
B2θ

|T − (x+∇ϕ)|2ρ0 + θ2|M−2 − Id− A|2 + sup
B2θ

|∇ϕ− b− Ax|2.

Recalling M = e−A/2, A = ∇2ϕ(0), and b = ∇ϕ(0), we obtain

θ−2−
∫
Bθ

|T̂ − x|2ρ̂0
(3.3)

. θ−(d+2) (τE + CτD) + |∇2ϕ(0)|4 + θ2 sup
B2θ

|∇3ϕ|2

(3.4)

. θ−(d+2) (τE + CτD) + (E +D)2 + θ2 (E +D)

.
(
τθ−(d+2) + θ2

)
E + Cτθ

−(d+2)D,

where we used the harmonicity of ∇ϕ and the fact that E +D � θ2 (recall that θ has not
been fixed yet). We may thus find a constant C(d) > 0 such that

θ−2−
∫
Bθ

|T̂ − x|2ρ̂0 ≤ C
(
τθ−(d+2) + θ2

)
E + Cτθ

−(d+2)D.

We now fix θ(d, β) such that Cθ2 ≤ 1
2
θ2β, which is possible because β < 1. We finally

choose τ � 1 such that also Cτθ−(d+2) ≤ 1
2
θ2β, which concludes the proof of (3.10).
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We may finally prove our main ε−regularity result. As already pointed out in the
introduction, it is in this iteration argument that the proof departs from the one in [5].
Indeed, under the assumption that the densities are merely continuous, the distance to
the identity of the linear transformations M in (3.8) are not decaying and we need to
compensate the possible blow-up of the cumulated linear transformations by downgrading
the C1,α estimates to C0,α estimates. A similar argument is used in [1]. Notice that the
Campanato iteration itself is somewhat simpler here compared to [5, Prop. 3.7] since we
do not need to introduce an extra dilation factor at every step to propagate the smallness
assumption on the data.

Theorem 3.5. For every α ∈ (0, 1), if

E(ρ0, ρ1, T, 2R) + ‖1− ρ0‖2L∞(B2R)
+ ‖1− ρ1‖2L∞(B2R)

� 1, (3.11)

then T is of class C0,α in BR.

Proof. By scale invariance, we may assume that R = 1. Let us fix α ∈ (0, 1). By Cam-
panato’s theory, see [3, Th. 5.5], we have to prove that (3.11) implies

sup
x0∈B1

sup
r≤ 1

2

min
b

1

r2α
−
∫
Br(x0)

|T − b|2 . 1. (3.12)

Let us first notice that (3.11) implies that for every x0 ∈ B1

E := −
∫
B1(x0)

|T −x|2ρ0 � 1 and ‖1−ρ0‖2L∞(B1(x0))
+‖1−ρ1‖2L∞(B1(x0))

� 1. (3.13)

Therefore, in order to prove (3.12), it is enough to show that (3.13) implies that for r ≤ 1
2
,

min
b
−
∫
Br(x0)

|T − b|2 . r2α. (3.14)

Without loss of generality we may now assume that x0 = 0. To simplify notation, we let

ε := E + ‖1− ρ0‖2L∞(B1)
+ ‖1− ρ1‖2L∞(B1)

.

Fix from now on β ∈ (0, 1) and let θ(d, β) be given by Proposition 3.4. Thanks to (3.13),
Proposition 3.4 applies and there exist a (symmetric) matrix M1 of unit determinant and a
vector b1 such that T1(x) := B1(T (M1x)−b1), ρ10(x) := ρ0(M1x) and ρ11(x) := ρ1(M

−1
1 x+b1)

satisfy

E1 := E(ρ10, ρ
1
1, T1, θ) ≤ θ2βE +Cθ

(
‖1− ρ0‖2L∞(B1)

+ ‖1− ρ1‖2L∞(B1)

)
≤ (θ2β +Cθ)ε. (3.15)

If T is a minimizer of (2.1), then so is T1 with (ρ0, ρ1) replaced by (ρ10, ρ
1
1). Indeed, because

detM1 = 1, T1 sends ρ10 on ρ11 and if T is the gradient of a convex function ψ then T1 = ∇ψ1

where ψ1(x) := ψ(M1x)− b1 ·M1x is also a convex function, which characterizes optimality
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[9, Th. 2.12]. Moreover, since by (3.8), we have |M1 − Id|2 . ε and |b1|2 . θ2ε, if ε is
small enough then M1Bθ ⊆ B1 and M−1

1 Bθ + b1 ⊆ B1,

‖1− ρ10‖2L∞(Bθ)
+ ‖1− ρ11‖2L∞(Bθ)

≤ ‖1− ρ0‖2L∞(B1)
+ ‖1− ρ1‖2L∞(B1)

≤ ε. (3.16)

Therefore, we may iterate Proposition 3.4, K > 1 times to find a sequence of (sym-
metric) matrices Mk with detMk = 1, a sequence of vectors bk and a sequence of maps Tk
such that setting for 1 ≤ k ≤ K,

Tk(x) := Mk(Tk−1(Mkx)− bk), ρk0(x) := ρk−10 (Mkx) and ρk1(x) := ρk−11 (M−1
k x+ bk),

we have

‖1− ρk0‖2L∞(B
θk

) + ‖1− ρk1‖2L∞(B
θk

) ≤ ε (3.17)

Ek := E(ρk0, ρ
k
1, Tk, θ

k) ≤ θ2βEk−1 + Cθε, (3.18)

|Mk − Id|2 . Ek−1 + ε, (3.19)

1

θ2(k−1)
|bk|2 . Ek−1 + ε. (3.20)

A simple induction argument shows that from (3.18) we get

Ek ≤ θ2kβE + Cθ

k−1∑
j=0

θ2βjε . ε (3.21)

and so (3.19) and (3.20) lead to

max(|Mk|2, |M−1
k |

2) ≤ (1 + Cε) and |bk|2 . θ2kε. (3.22)

In particular, this implies that MKBθK ⊆ BθK−1 and M−1
K BθK + bK ⊆ BθK−1 so that we

may keep iterating Proposition 3.4.
Letting, Ak := MkMk−1 · · ·M1 and dk :=

∑k
i=1MkMk−1 · · ·Mibi, we see that Tk(x) =

AkT (A∗kx)− dk. By (3.22),

max(|Ak|2, |A−1k |
2) ≤ (1 + Cε)k. (3.23)

We first estimate by definition of Tk, the fact that detAk = 1 and ‖1− ρk0‖L∞(B
θk

) � 1,

−
∫
A∗k(Bθk )

|T + A−1k dk|2 . −
∫
A∗k(Bθk )

|T − A−1k A−∗k x+ A−1k dk|2 +−
∫
A∗k(Bθk )

|A−1k A−∗k x|2

. −
∫
B
θk

|A−1k (Tk − x)|2 + θ2k|A−1k |
2

. |A−1k |
2 (Ek + 1) θ2k

(3.23)&(3.21)

. (1 + Cε)kθ2k.
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Now if ε is small enough, (3.23) yields B 1
2( θ

1+Cε)
k ⊆ A∗k(Bθk) and therefore

min
b
−
∫
B

1
2( θ

1+Cε)
k

|T − b|2 . (1 + Cε)kd−
∫
A∗k(Bθk )

|T + A−1k dk|2

. (1 + Cε)k(d+2)θ2k.

Since α and θ are fixed, if ε is small enough, then 1 + Cε ≤ θ−
2(1−α)
d+2(1+α) so that

θ2(1 + Cε)d+2 ≤
(

θ

1 + Cε

)2α

From this (3.14) follows, which concludes the proof of (3.12).
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