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A new Nevanlinna theorem on q p-adic small functions is given. Let f, g, be two meromorphic functions on a complete ultrametric algebraically closed field IK of characteristic 0, or two meromorphic functions in an open disk of IK, that are not quotients of bounded analytic functions by polynomials. If f and g share 7 small meromorphic functions I.M., then f = g.

Better results hold when f and g satisfy some property of growth. Particularly, if f and g have finitely many poles or finitely many zeros and share 3 small meromorphic functions I.M., then f = g.

Main results

Let IK be a complete ultrametric algebraically closed field of characteristic 0. Let us fix a ∈ IK and let R ∈]0, +∞[. We denote by d(a, R -) the disk {x ∈ IK | |x -a| < R}.

We denote by A(IK) the IK-algebra of entire functions in IK and by M(IK) the field of meromorphic functions which is its field of fractions. We denote by A(d(a, R -)) the IK-algebra of analytic functions in d(a, R -) i.e. the set of power series converging in the disk d(a, R -) and by M(d(a, R -)) the field of meromorphic functions in d(a, R -) i.e. the field of fractions of A(d(a, R -)). Moreover, we denote by A b (d(a, R -)) the IK-algebra of functions f ∈ A(d(a, R -)) that are bounded in d(a, R -), by M b (d(a, R -)) its field of fractions and we put

. Let f be a meromorphic function in all IK (resp. in d(0, R -)) having no zero and no pole at 0. Let (a n ) n∈IN be the sequence of poles of f , of respective order s n , with |a n | ≤ |a n+1 | and, given r > 0, (resp. r ∈]0, R[), let q(r) be such that |a q(r) | ≤ r, |a q(r)+1 | > r. We then denote by N (r, f ) the counting function of the zeros of f , counting multiplicity, as usual: for all r > 0, we put N (r, f ) = q(r) j=0 s j (log |a j | -log(r)). Moreover, we denote by N (r, f ) the counting function of the poles of f , ignoring multiplicity 0

as q(r) j=0 (log |a j | -log(r)). Next, we define the counting function of zeros of f as Z(r, f ) = N (r, 1 f ) and we put Z(r, f ) = N (r, 1 f ).

Similarly, considering a function f ∈ M(d(a, R -)), we denote by N (r, f ) the counting function of the poles of f , counting multiplicity (0 < r < R) counting multiplicity, as N (r, f ) = q(r) j=0 s j (log |a j -a| -log(r)), the counting function of the poles of f , ignoring multiplicity as N (r, f ) = q(r) j=0 (log |a j -a| -log(r)) (0 < r < R), we define the counting function of zeros of f as Z(r, f ) = N (r, 1 f ) and we put Z(r, f ) = N (r, 1 f ).

Finally, in each situation, we put T (r, f ) = max(Z(r, f ), N (r, f )). Then T (r, f ) is strictly increasing and has most properties of the characteristic function of a complex function, concerning operations (see [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], chapter 40 and [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], chapter 2.)

A function w ∈ M(IK) (resp. w ∈ M(d(a, R -))) is called a small function with respect to f if lim r→+∞ T (r, w) T (r, f ) = 0 (resp. lim r→R - T (r, w) T (r, f ) = 0) and we denote by

M f (IK) (resp. M f (d(a, R -))
) the set of small functions with espect to f . Two functions f, g ∈ M(IK) (resp. f, g ∈ M u (d(a, R -))) are said to share a small function I.M.

w ∈ M f (IK) ∩ M g (IK) (resp. w ∈ M f (d(a, R -)) ∩ M g (d(a, R -))) if f (z) = w(z) holds if and only if g(z) = w(z). A function F ∈ M(IK) (resp. F ∈ M(d(a, R -))) will be called climbing if lim inf r→+∞ Z(r, F ) N (r, F ) > 1 (resp. lim inf r→R - Z(r, F ) N (r, F ) > 1). A function F ∈ M(IK) (resp. F ∈ M(d(a, R -))) will be called downing if if 1 F is climbing. A function F ∈ M(IK) (resp. F ∈ M(d(a, R -))) will be called strongly climb- ing if N (r, f ) = o(Z(r, f )), r → +∞ (resp. r → R). A function F ∈ M(IK) (resp. F ∈ M(d(a, R -))) will be called strongly down- ing if 1 F is strongly climbing. Remark: If a function f ∈ M(IK) (resp. f ∈ M(d(a, R -))
) has finitely many poles and infinitely many zeros, it is obviously strongly climbing.

Here we aim at studying the problem of two meromorphic functions sharing a few small meromorphic functions I.M. in order to show that these two functions are equal. Indeed thanks to Yamanoi's Nevanlinna Second Main Theorem, a similar result is known in complex analysis when two meromorphic functions share 5 small meromorphic functions. But in p-adic analysis, no Theorem similar to Yamanoi's Theorem is known. However, here we give Theorem 2 which makes a tool other than Yamanoi's Theorem to derive some similar results as follows.

Theorem 1: Let f, g ∈ M(IK)be transcendental (resp. f, g ∈ M u (d(a, R -))), be distinct and share q distinct small functions I.M. w j ∈ M f (IK) ∩ M g (IK) (j = 1, ..., q) (resp.

w j ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) (j = 1, ..., q)) other than the constant ∞. Then q j=1 Z(r, f -w j ) ≤ Z(r, f -g) + o(T (r, f )) + o(T (r, g)).
Theorem 2: Let f ∈ M(IK)be transcendental (resp. f ∈ M u (d(a, R -))) and let w j ∈ M f (IK) (j = 1, ..., q) (resp. w j ∈ M f (d(a, R -))) be q distinct small functions other than the constant ∞. Then

qT (r, f ) ≤ 3 q j=1 Z(r, f -w j ) + o(T (r, f )). Moreover, if f is strongly climbing, then qT (r, f ) ≤ 2 q j=1 Z(r, f -w j ) + o(T (r, f )).
Corollary 1: Let f ∈ A(IK) be transcendental (resp. Let f ∈ A u (( . 0, R -))) and let w j ∈ M f (IK) (j = 1, ..., q) (resp. w j ∈ M f (d(0, R -)), (j=1,...,q)) be q distinct small functions other than the constant ∞. Then

qT (r, f ) ≤ 2 q j=1 Z(r, f -w j ) + o(T (r, f )). Theorem 3: Let f, g ∈ M(IK) be transcendental (resp. f, g ∈ M u (d(a, R -)))
be distinct and share 7 distinct small functions (other than the constant ∞) I.M.

w j ∈ M f (IK)∩M g (IK) (j = 1, ..., 7) (resp. w j ∈ M f (d(a, R -))∩M g (d(a, R -)) (j = 1, ..., 7)). Then f = g.
Moreover, if f and g are climbing and share 6 distinct small functions (other than the constant ∞) I.M. then f = g. Corollary 2: Let f, g ∈ M(IK) be downing and share 6 distinct small functions (other than the constant 0) I.M.

w j ∈ M f (IK) ∩ M g (IK) (j = 1, ..., 6) (resp. w j ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) (j = 1, ..., 6)). Then f = g.
Theorem 4: Let f, g ∈ M(IK) be transcendental, strongly climbing and share 3 distinct small functions (other than the constant ∞) I.M.

w j ∈ M f (IK) ∩ M g (IK) (j = 1, 2, 3) (resp. w j ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) (j = 1, 2, 3)). Then f = g.
Corollary 3: Let f, g ∈ M(IK) be transcendental, strongly downing and share 3 distinct small functions (other than the constant 0) I.M.

w j ∈ M f (IK) ∩ M g (IK) (j = 1, 2, 3) (resp. w j ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) (j = 1, 2, 3)). Then f = g. Corollary 4: Let f, g ∈ A(IK) be transcendental (resp. f, g ∈ A u (d(a, R -)))
and share 3 distinct small functions (other than the constant ∞) I.M.

w j ∈ M f (IK) ∩ M g (IK) (j = 1, 2, 3) (resp. w j ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) (j = 1, 2, 3)). Then f = g.

Remarks:

The results known in complex analysis suggest that the number 7 obtained in Theorem 2 might be improved, concerning p-adic meromorphic functions. On the contrary, concerning analytic functions, the number 3 obtained in Theorem 4 seems to be the best possible. In Theorem 41.1 of [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] as in Theorem 3.2 of [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], it is shown that two entire functions f, g sharing 2 constants are equal and in Theorem 41.2 of [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], it is shown that two unbounded analytic functions f, g ∈ A u (d(0, R -)) sharing 3 constants are equal. Here we see that this last statement is generalized.

The question whether Corollary 3 is sharp is interesting in A u (d(a, R -)). If IK had positive characteritic, it would be easy to make a pair of distinct entire functions f and g sharing IM two constants. But then the Nevanlinna Theory used here would not apply. On the other hand, Theorem 41.1 of [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] shows that in A(IK) it is not sharp for constants.

The proofs

In all the proofs, we can obviously assume that the disk d(a, R -) is d(0, R -). In order to prove the theorems, we need to state the following four lemmas.

Lemma 1: Let f, g ∈ M(IK) be transcendental (resp. let f, g ∈ M u (d(0, R -))) and let M (r) = (max(T (r, f ), T (r, g)). Then T (r, f +g) ≤ T (r, f )+T (r, g)+O [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. Moreover, if f and g are climbing, then there exists λ > 0 and S > 0 (resp.

S ∈]0, R[) such that T (r, f + g) ≤ (2 -λ) max(T (r, f ), T (r, g)) + O(1), ∀r > S (resp. ∀r ∈]S, R[).
Furthermore, if f and g are strongly climbing then

T (r, f + g) ≤ M (r) + o(M (r)), ∀r > S (resp. ∀r ∈]S, R[).
Proof:

The general statement concerning meromorphic functions f, g that are not supposed to be climbing is well known and comes, for instance from Theorem 40.8 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. In all the sproof, we set M (r) = max(T (r, f ), T (r, g)) and for simplicity, we suppose first that f and g belong to M(IK).

Suppose now that f and g are just climbing. By Lemma 32.3 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], we can write f and g in the form f = h 1 1 and g = h 2

2

, with h 1 , h 2 , 1 , 2 ∈ A(IK) where h i and i have no common zeros [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. Then, applying hypotheses on f and g, there exists S > 0 and λ > 0, such that T (r, 1 )

M (r) ≤ 1 -λ and T (r, 2 ) M (r) ≤ 1 -λ ∀r > S.
Consequently, T (r, 

h 1 2 ) ≤ (2 -λ)M (r), T (r, h 2 1 ) ≤ (2 -λ)M (r) ∀r > S, hence T (r, h 1 2 -h 1 2 ) ≤ (2 -λ)M (r) + O(1) ∀r > S while T (r, 1 2 ) ≤ (2 -2λ)M (r). Consequently T (r, f + g) ≤ (2 -λ)M (r) + O(1)
T (r, h 1 2 -h 2 1 ) ≤ max(T (r, h 1 2 ), T (r, h 2 1 )) + o(M (r))
Consequently, we can write T (r, 1 2 ) ≤ T (r, 1 )+T (r, 2 ) ≤ M (r)+o(M (r)) ∀r > S therefore T (r, f + g) ≤ M (r) + o(M (r)). Suppose now that f and g belong to M u (d(0, R -)). Without loss of generality, we can assume that the field IK is spherically complete because the Nevanlinna functions Z(r, f ), N (r, f ), T (r, f ) are the same in a spherically algebraically closed extension of IK. In such a field, we can write f in the form

h 1 1 and g in the form h 2 2
where h i and i have no common zero and then we can make the same reasonings as in M(IK). That ends the proof of Lemma 1.

The following Lemma 2 is Lemma 40.10 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] (see also Proposition 2.5 in [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]):

Lemma 2: Let f ∈ M(IK). Then T (r, f ) ≤ O(log(r)) in ]0, +∞[ if and only if f belongs to IK(x). Let f ∈ M(d(0, R -)). Either f ∈ M b (d(0, R -)) and then T (r, f ) is bounded in ]0, R[ or f ∈ M u (d(0, R -)) and then lim r→R -T (r, f ) = +∞.
The following Lemma 3 comes from Theorems 43.10 and 43.11 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] (see also Theorem 2.21 in [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]).

Lemma 3: Let f ∈ M(IK) be transcendental (resp. let f ∈ M u (d(0, R -))) and let w 1 , w 2 , w 3 ∈ M f (IK) (resp. let w 1 , w 2 , w 3 ∈ M f (d(0, R -))). Then T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + Z(r, f -w 3 ) + o(T (r, f )) Moreover, if f is strongly climbing, then T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + o(T (r, f )).
General remark: By Lemma 2, all functions h we will consider in M(IK)

(resp. in M u (d(0, R -))) satisfy lim r→+∞ T (r, h) = +∞, (resp. lim r→R T (r, h) = +∞).
Proof of Theorem 1: Suppose that f and g belong to M(IK), are distinct and share q distinct small functions I.M.

w j ∈ M f (IK) ∩ M g (IK) (j = 1, ..., q) (resp. w j ∈ M f (d(0, R -)) ∩ M g (d(0, R -)) (j = 1, ..., q)).
Lat b be a zero of f -w i for a certain index i. Then it is also a zero of g -w i . Suppose that b is counted several times in the sum q j=1 Z(r, f -w j ), which means that it is a zero of another function f -w k for a certain index k = i. Then we have w i (b) = w k (b) and hence b is a zero of the function w i -w k which belongs to M f (IK). Now, put Z(r, f -w 1 ) = Z(r, f -w 1 ) and for each j > 1, let Z(r, f -w j ) be the counting function of zeros of f -w j in the disk d(0, r -) ignoring multiplicity and avoiding the zeros already counted as zeros of f -w k for some k < j. Consider now the sum q j=1 Z(r, f -w j ). Since the functions w i -w j belong to M f (IK), clearly, we have

q j=1 Z(r, f -w j ) = q j=1 Z(r, f -w j ) = o(T (r, f ))
. Now, it is clear, from the assumption, that f (x) -w j (x) = 0 implies g(x)w j (x) = 0 and hence f (x) -g(x) = 0. Since f -g is not the identically zero function, it follows that q j=1 Z(r, f -w j ) ≤ Z(r, f -g).

Consequently, q j=1 Z(r, f -w j ) ≤ Z(r, f -g) + o(T (r, f )) + o(T (r, g)).

Now, if f and g belong to M(d(0, R -)), the proof is exactly the same.

Proof of Theorems 2: By Lemma 3, for every triplet (i, j, k) such that 1 ≤ i ≤ j ≤ k ≤ q, we can write

T (r, f ) ≤ Z(r, f -w i ) + Z(r, f -w j ) + Z(r, f -w k ) + o(T (r, f )).
The number of such inequalities is C 3 q . Summing up, we obtain (1)

C 3 q T (r, f ) ≤ (i,j,k), 1≤i≤j≤k≤q Z(r, f -w i ) + Z(r, f -w j ) + Z(r, f -w k ) + o(T (r, f )).
In this sum, for each index i, the number of terms Z(r, f -w i ) is clearly C 2 q-1 . Consequently, by (1) we obtain

C 3 q T (r, f ) ≤ C 2 q-1 q i=1 Z(r, f -w i ) + o(T (r, f ))
and hence

q 3 T (r, f ) ≤ q i=1 Z(r, f -w i ) + o(T (r, f )).
Suppose now that f is strongly climbing. By Lemma 3, for every pair (i, j) such that 1 ≤ i ≤ j ≤ q, we have

T (r, f ) ≤ Z(r, f -w i ) + Z(r, f -w j ) + o(T (r, f )).
The number of such inequalities is then C 2 q . Summing up we now obtain (2)

C 2 q T (r, f ) ≤ (i,j, 1≤i≤j≤q Z(r, f -w i ) + Z(r, f -w j ) + o(T (r, f )).
In this sum, for each index i, the number of terms Z(r, f -w i ) is clearly C 1 q-1 = q -1. Consequently, by (1) we obtain

C 2 q T (r, f ) ≤ (q -1) q i=1 Z(r, f -w i ) + o(T (r, f )) and hence q 2 T (r, f ) ≤ q i=1 Z(r, f -w i ) + o(T (r, f )).
Proof of Theorems 3 and 4: In all the proofs of Theorems 3 and 4, we put M (r) = max(T (r, f ), T (r, g)). Suppose that f and g are distinct and share q small functions I.M. w j , (1 ≤ j ≤ q). By Theorem 2, we have

qT (r, f ) ≤ 3 q j=1 Z(r, f -w j ) + o(T (r, f )).
But thanks to Theorem 1, we can derive

qT (r, f ) ≤ 3T (r, f -g) + o(T (r, f )) and similary qT (r, g) ≤ 3T (r, f -g) + o(T (r, g)) hence (1) qM (r) ≤ 3T (r, f -g) + o(M (r)).
By Lemma 1, we can derive that qM (r) ≤ 3(T (r, f ) + T (r, g)) + o(M (r)))

and hence qM (r) ≤ 6M (r) + o(M (r)). That applies to the situation when f and g belong to M(IK) as well as when when f and g belong to M u (d(0, R -)). In the hypotheses of Theorem 3, this is impossible if q ≥ 7 and hence the first statement of Theorem 3 is proved. Suppose now that f and g are climbing. Then by Lemma 1 there exists λ > 0 and S > 0 (resp. S ∈]0, R[) such that T (r, f -g) ≤ (2 -λ)M (r) + O(1) ∀r > S, (resp. ∀r ∈]S, R[). Consequently, by [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] we obtain qM (r) ≤ 3(2 -λ)M (r) + o(M (r))∀r > S, (resp. ∀r ∈]S, R[). Thus, this inequality is impossible if q ≥ 6. That finishes proving Theorem 3 when f and g are meromorphic transcendental climbing functions.

Similarly, if f and g are meromorphic climbing functions in d(0, R -), we can clearly make the same reasoning with S ∈]0, R[ and r ∈]S, R[. That ends the proof of Theorem 3.

Consider now the hypotheses of Theorem 4. By Lemma 1, Relation (2) gives us qM (r) ≤ 2M (r) + o(M (r)) which is obviously absurd whenever q ≥ 3 and proves that f = g when f and g belong to M(IK) as well as when f and g belong to M u (d(0, R -)).
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