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LMRS, CNRS-Université de Rouen Normandie

Avenue de l’Université 76801 Saint-Etienne du Rouvray, France.
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Abstract: In this work, we present a finite element discretization of a contact model
of a Naghdi shell with a rigid body. The local basis-free contact formulation introduced
in [2] allows for existence and uniqueness of the discret problem for general shells with
discontinuous curvatures and to perform its a priori analysis.

1 Introduction

We are interested in the discretization of the unilateral contact of a shell with a rigid
body. We consider here the Naghdi’s shell model in the free-basis formulation introduced
by Blouza [5] and Blouza and Le Dret [6]. This formulation relies on the idea of using
Cartesian coordinates for the unknowns, which makes easier the treatment of the contact
of the shell with an obstacle. A model for the contact of this shell with a rigid body
on which it is clamped has first been derived in [2], where its well-posedness is proved
under some realistic assumptions. The full problem involves two Lagrange multipliers but
we are not really interested by their approximations, even if one of these multipliers is
involved in the discrete problem.

The system results into a double mixed problem (i.e., a mixed problem with a double
Lagrange multipliers) combining variational equalities and inequalities. The finite ele-
ment discretization of variational inequalities has already been considered in [8] and more
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recently in [15]. So, following their approach, we propose a finite element discretization
of our problem relying on the Galerkin method and perform its numerical analysis. A
priori error estimates can be established through some now standard arguments. As the
solution is in H1, C0-Lagrange P1 elements should be sufficient. Even if the discretization
that we consider is of low order, these estimates prove its convergence.

The article is as follows. We first briefly recall the geometry of the midsurface and
Nagdhi shell formulation given in Blouza [5] and Blouza and Le Dret [6]. This formulation
involves the displacement vector and the infinitesimal rotation vector, a vector unknown
that is tangent to the midsurface. Such tangency cannot be implemented in a conforming
way in finite element spaces (a problem that does not occur in the classical covariant
formulation). Therefore, in Section 3, we introduce the local basis-free contact model
as well as its well-posedness. Section 4 is devoted to finite element discretization of our
formulation. We also prove that the discret problem has a unique solution. Finally, in
Section 5 we perform the a priori analysis of the discretization.

2 Notations

Greek indices and exponents take their values in the set {1, 2} and Latin indices and
exponents take their values in the set {1, 2, 3}. Unless otherwise specified, the summation
convention for indices and exponents is assumed.

Let (e1, e2, e3) be the canonical orthonormal basis of the Euclidean space R3. We note
u·v the inner product of R3, |u| =

√
u·v the associated Euclidean norm and u ∧ v the

vector product of u and v.

Let ω be a bounded connected domain in R2 with a Lipschitz–continuous boundary
∂ω. We consider a shell whose midsurface is given by S = ϕ(ω̄) where ϕ ∈ W 2,∞(ω;R3)
is one-to-one mapping such that the two vectors

aα(x) = ∂αϕ(x),

are linearly independent at each point x of ω̄. Thus,

a3(x) =
a1(x) ∧ a2(x)

|a1(x) ∧ a2(x)|

is the unit normal vector on the midsurface at point ϕ(x). The vectors ai(x) define
the local covariant basis at point ϕ(x). The contravariant basis aj(x) is defined by the
relations ai · aj = δji where δji is the Kronecker symbol. In particular a3(x) coincides with
a3(x). Note that all these vectors belong to W 1,∞(ω;R3).
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The first and second fundamental forms of the surface are given in covariant compo-
nents by

aαβ = aα · aβ and bαβ = a3 · ∂βaα.
We set a(x) = |a1(x)∧ a2(x)|2 so that

√
a(x) is the area element of the midsurface in the

chart ϕ. Similarly, the length element ` on the boundary ∂ω is given by
√
aαβτατβ, with

the standard summation convention for repeated indices and exponents, the aαβ = aα ·aβ
being the contravariant components of the first fundamental form and (τ1, τ2) being the
covariant coordinates of a unit vector tangent to ∂ω. The thickness of the shell, denoted
by e, is a positive constant.

In the case of a homogeneous, isotropic material with Young modulus E > 0 and
Poisson ratio ν, 0 ≤ ν < 1

2
, the contravariant components of the elasticity tensor aαβρσ

are given by

aαβρσ =
E

2(1 + ν)
(aαρaβσ + aασaβρ) +

Eν

1− ν2
aαβaρσ. (2.1)

We note that each component of the elasticity tensor belongs to L∞(ω). Moreover, this
tensor satisfies the usual symmetry properties and is uniformly strictly positive.

In this context, the covariant components of the change of metric tensor read

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα), (2.2)

the covariant components of the change of transverse shear tensor read

δα3(u, r) =
1

2
(∂αu · a3 + r · aα), (2.3)

and the covariant components of the change of curvature tensor read

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα), (2.4)

as introduced in [6]. Note that all these quantities make sense for shells with little reg-
ularity, and are easily expressed with the Cartesian coordinates of the unknowns and
geometrical data.

We assume that the boundary ∂ω of the chart domain is divided into two parts: γ0 on
which the shell is clamped and the complementary part γ1 = ∂ω \ γ0 on which the shell
is subjected to applied tractions and moments. From now on, we suppose that γ0 has a
finite number of connected components and a strictly positive 1-dimensional measure. To
take into account the boundary conditions, we define the space

H1
γ0

(ω;R3) =
{
µ ∈ H1(ω;R3); µ = 0 on γ0

}
. (2.5)
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Let us now consider the function space introduced in [6], which is appropriate in the
context of shells with curvature discontinuities,

V(ω) =
{
V = (v, s) ∈ H1

γ0
(ω;R3)×H1

γ0
(ω;R3); s · a3 = 0 in ω

}
. (2.6)

It is a subspace of the space

X(ω) = H1
γ0

(ω;R3)×H1
γ0

(ω;R3),

which is endowed with the natural Hilbert norm

‖V ‖X(ω) =
(
‖v‖2

H1(ω;R3) + ‖s‖2
H1(ω;R3)

)1/2
. (2.7)

We recall the variational formulation of the problem corresponding to the linear Naghdi
model for shells with little regularity, where the unknowns are the displacement u of the
shell and the rotation r of orthogonal fibers to its midsurface. For data (f ,N ,M) in
L2(ω;R3)× L2(γ1;R3)× L2(γ1;R3), it reads : Find U = (u, r) in V(ω) such that

a
(
U, V

)
= L(V ), ∀V ∈ V(ω) (2.8)

where the bilinear form a(·, ·) is defined by (with the standard summation convention)

a
(
U, V

)
=

∫
ω

{
eaαβρσ

[
γαβ(u)γρσ(v) +

e2

12
χαβ(U)χρσ(V )

]
+2e E

1+ν
aαβδα3(U)δβ3(V )

}√
a dx,

(2.9)

and the linear form L(·) is given by

L(V ) =

∫
ω

f · v
√
a dx +

∫
γ1

(N · v + M · s) ` dτ. (2.10)

The data f , N and M represent a given resultant force density, an applied traction density
and an applied moment density, respectively. The following ellipticity property is proved
in [6]: There exists a constant α > 0 such that

∀V ∈ V(ω), a
(
V, V

)
≥ α ‖V ‖2

X(ω). (2.11)

It yields that this problem admits a unique solution U in V(ω).
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3 The contact model

We are interested in studying the contact of this shell with a rigid obstacle contained in
the half-space z · e3 < 0 and such that its boundary occupies the whole plane z · e3 = 0.
So, from now on, we assume without restriction that the function ϕ satisfies ϕ(x) · e3 > 0
for all x in ω. Thus, the contact occurs on part of the lower surface of the shell, namely
on the surface

{
ϕ(x)− e

2
a3, x ∈ ω

}
, see ([2], Section 3) for more details. We are thus led

to set:
Φ(x) =

(e
2
a3(x)− ϕ(x)

)
· e3, (3.1)

and let us introduce the convex set:

KΦ(ω) =
{
V ∈ V(ω);

(
v − e

2
s
)
· e3 ≥ Φ a.e. in ω

}
. (3.2)

We first consider the problem: Find U in KΦ(ω) such that

a(U, V − U) ≥ L(V − U), ∀V ∈ KΦ(ω). (3.3)

It is checked in ([2], Section 3) that this problem is the basic one for the contact. Moreover,
it follows from the ellipticity property (2.11), combined with the theorem of Lions and
Stampacchia [14] that this problem has a unique solution U in KΦ(ω) whenever KΦ(ω) is
not empty (sufficient conditions for this are given later on).

However, from a numerical point of view, we immediately encounter a problem since
the constraint r · a3 = 0 clearly cannot be implemented in a conforming way for a general
shell. We thus introduce the convex set in which the unknowns are the displacement u
and r, elements of the space X(ω) without any constraint:

NΦ(ω) =
{
V ∈ X(ω);

(
v − e

2
s
)
· e3 ≥ Φ a.e. in ω

}
, (3.4)

together with the space M(ω) = H1
γ0

(ω), and consider the problem: Find (U, ψ) in NΦ(ω)×
M(ω) such that

a(U, V − U) + b(V − U, ψ) ≥ L(V − U), ∀V ∈ NΦ(ω),
b(U, χ) = 0, ∀χ ∈ M(ω),

(3.5)

where the form b(·, ·) is now defined by

b(V, χ) =

∫
ω

∂α(s · a3)∂αχdx. (3.6)
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It is readily checked that, for any solution (U, ψ) of problem (3.5), its part U is a solution
of problem (3.3).

Let us check now the well-posedness of this problem. We need a preliminary lemma
for that. Let N](ω) be the following subspace

N](ω) =
{
V ∈ X(ω);

(
v − e

2
s
)
· e3 = 0 a.e. in ω

}
(3.7)

Lemma 3.1 There exists a constant β > 0 such that the following inf-sup condition holds

∀χ ∈ M(ω), sup
V ∈N](ω)

b(V, χ)

‖V ‖X(ω)

≥ β ‖χ‖M(ω). (3.8)

Proof. Let χ be any function in M(ω). Then, it follows from the regularity of a3 that both
functions s = χa3 and v = e

2
s belong to H1

γ0
(ω;R3) and even that V = (v, s) belongs to

N](ω). With this choice of V , we have

b(V, χ) = ‖χ‖2
M(ω) and ‖V ‖X(ω) ≤ c ‖χ‖M(ω),

whence the desired inf-sup condition.

Theorem 3.1 Assume that the function Φ satisfies

Φ(x) ≤ 0 for a.e. x in ω and Φ(x) = 0 for a.e. x on γ0. (3.9)

Then, for any data (f ,N ,M) in L2(ω;R3)×L2(γ1;R3)×L2(γ1;R3), problem (2.16) has a
unique solution (U, ψ) in X(ω)×M(ω).

Proof. We prove successively the existence and the uniqueness.
i) It follows from (3.9) that KΦ(ω) contains at least the pair (0,0), hence is not empty. So,
for fixed appropriate data (f ,N,M), we consider the solution U of problem (3.3). Note
that, since it belongs to V(ω), it satisfies the seconwd line of (3.5). On the other hand,
applying (3.3) with V replaced by U ±W for any W in the space

K](ω) =
{
V ∈ V(ω);

(
v − e

2
s
)
· e3 = 0 a.e. in ω

}
,

we derive
∀W ∈ K](ω), a(U,W ) = L(W ).

Thus, it follows from the inf-sup condition stated in Lemma 2.1 that there exists a ψ in
M(ω) such that

∀W ∈ N](ω), b(W,ψ) = L(W )− a(U,W ).
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To conclude, we observe by using once more that, for any V in NΦ(ω), there exists a W
in N](ω) such that b(W,ψ) = b(V, ψ), so that V −W belongs to KΦ(ω), Applying problem
(3.3) thus yields

a(U, V −W − U) ≥ L(V −W − U),

whence, from the definition of ψ and W ,

a(U, V − U) + b(W,ψ) = a(U, V − U) + b(V, ψ) ≥ L(V − U).

Finally, since U satisfies the second line of (3.5), we obtain

a(U, V − U) + b(V − U, ψ) ≥ L(V − U).

Thus, the pair (U, ψ) satisfies the first line of problem (3.5), so it is a solution of this
problem.
ii) Let (U1, ψ1) and (U2, ψ2) be two solutions of problem (3.5). Obviously, U1 and U2 are
solutions of problem (3.3), hence the theorem of Lions and Stampacchia yields that they
coincide. As previously, we have

∀W ∈ N](ω), b(W,ψi) = L(W )− a(Ui,W )

and, since U1 and U2 are equal, the same property for ψ1 and ψ2 follows from Lemma 2.1,
whence the uniqueness property.

Remarks 3.1 i) Note that assumption (3.9) is rather realistic from a physical point of
view: The first part means that the undeformed shell is above the obstacle and the second
part says that the shell is clamped on the obstacle.
ii) In fact, problem (2.14) has two implicitly associated Lagrange multipliers: the quantity
ψ to enforce the tangency character of the rotation and the reaction of the obstacle λ.
Indeed, the full problem, introduced in [2], reads Find (U, ψ, λ) in X(ω)×M(ω)× Λ such
that

a(U, V ) + b(V, ψ)− c(V, λ) = L(V ), ∀V ∈ X(ω),
b(U, χ) = 0, ∀χ ∈ M(ω),
c(U, µ− λ) ≥

〈
Φ
√
a, µ− λ

〉
, ∀µ ∈ Λ,

(3.10)

where the form c(·, ·) is given by

c(V, µ) =
〈(

v − e

2
s
)
· e3

√
a, µ
〉
, (3.11)

and Λ is the cone of nonnegative distributions in the dual space of H1
γ0

(ω) (see [2], Section
4, for details). We refer to [2], Thm 4.8, for the well-posedness of this problem, we prefer
not to use it for the discretization.
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4 The discrete problem and its well-posedness

Without restriction, we now assume that ω is a polygon. Let (Th)h be a regular family of
triangulations of ω (by triangles), in the sense that, for each h:
– ω is the union of all elements of Th;
– The intersection of two different elements of Th, if not empty, is a vertex or a whole
edge of both of them;
– The ratio of the diameter hK of any element K of Th to the diameter of its inscribed
circle is smaller than a constant σ independent of h.

As usual, h stands for the maximum of the diameters hK , K ∈ Th. We make the
further and non restrictive assumption that both γ0 and γ1 are the union of whole edges
of elements of Th.

Since we are mostly interested in shells with little regularity – otherwise classical
formulations would apply – it is presumably not useful to look for higher order elements
in the hope of improving the rate of convergence. Indeed, in the case of such a shell, the
underlying system of PDEs has nonsmooth coefficients. It is therefore unclear whether
elliptic regularity can be applied to yield even an H2-regularity, let alone Hk+1-regularity
with k ≥ 1. Note, however, that if the midsurface chart is smooth and we want to use our
formulation nonetheless for simplicity as compared to the classical approach, then elliptic
regularity will apply.

Therefore, let us introduce the basic approximation spaces:

Mh =
{
µh ∈ H1(ω); ∀K ∈ Th, µh|K ∈ P1(K)

}
,

Xγ0

h =
{
vh ∈ H1

γ0
(ω;R3); ∀K ∈ Th, vh|K ∈ P1(K)

}
,

(4.1)

where P1(K) stands for the space of restrictions to K of affine functions on R2. The
spaces that are involved in the discrete problem are then

Mγ0

h = Mh ∩H1
γ0

(ω), Xh = Xγ0

h × Xγ0

h . (4.2)

Let Ih denote the Lagrange interpolation operator with values in (Mh)
3. Since ϕ is in

W 2,∞(ω;R3) then the function Φ is continuous on ω. Therefore, we define

Φh = IhΦ.

and introduce the discrete convex set:

Nh,Φ =
{
Vh = (vh, sh) ∈ Xh; Ih

((
vh −

e

2
sh
)
· e3

)
≥ Φh a.e. in ω

}
(4.3)

8



Note that this set is not very difficult to build since the condition in it turns out to be
equivalent to the pointwise one: For all vertices a of elements of Th,(

vh(a)− e

2
sh(a)

)
· e3 ≥ Φh(a). (4.4)

Remark 4.1 The choice of Nh,Φ is of course the key point for the construction of our
discrete problem. Note however in view of (4.4) and due to the possible high variations
of Φ that it seems impossible to choose it as included in NΦ.

We are thus in a position to construct the discrete problem by the Galerkin method
applied to problem (3.5) with a small modification. It reads: Find (Uh, ψh) in Nh,Φ ×Mγ0

h

such that

a(Uh, Vh − Uh) + bh(Vh − Uh, ψh) ≥ L(Vh − Uh), ∀Vh ∈ Nh,Φ,
bh(Uh, χh) = 0, ∀χh ∈ Mγ0

h ,
(4.5)

where the form bh(·, ·) is defined on smooth enough functions V and χ by

bh(V, χ) =

∫
ω

∂αIh(s · a3)∂αχdx. (4.6)

Remark 4.2 In the implementation of this problem, approximations of the scalar coeffi-
cients aαβ, aαβρσ,

√
a and ` in the space Mh are introduced together with approximations

of the vectors ak and ∂αa3 in the space
(
Mh

)3
. This leads to a modified discrete problem

where the forms a(·, ·), b(·, ·) and L are replaced by ah(·, ·), bh(·, ·) and Lh, respectively.
However it has been checked in [7] for the a priori analysis and in [4] for the a posteriori
analysis that this modification only adds technical difficulties in the proofs, without any
major change in the final estimates. So we prefer to skip it in what follows.

Proving the well-posedness of problem (4.5) requires several steps. We first introduce
the kernel

Vh =
{
Vh ∈ Xh; ∀χh ∈ Mγ0

h , bh(Vh, χh) = 0
}
. (4.7)

It is readily checked that, for any solution (Uh, ψh) of problem (4.5), its part Uh is a
solution of the problem: Find Uh in Nh,Φ ∩ Vh such that:

a(Uh, Vh − Uh) ≥ L(Vh − Uh), ∀Vh ∈ Nh,Φ ∩ Vh. (4.8)

The next lemma provides a characterization of Vh.
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Lemma 4.1 The space Vh coincides with the space of functions Vh = (vh, sh) in Xh such
that:

Ih(sh · a3) = 0 in ω. (4.9)

Proof. By taking χh equal to Ih(sh ·a3) in the definition of Vh, we obtain that the gradient
of Ih(sh · a3) is zero. Thus, the desired property follows from its nullity on γ0.

This lack of conformity of the discretization makes the proof of the well-posedness of
problem (4.8) a little more complex. We begin with a technical lemma and, from now on,
we assume that a3 belongs to W 2,∞(ω;R3).

Lemma 4.2 The following estimate holds for any function sh in M3
h:

‖sh · a3 − Ih(sh · a3)‖H1(ω) ≤ c h ‖sh‖H1(ω;R3). (4.10)

Proof. The standard properties of the Lagrange interpolation operator with values in Mγ0

h

yield for all K in Th that

‖sh · a3 − Ih(sh · a3)‖H1(K) ≤ c h |sh · a3|H2(K).

To evaluate |sh · a3|H2(K), we observe that, since sh|K belongs to P1(K)3, each partial
derivative ∂αβ(sh · a3) can be written as

∂αβ(sh · a3) = ∂αsh · ∂βa3 + ∂βsh · ∂αa3 + sh · ∂αβa3,

whence the desired result.

Remark 4.3 By switching to the reference triangle K̂ and using the imbedding of H1(K̂)
into all Lp(K̂), 1 ≤ p < +∞, we can prove an analogue of (4.10) with a weaker assumption
on a3. We did not use this modification for simplicity.

We are thus in a position to derive the following ellipticity property.

Lemma 4.3 There exists a real number h0 > 0 and a constant α∗ > 0 such that, for all
h ≤ h0,

a
(
Vh, Vh

)
≥ α∗ ‖Vh‖2

X(ω), ∀Vh ∈ Vh. (4.11)

Proof. For any Vh = (vh, sh) in Vh, the function Vh−W , with W =
(
0, (sh ·a3)a3

)
, belongs

to V(ω). So, applying the ellipticity property (2.11) yields

a(Vh −W,Vh −W ) ≥ α ‖Vh −W‖2
X(ω).
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Denoting by c the norm of a(·, ·) on X(ω), we thus derive

a(Vh, Vh) ≥ α ‖Vh‖2
X(ω) − 2α‖Vh‖X(ω)‖W‖X(ω) − 2c‖Vh‖X(ω)‖W‖X(ω) − c ‖W‖2

X(ω).

Moreover, since Vh belongs to Vh, it follows from Lemma 4.1 that the quantity W is
equal to

(
0, (sh · a3 − Ih(sh · a3))a3

)
, so that the desired ellipticity property is a direct

consequence of Lemma 4.2.

This property yields that, for h ≤ h0, problem (4.8) is well-posed. The arguments for
proving that problem (4.5) has a unique solution are exactly the same as in Section 2, we
only give an abridged version of the proofs where necessary. First note that the formula

bh(V, χ) = b(V, χ)−
∫

Ω

∂α
(
s · a3 − Ih(s · a3)

)
∂αχdx,

and Lemma 4.2 yield the continuity of bh(·, ·) on Xh ×Mh; moreover its norm is bounded
independently of h. We also define the set

Nh,] =
{
Vh ∈ Xh; Ih

(
(vh −

e

2
sh) · e3

)
= 0 a.e. in ω

}
. (4.12)

Lemma 4.4 There exists a real number h∗ > 0 and a constant β∗ > 0 such that the
following inf-sup condition holds, for all h ≤ h∗,

∀χh ∈ Mh, sup
Vh∈Nh,]

bh(Vh, χh)

‖Vh‖X(ω)

≥ β∗ ‖χh‖M(ω). (4.13)

Proof. For any function χh in Mh, the pair Vh = (vh, sh) with sh = Ih(χha3) and vh = e
2
sh

belongs to Nh,]. We have

bh(Vh, χh) ≥ ‖χh‖2
M(ω) − ‖sh · a3 − Ih(sh · a3)‖H1(ω)‖χh‖M(ω)

−‖χha3 − Ih(χha3)‖H1(ω;R3)‖χh‖M(ω),

and from Lemma 4.2 and an extension of it this quantity is larger than c ‖χh‖2
M(ω) for h

small enough. Lemma 4.2 also implies that

‖Vh‖X(ω) ≤ c ‖χh‖M(ω).

This gives the desired inf-sup condition.

Theorem 4.1 Assume that the function Φ satisfies (3.9). Then, for any data (f ,N,M)
in L2(ω)3 × L2(γ1)3 × L2(γ1)3, problem (4.5) has a unique solution (Uh, ψh) in Xh ×Mh.

Proof. It relies on exactly the same arguments as for Theorem 3.1, now combined with
the new ellipticity and inf-sup properties in Lemmas 4.3 and 4.4.
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5 A priori analysis of the error

Our problem is formulated as variational inequalities in H1. In order to prove the conver-
gence of non-conforming finite element approximations, we follows the standard approach
for variational inequalities in mixed problems, see [8] and [15] for instance. Therefore,
we first state the following version of the Strang’s lemma, which is not fully obvious and
involves the full problem (3.10).

Lemma 5.1 Assume that the part λ of the solution of problem (3.10) belongs to L2(ω).
Then, the following estimate holds between the part U of the solution of this problem and
the part Uh of the solution of problem (4.5)

‖U − Uh‖X(ω) ≤ c
(

inf
Vh∈Nh,Φ∩Vh

(
‖U − Vh‖X(ω) + ‖U − Vh‖

1
2

L2(ω;R3)2

)
+ inf

χh∈Mh

‖ψ − χh‖M(ω) + ‖Φ− Φh‖
1
2

L2(ω;R3)

)
,

(5.1)

for a constant c depending on ‖λ‖L2(ω).

Proof. Let Uh be an approximation of U in Nh,Φ ∩ Vh. It follows from problem (4.8) that

a(Uh − Vh, Uh − Vh) ≤ L(Uh − Vh)− a(Vh, Uh − Vh).

So applying problem (3.10) leads to

a(Uh − Vh, Uh − Vh) ≤ a(U − Vh, Uh − Vh) + b(Uh − Vh, ψ)− c(Uh − Vh, λ). (5.2)

Owing to Lemma 4.3, the difficulty is now to evaluate the quantities b(Uh − Vh, ψ) and
c(Uh − Vh, λ). First, since both Uh and Vh belong to Nh,Φ ∩ Vh, it is readily checked that,
for any χh in Mh ,

b(Uh − Vh, ψ) = b(Uh − Vh, ψ − χh). (5.3)

On the other hand, since λ is nonnegative, we deduce from the definition of Nh,Φ that

−c(Uh, λ) ≤ −〈Φh

√
a, λ〉.

We also observe that Λ contains the zero function, whence, by applying the third line of
problem (3.10) with µ = 0,

−c(Uh − Vh, λ) ≤ −c(U − Vh, λ) + 〈(Φ− Φh)
√
a, λ〉. (5.4)
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By combining the ellipticity property of the form a(·, ·), see Lemma 4.3, and the continuity
of all forms involved in the previous lines, since the function λ belongs to L2(ω). we derive

α∗ ‖Uh − Vh‖2
X(ω) ≤ c

(
‖U − Vh‖X(ω) + ‖ψ − χh‖M(ω)

)
‖Uh − Vh‖X(ω)

+c′
(
‖U − Vh‖L2(ω;R3)2 + ‖Φ− Φh‖L2(ω;R3)

)
.

Then, the desired estimate follows from a triangle inequality.

Now, it remains to construct approximations Vh of U and χh of ψ satisfying the
previous conditions. Assuming that ψ is continuous, we take χh equal to Ihψ. Then,
bounding the term ‖ψ−χh‖M(ω) is fully standard. We need a lemma for the approximation
of U .

Lemma 5.2 For any function U in KΦ(ω) ∩ Hs+1(ω;R3)2, 0 < s ≤ 1, there exists a
function Vh in Nh,Φ ∩ Vh such that:

‖U − Vh‖X(ω) ≤ c hs ‖U‖Hs+1(ω;R3)2 , (5.5)

and
‖U − Vh‖L2(ω)6 ≤ c hs+1 ‖U‖Hs+1(ω;R3)2 . (5.6)

Proof. The function Vh = IhU satisfies the desired approximation properties. Moreover,
it follows from the definition of Nh,Φ, see (4.4), that it belongs to this set and since r · a3

vanishes everywhere, when setting Vh = (vh, sh), we observe that sh · a3 vanishes at all
vertices of elements of Th, so that Ih(sh · a3) is zero. Since only this operator appears in
the definition (4.6) of the form bh(·, ·), this yields that Vh also belongs to Vh. All those
arguments yields the desired estimates.

Theorem 5.1 Assume that the solution (U, ψ, λ) of problem (3.10) belongs to H2(ω;R3)2×
H2(ω)× L2(ω) and that the vector a3 belongs to W 2,p(ω;R3), p > 2. Then, the following
a priori error estimate holds between the solution (U, ψ) of problem (3.5) and the solution
(Uh, ψh) of problem (4.5)

‖U − Uh‖X(ω) + ‖ψ − ψh‖M(ω) ≤ c h, (5.7)

for a constant c depending on Φ and (U, ψ, λ).

Proof. The estimate for ‖U −Uh‖X(ω) is easily derived from Lemmas 5.1 and 5.2, since Φh

is equal to IhΦ. To evaluate ‖ψ − ψh‖M(ω), we deduce from the inf-sup condition (4.13)
that, for all χh in Mh,

‖ψh − χh‖M(ω) ≤ β−1 sup
Wh∈Nh,]

bh(Wh, ψh − χh)
‖Wh‖X(ω)

.
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Applying problem (4.5) with Vh = Uh ±Wh (which yields an equality) gives

bh(Wh, ψh − χh) = L(Wh)− a(Uh,Wh)− bh(Wh, χh).

It thus follows from problem (3.10)

bh(Wh, ψh − χh) = a(U − Uh,Wh) + b(Wh, ψ)− bh(Wh, χh)− c(Wh, λ)

and the definition (4.12) of Nh,] yields that the last term is zero. We thus obtain, with
the notation Wh = (wh, th)

‖ψh − χh‖M(ω) ≤ c
(
‖U − Uh‖X(ω) + ‖ψ − χh‖M(ω) + sup

th∈M3
h

‖th · a3 − Ih(th · a3)‖M(ω)

‖th‖H1(ω;R3)

)
.

We take χh equal to Ihψ. We also observe that, for K running through Th,

‖th · a3 − Ih(th · a3)‖H1(K) ≤ c h |th · a3|H2(K),

and, since th|K belongs to P1(K), we conclude thanks to the regularity of a3.

Remark 5.1 Estimate (5.7) is fully optimal, both for the pair Uh = (uh, rh) we are inter-
ested in and the Lagrange multiplier ψh. This proves the efficiency of our discretization.
Moreover, its convergence can be proved without any regularity assumption on the exact
solution.

Remark 5.2 After the pioneering works [13] by Hlaváček, Haslinger, Nečas,nd Lov́ı̌sek
and [1] by Ainsworth, Oden, and Lee, a huge amount of work has been performed on the a
posteriori analysis of variational inequalities, see, e.g., [3], [9], [12], [16], and the references
therein. However, even for the simpler Naghdi’s equations, the residual error indicators
first introduced in [4] are very complex. The a posteriori analysis of this problem will be
the object of a forthcoming paper.
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