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MoCaNA, an automated negotiation agent based on

Monte Carlo Tree Search

EXPERIMENTAL PROTOCOL

BIDDING STRATEGY MODELLING

• Gaussian Process regression;

• Based on a kernel:

– Radial Basis Function,

– Rational Quadratic Function,

– Matérn,

– Exponential Sine Square;

tested on 50 random negotiation sessions

• Initial ly used on numerical issues, can be
extended to categorical;

• Generates bid distribution using history;

UTILITY MODELLING BIDDING STRATEGY

• Bayesian learning;

• Presupposition: concession rate from the
opponent;

• Hypotheses:

– Triangular functions

– Order/Weight on the issues

• Computation: Hypotheses probabilities
(based on opponent previous proposals );

• Resulting function: sum of the hypothesis,
weighted by probabilities;

• For numerical, extended to categorical.

Average distance between
prediction & actual values
depending on kernel

• Based on Monte Carlo Tree Search;

• Uses Progressive widening for
selection & expansion;

• Uses modell ing for the simulation;

• Backpropagates the uti l ity of both
agents through uti l ity modeliing;

• Prunes the proposals with uti l ity
lower than the best proposal from
the opponent;

• Parallelizes simulations to make
more.

INTRODUCTION

RESULTS

RandomWalker

• Makes random proposals,

• Accepts a proposal if better
than the generated one.

NIce TitCforCTat

• Identical to TitCforCTat but:

• Computation made on a Nash
Point, computed through uti l ity
modell ing (bayesian learning).

TitCForCTat

• Returns moves (concession =
concession of the opponent),

• Accepts a proposal if better
than the generated one.

• Use of a genius interface
(reference framework);

• Negotiation domain: ANAC:

– Large domain (1 0 issues, 1 0
values/issue)

– Numerical issues

• 3 min/round (suitable for the
application context);

• Only 3 opponents in this
context: Random Walker, TitC
forCTat and Nice TitCforCTat;

• Neverending sessions for
MoCaNA vs. Nice TitCforCTat:
indirect comparison (through
RandomWalker);

• 20 negotiation sessions per
setting with each profile;

• Representation of both average
score and standard deviation.

Conclusion

• At least as good as any agent
in this context;

• Possibil ity to improve
(RAVE/AMAF);

• Many things to test (other
opponent modeling, other AI for
games as CFR minimization…)

• Possibil ity to expand to
multi lateral negotiation.

Context

• Automated negotiation;

• Complex negotiation domains;

Example application: factoring

• Buy/Sell invoices;

• Proposal: debtor (categorical,
discount rate (continuous), total
amount (numerical);

• Varying time pressure, cannot
rely on deadline;

• Nonlinear preferences;

Contribution: an agent able to
negotiate:

• with nonlinear preferences ,

• without relying on a deadline,

• on both categorical, numerical
and continuous issues;

Representation of negotiation as a
game; using AI for games
techniques.

OPPONENTS




