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Abstract. This paper deals with the joint space and workspace analysis of a two
degree of freedom spherical parallel mechanism designed to be used to handle an
endoscope. This mechanism is composed of the three legs (2USP-U) to connect the
base to a moving platform. As the manipulator can get up to six solutions to the direct
kinematic problem (DKP) in four aspects, non-singular assembly modes changing
trajectories may exist. The aim of the paper is to check whether a regular workspace
centred on home pose can be defined in such a way that no such trajectory exists in
this workspace.
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1 Introduction

In the context of designing a robot to assist the surgeon in otologic surgery,
a spherical robot with a parallel structure associated with a double paral-
lelogram was studied [1]. This robot can handle a endoscope to increase the
efficiency of the surgeon with compare to classical binocular. The parallel
structure should increase the rigidity compared to the existing solution [2].
Many spherical mechanisms exist in the literature and can be divided into
two main families (i) those with a virtual center of rotation and (ii) those
constrained by a spherical joint or a universal joint (three or two DOF)
[3, 4, 5, 6, 7, 8]. To form an remote center of motion (RCM), one solution
is to use to an universal joint associated with two parallelograms where the
motion can be done with prismatic or revolute actuators. The advantage of
prismatic actuators is that there is only one solution to the inverse geometric
model or a single “working mode” [9, 10]. In order to give the surgeon more
mobility, it is necessary to have the largest working space without singular-
ity. By adding an offset in the classical design, we are able to increase this
workspace but the properties of the robot change [11] ie the number of as-
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pects and the number of solutions to the DKP increases. In this paper we will
present the robot properties for a given offset that allow non-singular assem-
bly mode changing trajectories [13]. The SIROPA library written in Maple
will be used to compute the singularity equations using Groebner bases, the
cylindrical algebraic decompositions (CAD) as well as the trajectory plan-
ning [14, 15]. The outline of this paper will be the following. We will first
introduce the kinematic equations, then the singularities in the joint space
and the workspace to insert a prescribed regular workspace.

2 Mechanism under study

Figure 1 shows an RCM mechanism carrying an endoscope for operations
in the ears made by coupling two DOF spherical mechanism with double
parallelograms. This mechanism is coupled to a translation mechanism for
positioning in the middle ear centre. Another mechanism allows translation of
the endoscope for insertion, cleaning and ejection in case the patient wakes up,
not addressed in this article. The spherical parallel mechanism is composed of
three limbs and one moving platform. The two first legs, UPS, are composed
of a universal joint, a prismatic joint and a spherical joint and the last one is
made by a single universal joint and constrains its mobility. The two prismatic
joints are actuated. The double parallelogram is attached to the two axes of
this joint. Usually, the end points of the UPS legs are in the same plane as
the axes of rotation of the universal joint. To increase the orientation range,
an offset is added.
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Fig. 1 RCM Mechanism with spherical parallel mechanism in its home pose where
o and p are the centers of motions

Let a1 and a2 be attached to the base, O the center of the universal joint
and b1 and b2 be attached to the mobile platform in the moving reference
frame. The coordinates are given by a1 = [1, 0,−1]

T
, a2 = [0, 1,−1]

T
, b1 =
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[1, 0, h]
T

, b2 = [0, 1, h]
T

. The orientation space of the moving platform is
fully represented with the variables (α, β). The rotation matrix R from the
base frame to the moving frame is expressed as follows:

R = RαRβ =


cos (β) 0 sin (β)

sin (α) sin (β) cos (α) − sin (α) cos (β)

− cos (α) sin (β) sin (α) cos (α) cos (β)

 (1)

The orientation angles are defined in such a way that α = β = 0, which
represents the “home” pose as depicted in Figure 1. The coordinates of b1

and b2 can be written in the base frame as

c1 = Rb1 c2 = Rb2 (2)

The distance constraints from the two prismatic joints are

||aici|| = ρi with i = 1, 2 (3)

This leads to the two constraint equations:

−2 (cos (α) + h) sin (β) + 2 (cos (α)h− 1) cos (β) + h2 + 3 = ρ1
2 (4)

2 (cos (β)h− 1) cos (α) + 2 (cos (β)h+ 1) sin (α) + h2 + 3 = ρ2
2 (5)

3 Singularity and workspace analysis

The singularity analysis is done by differentiating the two constraint equation
with respect to time that leads the velocity model:

At + Bρ̇ = 0 (6)

where A and B are the parallel and serial Jacobian matrices, respectively, t
is the angular velocity and ρ̇ = [ρ̇1 ρ̇2]T joint velocities [9]. Let set h = 0,
then the singularity locus CW in the worskpace and CQ in the joint space
can be written as follow:

CW : (sin (α) + cos (α)) (− cos (α) cos (β) + sin (β)) = 0 (7)

CQ :
(
ρ42 − 6 ρ22 + 1

)
(8)(

4 ρ81 + ρ82 − 48 ρ61 − 12 ρ62 + 168 ρ41 + 46 ρ42 − 144 ρ21 − 60 ρ22 + 45
)

=0

Upon factorization of both the equations, there exists four solutions to the
DKP out of which only four aspects, ie the maximum singularity free regions,
can be found which are represented in Figure 2(a) [9]. In the joint space,



4 D. Chablat and G. Michel and R. Jha and S. Venkateswaran

Figure 2(b), there are regions depicted in green where the DKP admits two
real solutions and in red where there are four real solutions.

(a) (b)

Fig. 2 Singularity locus in the workspace (a) and the joint space (b) with h = 0

The objective of our study is to use the robot for the largest possible range
of motion, depending on the size of the ear and the placement of the patient
in relation to the robot. The expressed need is a workspace close to ±60
degrees which we will keep as ±1 radians. Several design parameters can be
varied to increase the workspace without singularity. We have chosen to study
variations in h to keep the mechanism as compact as possible. Unfortunately,
the properties of the robot are not stable when h is different from 0 and
the locus of the singularities changes and the equations cannot be factorized.
The singularity as a function of parameter h can be depicted in Figure 3. A
regular range of [−1 1] can be observed for α and β. Several values can be
considered for h but this optimization could not be done in this article due
to lack of space. Thus, a value of h = 1 will be considered. This value allows
to have well separated curves in the joint space and workspace as shown in
Figure 4 and also include the regular workspace α = β = [−1 1].

For h = 1, the singularity locus in the workspace is defined as

2(Cβ + Sβ + 1)C2
α + (2C2

β + (−2Sβ + 2Sα + 2)Cβ + (−2Sα + 2)C2
β

+ (2Sβ − 2)Sα − 2Sβ)Cα + ((2Sβ + 2)Sα + 2Sβ)Cβ − 2SαSβ = 2 (9)

The first analysis that can be done in the joint space will be to evaluate
the number of real solutions to the DKP. In Figure 4 in the joint space, the
green regions admit two real solutions to the DKP, the red regions admit
four solutions and the yellow regions admit six solutions. Eight cusps exist,
(i) C1 is on the border of the joint space, (ii) C2 and C3 are between the two-
and four-solution regions solutions to the DKP, and (iii) C4, C5, C6, C7 and
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Fig. 3 Singularity locus in the workspace of the spherical joint for h ∈ [0..1.5]

C8 are between the four- and six-solution regions. The workspace consists of
four colour aspects in orange, pink, blue and yellow.
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Fig. 4 Joint space with height cusps points, Ci and workspace with four aspects
with h = 1

To know if the mechanism changes assembly mode in the workspace defined
by α = β ∈ [−1 1], a trajectory is defined along this boundary, through the
S1, S2, S3, S4 points, as well as its image in the joint space (Figure 5). We can
notice that the trajectory surrounds 3 cusp points C4, C5 and C6. Indeed,
knowing that the trajectory is inscribed in an aspect, it does not allow to
know if it is in the same uniqueness domain i.e. there is no change in the
assembly mode.

To investigate the properties of the workspace, the characteristic surface
must be studied. This notion was introduced in [16] to define the uniqueness
domains for serial robots and was extended to parallel robots with one inverse



6 D. Chablat and G. Michel and R. Jha and S. Venkateswaran

S
1

S
2

S
4 S

3

C
2 C

5

C
4

C
1

C
3

C
7

C
6

C
8

Fig. 5 Regular trajectory in the workspace and its image in the joint space

kinematic solution in [13], several inverse kinematic solutions in [12] and
several operation modes [17]. These characteristic surfaces (or curve in 2D)
are the images in the workspace of the singularity surfaces. By using the
singularity and characteristic surfaces, we can compute the basic regions as
defined in [13]. The joint space is divided by the singularity surfaces in regions
where the number of solutions for the DKP is a constant. These regions can
also be named as the basic components as in [13]. The existence of cusp points
could be noticed in Figure 5. Thus, it is very easy to recognize images of cusp
points in the workspace, either it is a point on a tangent between a singularity
curve and characteristic curve or it is a cusp point and it has no influence on
the trajectories [18]. In the joint space, this trajectory encircles three cusp
points. A similar behaviour as described in [19] can be obtained. The image
in the workspace of a loop in the joint space can be (i) the loop in the same
aspect with the same starting and target point, (ii) a trajectory where the
starting point and target point are in two aspects (a singular trajectory), or
(iii) a trajectory where the starting point and target point are in the same
aspect (a non-singular mode assembly trajectory).

In Figure 6, a joint trajectory is defined to encircle a cusp point. The
starting point, Q, is located in the yellow region where the DKP admits six
real solutions Pi, depicted in the workspace. The images of this trajectory
in the workspace are located in basic regions depicted in yellow and blue
regions where det(A) > 0 and in basic region depicted in red and green
where where det(A) < 0. In Figure 7, we can observe from any stating point
Pi (i) two singular trajectories between two aspects (P4 − P6 and P5 − P6)
and meet singular positions in S1 and S2, respectively, (ii) one non-singular
changing trajectory in the same aspect (P4−P5), and (iii) three loops in the
workspace located in the same aspect (P1 − P1, P2 − P2, P3 − P3). Only the
trajectory (P1 − P1) is located in the regular workspace. So we can conclude
that even if this trajectory surrounds a cup point in the joint space, it is not
a non-singular changing assembly mode trajectory.
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Fig. 6 Trajectory that encircles a cusp point in the joint space and its image in the
workspace
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Fig. 7 Zoom on the trajectories in the workspace

4 Conclusions

The properties of a 2-DOF spherical parallel mechanism were studied in this
article. The increasing size of the workspace yields to several changes as the
increasing number of solutions to the direct kinematics problem. Four as-
pects were described by using cylindrical algebraic decomposition. A regular
workspace is inscribed around the home pose. Joint limits on the passive joint
α and β guarantees that non-singular assembly mode trajectory may appear.
Additional research shall be conducted to verify the collision between the
legs and the limits of the passive joints and to investigate variations in other
design parameters.



8 D. Chablat and G. Michel and R. Jha and S. Venkateswaran

References

1. Schena, B., Robotic manipulator with remote center of motion and compact
drive, Patent WO 2008/157225 (2007).

2. Rosen, J., Brown J.D., Chang, L., Barreca, M., Sinanan, M., Hannaford, B., The
Blue-DRAGON - a system for measuring the kinematics and dynamics of min-
imally invasive surgical tools in-vivo, In: Proc. IEEE International Conference
on Robotics and Automation (2002).

3. Gosselin, C., Hamel, J.-F., The agile eye: a high-performance three-degree-of-
freedom camera-orienting device. In: Proc. IEEE international conference on
robotics and automation, pp. 781–786 (1994).

4. Cheng H.H., Real-time manipulation of a hybrid serial-and-parallel driven re-
dundant industrial manipulator. ASME J. of Dynamic Systems, Measurement
and Control, 116(4), pp. 687–701 (1994).

5. Agrawal S.K., Desmier G., Li S., Fabrication and analysis of a novel 3 dof parallel
wrist mechanism, ASME J. of Mechanical Design, 117(2), pp. 343–345 (1995).
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