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This paper investigates the sampled-data control of continuous-time Takagi-Sugeno (T-S) fuzzy systems. The closed-loop dynamics is rewritten as a T-S system with input timevarying delays. In this context, asynchronous membership functions appears in the closed-loop dynamics. Thus, to reduce the conservatism of design conditions involving mismatch membership functions, a dedicated relaxation scheme is proposed. Then, from a convenient Lyapunov-Krasovskii function and the application of the Finsler's Lemma, new LMI-based conditions are proposed for the design of sampled-data Parallel-Distributed-Compensation (PDC) controllers. An example is provided to illustrate the effectiveness of the proposed design methodology in simulation, as well as to highlight their conservatism improvement regarding to previous related results from the literature.

INTRODUCTION

During the last decades, sampled-data control approaches emerged as a promising research topic in control theory. It consists in the investigation of the overall closed-loop stability of continuous-time plants driven by sampleddata controllers, see e.g. [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF][START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. In this context, an elegant and powerful way to design such controllers consists is rewriting the closed-loop dynamics as a continuous-time system with input time-varying delay, also known as a time-delay approach for the stabilization of sampled-data systems [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF]. If many efforts have been done for the stabilization of linear dynamical systems from sampled-data measurements, most of real applications exhibit nonlinear dynamics. Among the nonlinear control theory, Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] are nowadays known convenient to provide a polytopic representation of nonlinear systems as weighted sums of linear subsystems.

A vast literature is available for various T-S model-based control problems, for instance dealing with continuoustime controller design, see e.g. [START_REF] Guerra | Non-quadratic local stabilization for continuoustime Takagi-Sugeno models[END_REF][START_REF] Cherifi | Uncertain TS model-based robust controller design with Dstability constraints-A simulation study of quadrotor attitude stabilization[END_REF][START_REF] Cherifi | Global non-quadratic d-stabilization of takagi-sugeno systems with piecewise continuous membership functions[END_REF], discrete-time ones, see e.g. [START_REF] Xie | Control synthesis of discrete-time ts fuzzy systems: reducing the conservatism whilst alleviating the computational burden[END_REF][START_REF] Lopes | Anti-windup ts fuzzy pi-like control for discrete-time nonlinear systems with saturated actuators[END_REF], T-S systems with time-delays, see e.g. [START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF][START_REF] Bourahala | Relaxed Controller Design Conditions for Takagi-Sugeno Systems with State Time-Varying Delays[END_REF], or also sampled-data control, see e.g. [START_REF] Yoneyama | Robust H ∞ control of uncertain fuzzy systems under time-varying sampling[END_REF][START_REF] Zhang | H ∞ control design for network-based t-s fuzzy systems with asynchronous constraints on membership functions[END_REF][START_REF] Cheng | H ∞ stabilization for sampling fuzzy systems with asynchronous constraints on membership functions[END_REF]. Indeed, thanks to their convex polytopic structures, stability conditions and controller design conditions for T-S systems are usually studied via Lyapunov approaches and solved in the Linear Matrix Inequality (LMI) framework. Nevertheless, these LMI-based results provide only sufficient conditions and so suffer from conservatism, which reduction is an important and common challenge for the T-S community, see e.g. [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF] and references therein.

When dealing with sampled-data control, a convenient way to check the conservatism of the design conditions is to search for the maximal allowable sampling period η, with which the closed-loop dynamics is stabilized. In this context, successive conservatism improvements have been obtained. For instance, a Lyapunov-Krasovskii function (LKF) and relaxation techniques based on the Leibniz-Newton formula and free-weighting matrix has been considered in [START_REF] Yoneyama | Robust H ∞ control of uncertain fuzzy systems under time-varying sampling[END_REF]. Then, since the delayed membership functions involved in the controller part are mismatching the ones involved in the continuous-time plant to be controlled, the upper bounds of the asynchronous errors of the membership functions has been introduced in the design conditions [START_REF] Zhang | H ∞ control design for network-based t-s fuzzy systems with asynchronous constraints on membership functions[END_REF]. In [START_REF] Zhu | An improved input delay approach to stabilization of fuzzy systems under variable sampling[END_REF], an enlargement scheme has been introduced in the stabilization criteria. Furthermore, the variation ranges of membership functions within variable sampling intervals has been considered in [START_REF] Zhu | H ∞ stabilization criterion with less complexity for nonuniform sampling fuzzy systems[END_REF]. More recently, a structured vertex separator has been used to reduce the number of LMIs constraints [START_REF] Cheng | H ∞ stabilization for sampling fuzzy systems with asynchronous constraints on membership functions[END_REF]. This paper follow the same objective as the above mentioned ones, i.e. conservatism improvement for the design of sampled-data controllers for T-S systems. In this context, new LMI-based conditions are proposed from the choice of a convenient augmented LKF candidate, extensions of Jensen's inequalities, and by applying the Finsler's Lemma. The effectiveness of the proposed result will be illustrated and compared to related previous studies through the benchmark of the inverted pendulum on a cart.

Notations. Stars * in symmetric matrices denote block transpose quantities. We denote the set of integers I r = {1, ..., r}. For any square matrix M , H(M ) = M +M T . I is an identity matrix with appropriate dimension. For vectors

v 1 , v 2 ,..., v n , col{v 1 , v 2 , ..., v n } = v T 1 v T 2 . . . v T n T .

PRELIMINARIES

Let us consider a continuous-time T-S system given by:

ẋ(t) = r i=1 α i (z(t)) (A i x(t) + B i u(t)) (1) 
where z(t) = [ z 1 (t) ... z p (t) ] ∈ R p is a known vector of premise variables which only depends (for control purpose) on the entries of the state vector x(t) ∈ R n , u(t) ∈ R m is the control input vector, A i ∈ R n×n , B i ∈ R n×m are known constant matrices describing the dynamics of each polytope and α i (z(t)) ≥ 0 are the membership functions satisfying the convex properties r i=1 α i (z(t)) = 1. In this paper, we consider the stabilization of T-S systems (1) from the following sampled-data PDC control law:

u(t) = r i=1 α i (z(t k ))K i X -1 x(t k ) (2) 
where K i ∈ R m×n and X -1 ∈ R n×n , for i ∈ I r , are the controller gain matrices to be designed, a zero holder is employed ∀t ∈ [t k , t k+1 ) to maintain x(t k ) from the aperiodic sampling instants t k ≥ 0 such that:

t k+1 -t k ≤ η k ≤ η
(3) where the inner sampling period η k > 0 can be non uniform over samples with a maximal allowable sampling period η to be estimated.

For actual t ∈ [t k , t k+1 ), let τ (t) = t -t k ∈ [0, η k ) with τ (t) = 1,
the control law (2) can be rewritten as:

u(t) = r i=1 α i (z(t-τ (t)))K i X -1 x(t-τ (t)) (4) 
In the sequel, for fuzzy summations of matrices we denote 1) gives the closed-loop dynamics as:

M α = r i=1 α i (z(t))M i , M ᾱ = r i=1 α i (z(t-τ (t)))M i and M α ᾱ = r i=1 r j=1 α i (t)α j (z(t -τ (t)))M ij . Substituting (4) in (
ẋ(t) = A α x(t) + B α K ᾱX -1 x(t-τ (t))
(5) Problem statement. Provide relaxed LMI-based conditions for the design of the gain matrices K i and X such that the sampled-data closed-loop dynamics (5) is asymptotically stable.

The following lemmas will be considered for the proofs of the main results proposed in the next section. Lemma 1. [START_REF] Xie | Output feedback hinf control of systems with parameter uncertainty[END_REF]: Let X and Y be matrices of appropriate dimensions. For any matrix T > 0, the following inequality is true:

X T Y + Y T X ≤ X T T X + Y T T -1 Y (6)
Lemma 2. [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]: For (i, j) ∈ I 2 r , Let Γ ij be matrices of appropriate dimensions. The inequality Γ αα < 0 is satisfied if the following conditions hold:

∀i ∈ I r : Γ ii < 0 (7)

∀ (i, j) ∈ I 2 r , i = j : 2 r -1 Γ ii + Γ ij + Γ ji < 0 (8)
Lemma 3. [START_REF] Zhang | Novel delay-derivativedependent stability criteria using new bounding techniques[END_REF]:

For any constant ma- trix R ∈ R n×n , R = R T > 0, a scalar function τ (t) with 0 < τ (t) ≤ τ M and a vector function ẋ : [-τ M , 0] → R n such that the integration concerned is well defined, let t t-τ (t) ẋ(s)ds = Eψ(t) (9) 
where E ∈ R n×k and ψ(t) ∈ R k . Then the following inequality holds for any matrix

M ∈ R n×k - t t-τ (t) ẋT (s)R ẋ(s)ds ≤ ψ T (t)Υ 1 ψ(t) (10) 
where [START_REF] Fridman | Tutorial on lyapunov-based methods for time-delay systems[END_REF] For any matrix P = P T > 0 with appropriate dimensions, τ (t) ∈ [0, η k ) and τ (t) = 1, the following inequality holds:

Υ 1 = -E T M -M T E + τ (t)M T R -1 M . Lemma 4.
t t-τ (t) x T (s)P x(s)ds ≥ η -1 k t t-τ (t) x T (s)P t t-τ (t)
x(s)ds (11) Lemma 5. [START_REF] Skelton | A unified algebraic approach to linear control design[END_REF] 

Let ξ ∈ R n , G ∈ R m×n and Q = Q T ∈ R n×n such that rank(G) < n. The following statements are equivalent. ξ T Qξ < 0, ∀ξ ∈ {ξ ∈ R n : ξ = 0, Gξ = 0} (12) ∃R ∈ R n×m : Q + RG + G T R T < 0 (13)

MAIN RESULTS

Let us recall that the relaxation scheme expressed in Lemma 2 cannot be directly employed in the context of sampled-data control since the closed-loop dynamics (5) involves a double fuzzy sum structure with asynchronous membership functions (α ᾱ). Therefore, before deriving LMI-based conditions for the design of sampled-data PDC controllers (2) dedicated to stabilize continuous-time T-S fuzzy models (1), we will first propose a generic relaxation scheme to cope with this drawback.

Asynchronous double fuzzy sums relaxation

To deal with parameterized matrix inequalities involving double fuzzy sum structures with asynchronous membership functions (α ᾱ), we propose the following theorem. Theorem 1. For (i, j) ∈ I 2 r , let Λ ij be matrices of appropriate dimensions and assume, ∀t, | αi (t)| ≤ φ i . The inequality Λ α ᾱ < 0 is satisfied if there exists diagonal matrices T ij > 0 such that conditions (7) and (8) hold with:

Γ ij =     Λ ij + r-1 16 T ij ( * ) . . . ( * ) σ 1 Λij1 -T ij 0 0 . . . 0 . . . 0 σ r-1 Λijr-1 0 0 -T ij     (14) 
where, ∀q ∈ I r-1 , Λijq = Λ iq + Λ jq -Λ ir -Λ jr and σ q = min{1, φ q η}.

Proof. Using the short hand notation for memberships functions α i = α i (z(t)) and ᾱi = α i (z(t-τ (t))) we have:

Λαᾱ = r i=1 r j=1 α i ᾱj Λ ij = r i=1 r j=1 α i α j Λ ij + r q=1 ( ᾱq -αq)Λ iq = r i=1 r j=1 α i α j Λ ij + r q=1 ᾱq -αq 2 (Λ iq + Λ jq ) (15) Since r q=1 (ᾱ q -α q ) = 0 ⇔ (ᾱ r -α r ) = - r-1 q=1 (ᾱ q -α q ), ∀(i, j) we can write: r q=1 ᾱq -α q 2 (Λ iq + Λ jq ) = r-1 q=1 ᾱq -α q 2 Λijq ( 16 
)
with Λijq = Λ iq + Λ jq -Λ ir -Λ jr .

Note that, ∀q ∈ I r we have:

-1 ≤ α q -ᾱq ≤ 1 (17) Moreover, by assuming ∀t, | αq (t)| ≤ φ q and since τ (t) ∈ [0, η k ) with η k ≤ η, we also have:

-φ q η ≤ α q -ᾱq = t t-τ (t) αq (s)ds ≤ φ q η (18)
Thus, from ( 17) and ( 18), we can assert that:

-1 ≤ ᾱq -α q σ q ≤ 1 with σ q = min{1, φ q η} (19)
Let us now rewrite ( 16) as:

r-1 q=1 ᾱq -α q 2 Λijq = H e    1 4 I . . . I r-1 times I ∆ α ᾱ∇ ij    (20) 
where:

∆ α ᾱ =    ᾱ1-α1 σ1 0 0 0 . . . 0 0 0 ᾱr-1-αr-1 σr-1    and ∇ ij =    σ 1 Λij1 . . . σ r-1 Λijr-1   
From Lemma 1, for any matrices T ij > 0, it yields:

r-1 q=1 ᾱq -α q 2 Λijq ≤ r -1 16 T ij + ∇ T ij ∆ α ᾱT -1 ij ∆ α ᾱ∇ ij (21) Now, let T ij > 0 be diagonal matrices, since ∆ α ᾱ is also di- agonal and ∆ α ᾱ∆ α ᾱ ≤ I, ∆ α ᾱT -1 ij ∆ α ᾱ = ∆ α ᾱ∆ α ᾱT -1 ij ≤ T -1 ij .
Thus, considering (15), ( 16) and ( 21) and applying Lemma 2, then applying the Schur complement, we obtain the conditions expressed in theorem 1. ✷

LMI-based sampled-data controller design

The following theorem summarizes the proposed relaxed LMI-based sampled-data controller (2) design conditions for T-S systems (1). Theorem 2. : Let (i, j) ∈ I 2 r and assume that there exists the scalars φ i > 0 such that ∀t, | αi (t)| ≤ φ i . For aperiodic sampling periods η k ≤ η (η to be maximized), the T-S fuzzy model ( 1) is stabilized by the sampled-data PDC controller (2) if there exists the matrices 0

< L = LT ∈ R n×n , Mj = M T j ∈ R 4n×4n , Nj = N T j ∈ R 2n×2n , P11ij = P T 11ij ∈ R n×n , P22ij = P T 22ij ∈ R n×n , P12ij ∈ R n×n , X ∈ R n×n , K j ∈ R m×n , Ȳij ∈ R 4n×n , Ūij = Ū T ij ∈ R 3n×3n
and the scalars ε 1 , ε 2 and ε 3 , such that the conditions of Theorem 1 are satisfied with: Proof. Let us consider the following LKF candidate:

Λ ij =       Λ 11 ij * * * * * 0 Λ 22 ij * * * 0 η Ȳij -η P22ij * * * 0 η Wj 0 -Ūij * * 0 0 0 0 M 0 j -Ūij * 0 0 0 0 0 -P11ij       < 0 (22) with: Λ 11 ij = Φ0 Σij +I ε Ḡij + ḠT ij I T ε , Λ 22 ij = η 2 k M 0 j +η k ( Φ1 Σj -Pij ) + Φ0 Σij +I ε Ḡij + ḠT ij I T ε , I ε = [I ε 1 I ε 2 I ε 3 I ] T , Ḡij = [AiX B i K j 0 -X ] , Wj = [0 W j ] , Φ1 Σj = H ηE T 1 Mj E 2 -E T 1 Mj E 1 -H E T 4 Nj E 5 , Φ0 Σij =ηE T 1 Mj E 1 + H ηE T 4 Nj E 5 -H E T Ȳij +    η P11ij -P12j 0 0 L + η P12j 0 P12j 0 0 0 0 -η -1 k P11ij 0 * 0 0 η P22ij    , M 0 j = Ūij -M 0 j 0 0 0 , M 0 j = H( M13j + M34j ) M T 23j -M34j M T 33j * 0 0 * 0 0 , Mj =   M11j M12j M13j M14j * M22j M23j M24j * * M33j M34j * * * M44j   , Pij =   P11ij 0 0 P12j 0 0 0 0 0 0 0 0 * 0 0 P22ij   , Wj = H( M14j )+ M11j + M44j M24j -M44j + M T 12j -M T 14j M34j + M T 13j , E 1 =   I 0 0 0 0 I 0 0 0 0 I 0 I -I 0 0   , E 2 =   0 
V (t) = V 1 (t) + V 2 (t) + V 3 (t) + V 4 (t) (23) where: V 1 (t) = x(t) T Lx(t) (24) V 2 (t) = (η k τ (t) -τ 2 (t))ζ T (t)M ᾱζ (t) (25) V 3 (t) = (η k -τ (t))ρ T (t)N ᾱρ(t) (26) V 4 (t) = (η k -τ (t)) t t-τ (t) χ T (s)P α ᾱχ(s)ds (27) 
with χ(t) = col {x(t), ẋ(t)} and:

ζ(t) = col x(t), x(t-τ (t)), t t-τ (t)
x(s)ds,

t t-τ (t) ẋ(s)ds , ρ(t) = col t t-τ (t)
x(s)ds, Assuming L = L T > 0, the whole LKF ( 23) is continuous and positive at each sample time t k since we have V 1 (t k ) > 0 and V ℓ (t - k ) = V ℓ (t k ) = 0, for ℓ = 2, ..., 4. Hence, since the LKF V (t) is continuous ∀t ∈ [t k , t k+1 ), if it can be proven to be monotonously decreasing during this interval, then it is positive ∀t ∈ [0, +∞) and the closed-loop dynamics (5) is stable. That is to say if, ∀t ∈ [t k , t k+1 ):

V (t) = V1 (t)) + V2 (t)) + V3 (t)) + V4 (t)) < 0 (28)
To make up the stability conditions, let us consider the following extended state vector:

ξ(t) = col x(t), x(t-τ (t)), t t-τ (t)
x(s)ds, ẋ(t) (29)

The derivative of V 1 (t) is:

V1 (t) = 2x T (t)L ẋ(t) = ξ T (t)Φ 0 1 ξ(t), Φ 0 1 =   0 0 0 L 0 0 0 0 0 0 0 0 L 0 0 0   (30)
Then, for V 2 (t) we have:

V2 (t) =(η k -2τ (t))ζ T (t)M ᾱζ (t) + 2(η k τ (t) -τ 2 (t))ζ T (t)M ᾱ ζ(t) (31) i.e. since ζ(t) = E 1 ξ(t) and ζ(t) = E 2 ξ(t): V2 (t) =τ 2 (t)ξ T (t)Φ 2 2 ᾱξ(t) + τ (t)ξ T (t)Φ 1 2 ᾱξ(t) + ξ T (t)Φ 0 2 ᾱξ(t) (32) with Φ 2 2 ᾱ = -H E T 1 M ᾱE 2 , Φ 1 2 ᾱ = H η k E T 1 M ᾱE 2 -E T 1 M ᾱE 1 and Φ 0 2 ᾱ = η k E T 1 M ᾱE 1 . Now the derivative of V 3 (t) is: V3 (t) = -ρ T (t)N ᾱρ(t)+2(η k -τ (t))ρ T (t)N ᾱ ρ(t) (33) Since ρ(t) = E 4 ξ(t) and ρ(t) = E 5 ξ(t) we can write: V3 (t) = τ (t)ξ T (t)Φ 1 3 ᾱξ(t) + ξ T (t)Φ 0 3 ᾱξ(t) (34) with Φ 0 3 ᾱ = H η k E T 4 N ᾱE 5 -E T 4 N ᾱE 4 and Φ 1 3 ᾱ = -H E T 4 N ᾱE 5
. Taking the derivative of V 4 (t) we get: x T (s)P 12 ᾱ ẋ(s)ds (36) That is to say:

V4 (t) = (η k -τ (t))χ T (t)P α ᾱχ(t)- t t-τ (t) χ T (
V4 (t) = (η k -τ (t))χ T (t)P α ᾱχ(t)- t t-τ (t) x T (s)P 11α ᾱx(s)ds - t t-τ (t)
ẋT (s)P 22α ᾱ ẋ(s)ds-x T (t)P 12 ᾱx(t) +x T (t-τ (t))P 12 ᾱx(t-τ (t))

(37) Assuming P 11α ᾱ > 0 and applying Lemma 4 on the first intergal term, we have:

V4 (t) ≤ (η k -τ (t))χ T (t)P α ᾱχ(t) -η -1 k t t-τ (t) x T (s)P 11α ᾱ t t-τ (t)
x(s)ds

- t t-τ (t)
ẋT (s)P 22α ᾱ ẋ(s)ds -x T (t)P 12 ᾱx(t)

+ x T (t-τ (t))P 12 ᾱx(t-τ (t)) (38) 
Assuming P 22α ᾱ > 0, for the second integral term, note that:

t t-τ (t) ẋT (s)ds = I -I 0 0 E ξ(t) (39) 
Hence, applying Lemma 3, for any matrix Y α ᾱ we have:

V4 (t) ≤ (η k -τ (t))χ T (t)P α ᾱχ(t) -η -1 k t t-τ (t) x T (s)P 11α ᾱ t t-τ (t)
x(s)ds

+ξ T (t) -E T Y α ᾱ -Y T α ᾱE + τ (t)Y T α ᾱP -1 22α ᾱY α ᾱ ξ(t) -x T (t)P 12 ᾱx(t)+x T (t-τ (t))P 12 ᾱx(t-τ (t)) (40) Or, equivalently: V4 (t) ≤ τ (t)ξ T (t)Φ 1 4α ᾱξ(t) + ξ T (t)Φ 0 4α ᾱξ(t) (41) 
with

Φ 1 4α ᾱ = Y T α ᾱP -1 22α ᾱY α ᾱ-Pαᾱ , Pαᾱ =   P 11α ᾱ 0 0 P 12 ᾱ 0 0 0 0 0 0 0 0 * 0 0 P 22α ᾱ   , Φ 0 4α ᾱ = -H E T Y α ᾱ +    η k P 11α ᾱ -P 12 ᾱ 0 0 η k P 12 ᾱ 0 P 12 ᾱ 0 0 0 0 -η -1 k P 11α ᾱ 0 * 0 0 η k P 22α ᾱ   .
So, from ( 30), ( 32), ( 34) and ( 41), the inequality ( 28) is satisfied if:

P(τ (t)) = τ 2 (t)ξ T (t)Φ 2 2 ᾱξ(t) +τ (t)ξ T (t)(Φ 1 2 ᾱ +Φ 1 3 ᾱ +Φ 1 4α ᾱ)ξ(t) + ξ T (t)(Φ 0 1 +Φ 0 2 ᾱ +Φ 0 3 ᾱ +Φ 0 4α ᾱ)ξ(t) < 0 (42) Note that, ∀ξ(t) the polynomial P(τ (t)) = 0 is convex if: ξ T (t)Φ 2 2 ᾱξ(t) > 0 ⇔ Φ 2 2 ᾱ > 0 (43) 
In that case, the inequality (42) is satisfied if: P(0) < 0 and P(η k ) < 0 (44) Focus first on the inequality (43) and assume:

M ᾱ = M T ᾱ =   M 11 ᾱ M 12 ᾱ M 13 ᾱ M 14 ᾱ * M 22 ᾱ M 23 ᾱ M 24 ᾱ * * M 33 ᾱ M 34 ᾱ * * * M 44 ᾱ   (45) 
Thus, from (32) we have:

Φ 2 2 ᾱ = - M 0 ᾱ Wᾱ * 0 (46) with M 0 ᾱ = H(M 13 ᾱ +M 34 ᾱ) M T 23 ᾱ -M 34 ᾱ M T 33 ᾱ * 0 0 * 0 0 , and W ᾱ = H(M 14 ᾱ)+M 11 ᾱ +M 44 ᾱ M 24 ᾱ -M 44 ᾱ +M T 12 ᾱ -M T 14 ᾱ M 34 ᾱ +M T 13 ᾱ
.

Let U α ᾱ ∈ R 3n×3n regular and consider the null terms

W T ᾱ U -1 α ᾱW ᾱ -W T ᾱ U -1 α ᾱW ᾱ = 0 and M 0 ᾱ -M 0 ᾱ = 0.
Applying the Schur complement we can write:

Uαᾱ -M 0 ᾱ + M 0 ᾱ Wᾱ W T ᾱ W T ᾱ U -1 α ᾱ Wᾱ = 0 (47) 
Thus, we can also write:

Φ 2 2α ᾱ = - M 0 ᾱ Wᾱ W T ᾱ 0 = Uαᾱ -M 0 ᾱ 0 0 W T ᾱ U -1 α ᾱ Wᾱ (48) 
Hence, considering now Φ 2 2α ᾱ in (42) as the right-hand matrix of (48), the inequality (43) holds if:

U α ᾱ > 0 and U α ᾱ -M 0 ᾱ > 0 (49) Now, before dealing with (44), we will introduce the closedloop dynamics into the stability conditions. To do so, note that ( 5) is equivalent, with G α ᾱ = A α B α K ᾱX -1 0 -I , to G α ᾱξ(t) = 0. Moreover, (42) can be rewritten as:

ξ T (t) τ 2 (t)Φ 2 2α ᾱ +τ (t)(Φ 1 Σ ᾱ + Φ 1 4α ᾱ)+Φ 0 Σα ᾱ ξ(t) < 0 (50) with Φ 1 Σ ᾱ =Φ 1 2 ᾱ +Φ 1 3 ᾱ and Φ 0 Σα ᾱ = 3 q=1 Φ 0 q ᾱ +Φ 0 4α ᾱ.
So, we can apply Lemma 5 and the inequality ( 50) is satisfied if there exists R ∈ R 4n×n such that: 44) is satisfied if the following inequalities hold:

τ 2 (t)Φ 2 2α ᾱ +τ (t)(Φ 1 Σ ᾱ + Φ 1 4α ᾱ) +Φ 0 Σα ᾱ +RG α ᾱ +G T α ᾱR T < 0 (51) Hence, (
Φ 0 Σα ᾱ +RG α ᾱ +G T α ᾱR T < 0 (52) η 2 k Φ 2 2α ᾱ+η k (Φ 1 Σ ᾱ + Φ 1 4α ᾱ) +Φ 0 Σα ᾱ+RG α ᾱ+G T α ᾱR T < 0 (53) Let X regular and R = X -1 ε 1 X -1 ε 2 X -1 ε 3 X -1 T .
To deal with (52), pre-and post-multiplying it respectively by diag [ X X X X ] T and its transpose, we obtain:

Λ 11 α ᾱ = Φ0 Σα ᾱ +I ε Ḡαᾱ + ḠT α ᾱI
T ε < 0 (54) Then, to deal with (53), apply first the Schur complement on Φ 1 4α ᾱ and Φ 2 2α ᾱ written as the right-hand matrix of (48), then pre-and post-multiplying it respectively by diag [ X X X X X ]

T and its transpose, we obtain:

Λ 22 α ᾱ * * η k Yαᾱ -η k P 22α ᾱ * η k Wᾱ 0 -Uαᾱ < 0 (55) with Λ 22 α ᾱ = η 2 k M 0 ᾱ+η k ( Φ1 Σ ᾱ-Pαᾱ ) + Φ0 Σα ᾱ+I ε Ḡαᾱ + ḠT α ᾱI T ε , M 0 ᾱ = Uαᾱ -M 0 ᾱ 0 0 0 , Wᾱ = [0 Wᾱ ]
and where, in ( 54) and ( 55),

I ε = [ I ε 1 I ε 2 I ε 3 I ] T , Ḡαᾱ = [ A α X B α K ᾱ 0 -X ]
and all decision matrices inside Φ2 2α ᾱ, Φ1 Σ ᾱ, Φ1 4α ᾱ and Φ0 Finally, concatenating ( 49), ( 54), ( 55), P 11α ᾱ > 0 and P 22α ᾱ > 0 into the same parameterized LMI Λ α ᾱ < 0, then applying Theorem 1, we obtain the conditions expressed in theorem 2. ✷ Remark 1. The conditions expressed in Theorem 2 are not strictly LMI because of the parameters ε 1 , ε 2 and ε 3 . However, as state in many previous works applying the Finsler's Lemma, see e.g. [START_REF] Oliveira | Robust state feedback lmi methods for continuous-time linear systems: Discussions, extensions and numerical comparisons[END_REF][START_REF] Bourahala | Relaxed Controller Design Conditions for Takagi-Sugeno Systems with State Time-Varying Delays[END_REF][START_REF] Cherifi | Uncertain TS model-based robust controller design with Dstability constraints-A simulation study of quadrotor attitude stabilization[END_REF][START_REF] Cherifi | Global non-quadratic d-stabilization of takagi-sugeno systems with piecewise continuous membership functions[END_REF], these parameters are usually tuned offline by grid search.

ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed method, we consider the benchmark of the inverted pendulum on a cart that has been used for comparative purposes in many previous related T-S model-based sampled-data controller design studies (see the references shown in Table 1). A T-S fuzzy model (1) with r = 2 is proposed in [START_REF] Wang | An approach to fuzzy control of nonlinear systems: stability and design issues[END_REF] for such inverted pendulum. This model, valid for |x 1 (t)| < π/2 and |x 2 (t)| ≤ π, is given by the polytopes:

A 1 = 0 1 g 4l/3-aml 0 , A 2 = 0 1 2g π(4l/3-amlβ 2 ) 0 , B 1 = 0 -a 4l/3-aml , B 2 = 0 -aβ 4l/3-amlβ 2 , β = cos(88 • ),
and the membership functions:

α 1 (x 1 (t)) = 1 -2 π x 1 (t), if 0 ≤ x 1 (t) < π 2 , 1 + 2 π x 1 (t), if -π 2 < x 1 (t) < 0, α 2 (x 1 (t)) = 1 -α 1 (x 1 (t))
where x 1 (t) denotes the angle (rad) of the pendulum from the erect position and x 2 (t) is the angular velocity (rad/s), g = 9.8m/s 2 is the acceleration of the gravity, m = 2kg is the mass of the pendulum, M = 8kg is the mass of the cart, l = 0.5m is the half length of the pendulum, a = 1/(m + M ) and the input u(t) corresponds to the actuator force applied to the cart (in N ).

The conditions of Theorem 2 has been solved with MAT-LAB using YALMIP and SeDuMi [START_REF] Lofberg | Yalmip : a toolbox for modeling and optimization in matlab[END_REF]. The maximal allowable upper bound η = 51ms has been found with ε 1 = 5.5, ε 2 = 3, ε 3 = 0.31 and assuming σ 1 = σ 2 = 2η. The obtained controller gains are given by:

K 1 = [0.2231 -0.0321] K 2 = [1.8690 9.5775] X = 0.0065 -0.0186 -0.0174 0.0708
As shown in Table 1, the maximal allowable upper bound η obtained with the present approach outperform previous related results by at least 21.43%. This shows the significant convervatism improvement raised by Theorem 2.

Table 1. Comparison of maximal η obtained with related previous studies.

Method η (ms) [START_REF] Yoneyama | Robust H ∞ control of uncertain fuzzy systems under time-varying sampling[END_REF] 9 [START_REF] Zhu | Stabilization for sampleddata neural network-based control systems[END_REF] 13 [START_REF] Zhang | H ∞ control design for network-based t-s fuzzy systems with asynchronous constraints on membership functions[END_REF] 16 [START_REF] Zhu | An improved input delay approach to stabilization of fuzzy systems under variable sampling[END_REF] 19 [START_REF] Zhu | H ∞ stabilization criterion with less complexity for nonuniform sampling fuzzy systems[END_REF] 24 [START_REF] Cheng | H ∞ stabilization for sampling fuzzy systems with asynchronous constraints on membership functions[END_REF] 42 Theorem 2 51

Applying the designed sampled-data controller (4), pendulum with sampled-data controller. Remark 2. The proposed methodology for T-S systems includes linear systems as a special case. In this special case, an experimental validation of the proposed design procedure on the Quanser AERO 2 DOF Helicopter testbed can be found in (Lopes et al., 2020a).

CONCLUSION

In this paper, new LMI-based conditions have been proposed for the design of sampled-data PDC controllers for continuous-time T-S fuzzy models. Conservatism improvement regarding to previous works has been achieved from the choice of the considered LKF and the Finsler's Lemma. Also, generic conditions have also been proposed to relax double fuzzy sums with asynchronous MFs involved in T-S model-based sampled-data control plants. The effectiveness of the proposed conditions, as well as their conservatism improvement regarding to previous results, have been illustrated through the well-known benchmark of an inverted pendulum on a cart.

  bijective change of variables D = X T DX, D = {L,M 11 ᾱ,. . .,M 44 ᾱ,N 11 ᾱ,. . . ,N 22 ᾱ,P 11α ᾱ,P 12 ᾱ,P 22α ᾱ}.

  Fig. 1(a) shows the closed-loop state trajectories of the inverted pendulum from the initial condition x(0) = [π/4 0] T with a fixed sampling period η k = η = 51ms. In addition, Fig. 1(b) shows the same simulation but with random aperiodic sampling periods η k ∈ [0, 51ms]. This demonstrate the effectiveness of the proposed sampled-data controller design methodology for T-S fuzzy systems.

Fig. 1 .

 1 Fig.1. Closed-loop simulations of the considered inverted pendulum with sampled-data controller. Remark 2. The proposed methodology for T-S systems includes linear systems as a special case. In this special case, an experimental validation of the proposed design procedure on the Quanser AERO 2 DOF Helicopter testbed can be found in(Lopes et al., 2020a).

  s)P α ᾱχ(s)ds
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	Assuming P α ᾱ =	P 11α ᾱ P 12 ᾱ * P 22α ᾱ	leads to:
	V4 (t) = (η k -τ (t))χ T (t)P α ᾱχ(t)-	t	x T (s)P 11α ᾱx(s)ds
				t-τ (t)
	t			t
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