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Reversible computation opens up the possibility of overcoming some of the hardware's current physical limitations. It also offers theoretical insights, as it enriches multiple paradigms and models of computation, and sometimes retrospectively enlightens them. Concurrent reversible computation, for instance, offered interesting extensions to the Calculus of Communicating Systems, but was still lacking a natural and pertinent bisimulation to study processes equivalences. Our paper formulates an equivalence exploiting the two aspects of reversibility: backward moves and memory mechanisms. This bisimulation captures classical equivalences relations for denotational models of concurrency (History-and hereditary history-preserving bisimulation, (H)HPB), that were up to now only partially characterized by process algebras. This result gives an insight on the expressiveness of reversibility, as both backward moves and a memory mechanism-providing 'backward determinism'-are needed to capture HHPB.

Introduction

The Benefits of Reversible Computation Future progresses in computing may heavily rely on reversibility [16]. The foreseeable limitations of conventional semiconductor technology, Lauder's principle [21]-promising low-energy consumption for reversible computers-and quantum computing [23]-intrinsically reversible and now within reach [1]-motivated a colossal push toward a better understanding of reversible computation. Those efforts have given birth to new paradigms [15], richer models of computation (e.g. for automata [19], Petri nets [14,24], Turing machines [3]) and richer semantics, sometimes for preexisting calculus like the Calculus of Communicating Systems (CCS) and the π-calculus [9,10]. Those new perspectives sometimes additionally give in retrospect a better understanding of 'traditional' (i.e., irreversible) computation, and our contribution illustrates this latter aspect.

Summary

In brief terms, we offer a solution to an open problem on classes of equivalence of (non-reversible) concurrent processes thanks to reversibility. Hereditary history-preserving bisimulation (HHPB) is considered 'the gold standard' for establishing equivalence classes on 'true' models of concurrency [20,32]. However, no relation expressed in syntactical terms (e.g. on CCS) was known to capture them, despite intensive efforts: previous results [2, 25] We denote with 0 both the I-structure and its underlying configuration structure with C = {∅}, and, for x, y ∈ C, we write x --→ e y and y ¬¬ → e x if x = y ∪ {e}.

We omit the identifiers when representing I-structures and write the label for the event (with a subscript if multiple events shares a label).

Definition 2 (Causality, concurrency, and maximality). For all I, x ∈ C and d, e ∈ x, the causality relation on x is given by d < x e iff d x e and d = e, where d x e iff for all y ∈ C with y ⊆ x, we have e ∈ y ⇒ d ∈ y. The concurrency relation on x is given by d co x e iff ¬(d < x e ∨ e < x d). Finally, x is a maximal configuration in I if ∀y ∈ C, x = y or x ⊆ y.

Example 3. Consider Fig. 1, where we let the events have distinct arbitrary identifiers: two events with complement names as labels can happen at the same time (Fig. 1c), in which case they are labeled with τ , as is usual in CCS (Sect. 2.2). In Fig. 1c, a < {a,b} b, a < {a,a,b} b and τ < {τ,b} b; and in Fig. 1b, a 1 co {a1,a2} a 2 . An I-structure can have one (Fig. 1b) or multiple (Fig. 1a and1c) maximal configurations.

Categorical point of view

We remind in Appendix A that configuration structures and 'structure-preserving' functions form a category. We also prove that a similar category can be defined with I-structures as objects and define a forgetful functor that returns the underlying configuration structure. This development supports the interest and validity of studying I-structures, but can be omitted, except for the notion of morphisms: Definition 4 (Morphism of I-structure). A morphism f = (f E , f L , f C , f m ) between I 1 and I 2 is given by f E : E 1 → E 2 such that 2 (f E (e)) = f L ( 1 (e)), for f L : L 1 → L 2 ; f C : C 1 → C 2 defined as f C (x) = {f E (e) | e ∈ x}, and f m : I 1 → I 2 such that f m (m 1 (e)) = m 2 (f E (e)). We often write f for all the components, and write I 1 ∼ = I 2 if f is an isomorphism.

Operations on I-configurations Operations on I-structures are conservative extensions over their counterparts on configuration structures-forgetting about event identifiers gives back the 'un-identified' definition [35]-, except for the parallel composition. The intuition here is that configuration structures encode CCS processes, and I-structures encode memories of RCCS processes, where parallel composition has a different meaning. Examples of those operations will be given in Sect. 2.4, after introducing the calculi in Sect. 2.2 and the encodings in Sect. 2.3. Sect. C.1 is devoted to proving the correctness of those operations.

Given two sets A, B, and a symbol / ∈ A ∪ B denoting undefined, we write

C = C ∪ { } if /
∈ C and define the partial product [35, Appendix A] of A and B to be

A × B = {(a, ) | a ∈ A} ∪ {( , b) | b ∈ B} ∪ {(a, b) | a ∈ A, b ∈ B}
and the two projections to be π 1 : A × B → A and π 2 : A × B → B .

Definition 5 (Operations on I-structures). Given

I i = (E i , C i , L i , i , I i , m i ), for i = 1, 2,
The relabeling of I 1 along :

E 1 → L is I 1 [ / 1 ] = (E 1 , C 1 , L, , I 1 , m 1 ). The reidentifiying of I 1 along m : E 1 → I is I 1 [m/m 1 ] = (E 1 , C 1 , L 1 , 1 , I, m), provided I 1 [m/m 1 ] respects the Collision Freeness condition.

The restriction of a set of events

A ⊆ E 1 in I 1 is I 1 A = (E, C, L, 1 E , I, m 1 E ) , where E = E 1 \A, C = {x | x ∈ C 1 and x ∩ A = ∅}, L = {a | ∃e ∈ E 1 \A, 1 (e) = a} and I = {i | ∃e ∈ E 1 \A, m 1 (e) = i}.

The restriction of a set of labels

L ⊆ L 1 in I 1 is I 1 L = I 1 E L
1 where E L 1 = {e ∈ E 1 | 1 (e) ∈ L}. We write I 1 a , when the restricting set of labels L is the singleton {a}. The prefixing of I 1 by the label a is a.I 1 = (E, C, L, , I, m) where

E = E 1 ∪ {e}, for e / ∈ E 1 , C = {x | x = ∅ or ∃x ∈ C 1 , x = x ∪ e}, L = L 1 ∪ {a}, = 1 ∪ {e → a}, I = I 1 ∪ {i}, for i / ∈ I 1 m = m 1 ∪ {e → i}.
The postfixing of (a, i) to I 1 is defined if i / ∈ I 1 as I 1 : :(a, i) = (E, C, L, , I, m) where everything is as in a.I 1 , except that C = C 1 ∪ {x ∪ {e} | x ∈ C 1 is maximal and finite}. The nondeterministic choice of I 1 and I 2 is I 1 + I 2 = (E, C, L, , I, m), where

E = {{1} × E 1 } ∪ {{2} × E 2 } with π 1 : E → {1, 2} and π 2 : E → E 1 ∪ E 2 , C = {{i} × x | x ∈ C i }, L = L 1 ∪ L 2 , (e) = i (π 2 (e)) for π 1 (e) = i, I = I 1 ∪ I 2 , m(e) = m i (π 2 (e)) for π 1 (e) = i.
The product of I 1 and I 2 is I 1 × I 2 = (E, C, L, , I, m), where:

E = E 1 × E 2 , with π i : E → E i the projections of the partial product, For i ∈ {1, 2}, define the projections γ i : I 1 × I 2 → I i and the configurations x ∈ C: ∀e ∈ E, γ i (e) = π i (e), γ i ( i (e)) = i (π i (e)), γ i (m i (e)) = m i (π i (e)) γ i (x) ∈ C i , with γ i (x) = {e i | π i (e) = e i = and e ∈ x} ∀e, e ∈ x, π 1 (e) = π 1 (e ) = or π 2 (e) = π 2 (e ) = ⇒ e = e ∀e ∈ x, ∃z ⊆ x finite, γ i (z) ∈ C i , e ∈ z ∀e, e ∈ x, e = e ⇒ ∃z ⊆ x, γ i (z) ∈ C i , e ∈ z ⇐⇒ e / ∈ z : E → L = L 1 × L 2 is (e) =      ( 1 (e 1 ), ) if π 2 (e) = ( , 2 (e 2 )) if π 1 (e) =
( 1 (e 1 ), 2 (e 2 )) otherwise

m : E → I = I 1 × I 2 is m(e) =      (m 1 (π 1 (e)), ) if π 2 (e) = ( , m 2 (π 2 (e))) if π 1 (e) = (m 1 (π 1 (e)), m 2 (π 2 (e))) otherwise
We now recall the definition of parallel composition for configuration structure, and detail the definition for I-structures. Parallel composition consists of a combination of product, relabelling, reidentifiying for the I-structures, and restriction. For the relabelling operation, we use a synchronization algebra [37] (S, , ⊥) consisting of a commutative and associative operation • on a set of labels S ∪ { , ⊥}, where { , ⊥} / ∈ S and such that a • = a (e.g. is the identity element) and a • ⊥ = ⊥ (e.g. ⊥ is the zero element), for all a ∈ S. To avoid repetition, below we assume given (S, , ⊥), such that S ⊆ L 1 ∪ L 2 . We give examples of synchronization algebras in Sect. 2.3.

Definition 6 (Parallel composition of configuration structures). The parallel composition

of C 1 and C 2 is C 1 | S C 2 = (C 1 × C 2 )[ / ] ⊥ where : E 1 × E 2 → L 1 ∪ L 2 is
the labeling function from the product, and :

E 1 × E 2 → L 1 ∪ L 2 ∪ {⊥} is defined as (e) = 1 (e 1 ) • 2 (e 2 ).
Definition 7 (Parallel composition of I-structures). The parallel composition of I 1 and

I 2 , is I 1 | S I 2 = (I 3 [m /m 3 ][ / 3 ]) ⊥ where I 3 = (E 3 , C 3 , L 3 , 3 , I 3 , m 3 ) is I 1 × I 2 , and m : E 3 → I 1 ∪ I 2 ∪ {⊥ k | k ∈ I 1 × I 2 } is defined as follows, for i = : m (e) =            i if m 3 (e) = (i, i) i if m 3 (e) = (i, ) ∧ ∀e 2 ∈ E 2 , m 2 (e 2 ) = i i if m 3 (e) = ( , i) ∧ ∀e 1 ∈ E 1 , m 1 (e 1 ) = i ⊥ k otherwise, with m 3 (e) = k (Sync. or Fork) (Extra .1) (Extra .2) (Error) : E 3 → L 1 ∪ L 2 ∪ {⊥} maps e to ⊥ if m (e) = ⊥ k , and to 1 (e 1 ) • 2 (e 2 ) otherwise.
Parallel composition removes from the product the pairs of events that represent 'nonrealizable' interactions: for configuration structures, pairs of events that do not represent possible and future synchronizations; for I-structures, pairs of events that do not represent past synchronizations or forks. Definitions 11 and 12 will detail how those operations are used to encode a process or a memory, and both types of parallel compositions will be illustrated in Examples 14 and 15.

Concurrent Communicating Calculi

Let I = N be a set of identifiers and i, j range over it. Let N = {a, b, c, . . . } be a set of names and N = {a, b, c, . . . } its set of co-names. We define the set of labels L = N ∪ N ∪ {τ }, and use α (resp. λ, µ, ν) to range over L (resp. L\{τ }). The complement of a name is given by a bijection • : N → N, whose inverse is also written •, and that we extend to τ , i.e. τ = τ . Definition 8 (RCCS Processes). The set of reversible processes R is built on top of the set of CCS processes by adding memory stacks to the threads: Note that the nullary case of the sum1 gives the inactive process, denoted 0, and that the unary case gives the 'usual' prefixing of a process by a label, and we write e.g. a.P for 1 λ i .P i with λ 1 = a and P 1 = P . We assume sum to be associative and often consider only its binary case, that we denote with the + sign. We often forget about the trailing ∅ in the memory stack, or the inactive process 0 and write e.g. e a | (b + c) for e.∅ (a.0 | (b.0 + c.0)). We work up to the structural congruence ≡ of CCS-that we suppose familiar to the reader-and write e.g. ∅ (P 1 | P 2 | P 3 ) without parenthesis since (P 1 | P 2 ) | P 3 ≡ P 1 | (P 2 | P 3 ). Finally, alpha-equivalence is written = α and supposed familiar as well.

P, Q := P | Q i 0 λ i .P i P \a (CCS
In a memory event i, λ, P , the P component represents the process that was not chosen in a non-deterministic transition, but that can be restored if the process wants to go back. The 'fork' symbol tracks when a memory stack is split between two threads. Definition 9 (Structural equivalence [2,11]). Structural equivalence on R is the smallest equivalence relation generated by the following rules:

P = α Q m P ≡ m Q (α-Conversion) m (P | Q) ≡ ( .m P | .m Q) (Distribution of Memory) m P \a ≡ (m P )\a with a / ∈ nm(m) (Scope of Restriction)
The labeled transition system for RCCS is given by the rules of Fig. 2. We use === ⇒ i:α

for the union of ---→ i:α (forward) and ¬¬¬ → i:α (backward transition), and if there are indices i 1 , . . . , i n and labels α 1 , . . . , α n such that R 1 ==== ⇒

i1:α1 • • • ==== ⇒ in:αn R n , then we write R 1 == ⇒ ⇒ R n .
Sect. 2.4 will provide examples of executions, but it should be noted that a process m a.P is allowed to make a transition with label a and identifier i / ∈ I(m) using act. and add the event i, a, 0 to the memory stack m if i / ∈ I(m). Conversely, a process i, a, 0 .m P can do a backward transition using act. * with label a and identifier i and become m a.P . This system is a conservative extension over the LTS of CCS with prefixed sum, simply adding indices and backward transitions.

Definition 10 (Reachable [2, Lemma 1]). For all R, if there is a CCS process P such that ∅ P == ⇒ ⇒ R, we say that R is reachable, that P is the unique origin of R and write it O R .

An important result [11, Lemma 10] furthermore states that the trace ∅ P == ⇒ ⇒ R is forward-only2 . Also, note that multiple RCCS processes can have the same origin, but that

i / ∈ I(m) act. (m λ.P + Q) ---→ i:λ i, λ, Q .m P R ---→ i:λ R S ---→ i:λ S syn. R | S ---→ i:τ R | S i / ∈ I(m) act. * i, λ, Q .m P ¬¬¬ → i:λ m (λ.P + Q) R ¬¬¬ → i:λ R S ¬¬¬ → i:λ S syn. * R | S ¬¬¬ → i:τ R | S R === ⇒ i:α R i / ∈ I(S) par. L R | S === ⇒ i:α R | S S === ⇒ i:α S i / ∈ I(S) par. R R | S === ⇒ i:α R | S R === ⇒ i:α R a / ∈ α res. R\a === ⇒ i:α R \a R 1 ≡ R R === ⇒ i:α R R ≡ R 1 ≡ R 1 === ⇒ i:α R 1 Figure 2
Rules of the labeled transition system (LTS)

reachable RCCS processes have one unique origin (up to structural equivalence). We consider only reachable terms: unreachable terms are 'dysfunctional' and their memory is considered not coherent [12], as they can not 'rewind' back to an origin process.

Processes and Memories as (Identified) Configuration Structures

In the definitions below, we write S for a synchronization algebra (S, , ⊥) with S = N∪N∪{τ }.

Definition 11 (Encoding CCS processes [37]). Given a CCS process P , its encoding P as a configuration structure is built inductively:

λ.P + Q = λ.P + Q P | Q = P | S Q P \a = P {a,a} λ.P = λ. P 0 = 0 where S includes α • α = τ and α • β = ⊥, if β = α.
Definition 12 (Encoding RCCS memories). Given a RCCS process R, the encoding R of its memory as an I-structure is built by induction on the process and on the memory:

m P = m R 1 | R 2 = R 1 | S R 2 R\a = R i, λ, P .m = m : :(λ, i) ∅ = 0 .m = m where S includes α • α = τ ; α • α = α and α • β = ⊥ if β / ∈ {α, α}.

Examples

We now illustrate the execution of RCCS processes, the encoding of CCS processes and of RCCS memories, and how they relate.

Example 13 (Executing a RCCS process). An example of forward-only trace is: Reading it from end to beginning and replacing ---→ Example 14 (Encoding CCS processes). We can see the I-structures from Fig. 1 as configuration structures obtained by encoding the CCS processes a + a, a | a, and (a.b) | a. Similarly, we can consider the I-structures from Fig. 3-ignoring the grayed out parts for nowas configuration structures. The interested reader can check that the encoding of (a.b) | (c.a) in Fig. 3c is indeed the result of applying the parallel composition of configurations structures (Definition 6) to the encoding of a.b in Fig. 3a andc.a in Fig. 3b. Lastly, Fig. 3d shows the encoding of (a.b) | c.

∅ (a.b | c.a) ≡ ( .∅ a.b) | ( .∅ c.a) (Distribution of Memory) ---→ 1:c ( .∅ a.b) | ( 1, c, 0 . .∅ a) (act.) ---→ 2:τ ( 2, a, 0 . .∅ b) | ( 2, a, 0 . 1, c, 0 . .∅ 0) (syn.) ---→ 3:b ( 3, b, 0 . 2, a, 0 . .∅ 0) | ( 2, a, 0 . 1, c, 0 . .∅ 0) (act.) ∅ {a} {a, b}
The parallel composition of I-structures (Definition 7) differs slightly and is new, and hence deserves a detailed example.

Example 15 (Encoding RCCS memories). The process obtained at the end of Example 13 has its memory encoded as follows:

( 3, b, 0 . 2, a, 0 . .∅ 0) | ( 2, a, 0 . 1, c, 0 . .∅ 0) = 3, b, 0 . 2, a, 0 . .∅ 0 | 2, a, 0 . 1, c, 0 . .∅ 0 = 3, b, 0 . 2, a, 0 . .∅ | 2, a, 0 . 1, c, 0 . .∅ Letting E = L = {a, a, b, c}, = id, I = {1, 2, 3}, using
.∅ = ∅ = 0 and the postfixing:

3, b, 0 . 2, a, 0 . .∅ = ({a, b}, {∅, {a}, {a, b}}, L, , I, {a → 2, b → 3} 2, a, 0 . 1, c, 0 . .∅ = ({c, a}, {∅, {c}, {c, a}}, L, , I, {c → 1, a → 2})
Those are displayed in Fig. 3a and 3b, and their product (which is the first step to compute their parallel composition) gives the following sets of events and identifiers:

Event (a, ) (b, ) ( , c) ( , a) (a, c) (a, a) (b, c) (b, a) Identifier (2, ) (3, ) ( , 1) ( , 2) (2, 1) (2, 2) (3, 1) (3, 2)
Re-identifying and re-labeling according to the definition of parallel composition gives:

Event (a, ) (b, ) ( , c) ( , a) (a, c) (a, a) (b, c) (b, a) Re-identified ⊥ (2, ) 3 1 ⊥ ( ,2) ⊥ (2,1) 2 ⊥ (3,1) ⊥ (3,2) Re-labeled ⊥ b c ⊥ ⊥ τ ⊥ ⊥
Indeed, if two events occur at the same time with the same identifier (Sync. or Fork), then their identifier is simply picked. Hence, m (a, a) = 2. If only one event is present in the pair, and no event on the other component have the same identifier (Extra .1, Extra .2), then this event's identifier is picked. Hence, m (b, ) = 3 and m ( , c) = 1. The remaining cases get re-identified with ⊥ k (Error). Finally, (b, ), ( , c) and (a, a) gets relabeled with b, c and τ respectively, and after restricting to the label ⊥ we obtain the grayed out part of Fig. 3c.

Observe that in this last example, the structure underlying the encoding of the memory is just a particular 'path' in the encoding of the origin. We can observe this intuition again with the following example:

Example 16 (Memory and origin). The encoding of the memory resulting from the execution

∅ ((a.b) | c) ---→ 1:c ---→ 2:a ( 2, a, 0 . .∅ b) | ( 1, c, 0 . .∅ 0)
is the grayed out part in Fig. 3d, with m(c) = 1 and m(a) = 2. We name this process R 1 and come back to it in Example 20.

Operational Correspondence

Before studying bisimulations on configuration structures and processes, we prove the operational correspondence3 between RCCS processes and the encodings of their memories in I-structures (Lemma 19, cf. also Sect. C.2). Events in I-structures resulting from the encoding of a process have different identifiers, and they are either causally linked or concurrent.

Lemma 17 (Memories give posets). For all R, letting x be the maximal configuration in R (Definition 2), ( R , ⊆) is a partially ordered set (poset) with maximal element x.

This is proved by induction on R and illustrated by Examples 15 and 16. However, having at most one maximal configuration does not imply that one particular event has to be 'the last one' introduced. We use the following definition to make it formal.

Definition 18 (Maximal event). An event e is maximal in I if there is no event e such that e < x e , for x a maximal configuration of I.

For instance, the encoding of the memory of Example 16, pictured in Fig. 3d, has two maximal events, labeled a and c. We can now state the main result of this section:

Lemma 19 (Operational Correspondence). For all R and S, writing

(E R , C R , R , I R , m R ) for R and similarly for S, if R ---→ i:α S or S ¬¬¬ → i:α R, then there exists e ∈ E S maximal in S with m S (e) = i s.t. R ∼ = S {e} . For all R and e a maximal event in R , there is a transition R¬¬¬¬¬¬¬¬ → m R (e): R (e) S with S ∼ = R {e} .
For the first part, it suffices to show that the forward transition triggers the creation of a maximal event with the same identifier, and nothing else, and that this event can be 'traced' in S . It uses intermediate lemma showing how maximal events are preserved by certain operations on I-structures. The result follows easily for backward transition, but the last part is more involved: it requires to show that e can be mapped to a particular transition in the trace from O R to R, and, using a notion of trace equivalence, that this particular transition can be 'postponed' and done last, so that R can backtrack on it. Example 20 (Forward and backward transitions). Looking back at the process of Example 16, we could further have

∅ {a} {a, b 1 } {a, b 2 } (a) a.(b + b) ∅ {a 1 } {a 2 } {a 1 , b 1 } {a 2 , b 2 } (b) (a.b) + (a.b) ∅ {a 1 } {b} {a 1 , b} {a 1 , a 2 } {a 1 , a 2 , b} (c) (a.a) | b ∅ {a 1 } {a 2 } {b} {a 1 , a 2 } {a 1 , b} {a 2 , b} {a 1 , a 2 , b} (d) a | a | b
R 1 ¬¬¬ → 1:c R 2 ---→ 3:b R 3 , i.e. ( 2, a, 0 . .∅ b) | ( 1, c, 0 . .∅ 0) ¬¬¬ → 1:c ( 2, a, 0 . .∅ b) | .∅ c)) (act. * ) ---→ 3:b ( 3, b, 0 . 2, a, 0 . .∅ 0) | .∅ c)) (act.)
We can see using Fig. 3d that

R 1 c = R 2 and that R 2 = R 3 b .

Reversible and Truly Concurrent Bisimulations Are the Same

History-Preserving Bisimulations in Configuration Structures

History-preserving bisimulation (HPB) [4,28,29] and hereditary history-preserving bisimulation (HHPB) [4,6] are equivalences on configuration structures that use label-and order-preserving bijections on events. Below, assume given

C i = (E i , C i , L i , i ) for i = 1, 2.
Definition 21 (Label-and order-preserving functions (l&o-p)). A function f :

x 1 → x 2 , for x i ∈ C i , i ∈ {1, 2} is label-preserving if 1 (e) = 2 (f (e)) for all e ∈ x 1 . It is order-preserving if e 1 x1 e 2 ⇒ f (e 1 ) x2 f (e 2 )
, for all e 1 , e 2 ∈ x 1 . We write that f is l&o-p if it is both. andx 2 and(1) and(2) (resp. (1-4)) hold is called a history-(resp. hereditary history-) preserving bisimulation (HPB, resp. HHPB) between C 1 and C 2 .

Definition 22 (HPB and HHPB

). A relation R ⊆ C 1 × C 2 × (E 1 E 2 ) such that (∅, ∅, ∅) ∈ R, and if (x 1 , x 2 , f ) ∈ R, then f is a l&o-p bijection between x 1
∀y 1 , x 1 --→ e1 y 1 ⇒ ∃y 2 , g, x 2 --→ e2 y 2 , g x1 = f, (y 1 , y 2 , g) ∈ R (1) ∀y 2 , x 2 --→ e2 y 2 ⇒ ∃y 1 , g, x 1 --→ e1 y 1 , g x1 = f, (y 1 , y 2 , g) ∈ R (2) ∀y 1 , x 1 ¬¬ → e1 y 1 ⇒ ∃y 2 , g, x 2 ¬¬ → e2 y 2 , g = f y1 , (y 1 , y 2 , g) ∈ R (3) ∀y 2 , x 2 ¬¬ → e2 y 2 ⇒ ∃y 1 , g, x 1 ¬¬ → e1 y 1 , g = f y1 , (y 1 , y 2 , g) ∈ R (4)
We write that C 1 and C 2 are (H)HPB if there exists a (H)HPB relation between them. (depending on the superset reached) to b 1 or b 2 , according to the first choice made. This relation can 'follow' the forward and backward movements in both structures, giving a l&o-p bijection. This example also proves that HHPB is not CCS's structural congruence.

Note that HPB

Back-and-forth Bisimulations in Reversible CCS

This section presents the relations we will be using, explain the restrictions on previous attempts to capture HHPB as a relation on process algebra terms [2,25], and shows why both backward transitions and identifiers are needed to capture HHPB.

Below, assume given two reachable processes R 1 and R 2 , and if f :

A → B is such that f (a) = b, we write f \ {a → b} for f A\{a} .
Definition 24 (B&F and SB&F bisimulations). R 1 ) andI(R 2 ) and(5-8) hold is called a back-and-forth-bisimulation (B&F) between R 1 and R 2 .

A relation R ⊆ R × R × (I I) such that (∅ O R1 , ∅ O R2 , ∅) ∈ R and if (R 1 , R 2 , f ) ∈ R, then f is a bijection between I(
∀S 1 , R 1 ---→ i:α S 1 ⇒ ∃S 2 , g, R 2 ---→ j:α S 2 , g = f ∪ {i → j}, (S 1 , S 2 , g) ∈ R (5) ∀S 2 , R 2 ---→ i:α S 2 ⇒ ∃S 1 , g, R 1 ---→ j:α S 1 , g = f ∪ {i → j}, (S 1 , S 2 , g) ∈ R (6) ∀S 1 , R 1 ¬¬¬ → i:α S 1 ⇒ ∃S 2 , f, R 2 ¬¬¬ → j:α S 2 , g = f \{i → j}, (S 1 , S 2 , g) ∈ R (7) ∀S 2 , R 2 ¬¬¬ → i:α S 2 ⇒ ∃S 1 , g, R 1 ¬¬¬ → j:α S 1 , g = f \{i → j}, (S 1 , S 2 , g) ∈ R (8)
If we remove the requirements on f and g in the second part of (5-8), we call R a simple back-and-forth bisimulation (SB&F). We write that R 1 and R 2 are B&F (resp. SB&F) if there exists a B&F (resp. SB&F) relation between them.

Restrictions and Previous Results

Definition 25

(Constraints). Given C, if ∀x ∈ C, ∀e 1 , e 2 ∈ x, (e 1 ) = (e 2 ) implies e 1 = e 2 , then C is non-repeating [25, Definition 3.5]. If, ∀x ∈ C, ∀e 1 , e 2 ∈ x, e 1 co x e 2 and (e 1 ) = (e 2 ) implies e 1 = e 2 , then C is without auto-concurrency [33, Definition 9.5]. A process R is non-repeating (resp. without auto-concurrency) if O R is.
Those are the constraints used in showing equivalences between process algebra and configuration structures. We omitted the definition of singly labeled [2, Definition 26], as it does not contribute to the understanding of our results. Every non-repeating process is without auto-concurrency, but being non-repeating events and singly labeled are incomparable features. Simple processes can be repeating (e.g. a.a), with auto-concurency (e.g. (a.b) | a), not singly labeled (e.g. a + a), as well as complicated processes using these patterns.

The first syntactical characterization of HHPB was obtained on non-repeating processes, using the 'forward-reverse bisimulation' (FR) [26, Definition 6.5], which is essentially defined as B&F, with the additional requirement that f = id. The theorem states that nonrepeating CCSK processes are FR iff their encoding are HHPB [25,Theorem 5.4]. We argue that FR gives too much importance to the technical apparatus implementing reversibility: processes should be able to pick their identifiers freely, and comparing them when establishing bisimulations should not require identities, but only bijections.

A second attempt [2] to capture HHPB used a back-and-forth barbed congruence on RCCS processes which was proven to correspond to HHPB on their encodings for a restricted class of processes as well, the class of singly-labeled processes.

Pinpointing the Right Reversible Bisimulation

We lift both restrictions in Corollary 31, by proving that B&F captures HHPB on all processes. Before doing so, let us note that even though B&F is the right notion to capture HHPB, when restricted to non-repeating processes, which are also without auto-concurrency, it does not use in a meaningful way the identifiers.

Theorem 26 (Collapsing B&F and SB&F). If R 1 and R 2 are without auto-concurrency, then they are B&F iff they are SB&F.

The intuition-made formal in Sect. C.3-is that since two concurrent transitions sharing the same label can not be fired at the same time, the identifiers do not add any information. The proof is easy for the forward transitions, and uses an order on the transitions enforced by causality for the backward traces. In the presence of auto-concurrency, the relations differ, e.g. the process with auto-concurrency a | a and a.a are SB&F but not B&F.

Example 27 (Reversibility is not 'just back and forth'). Observe that the bisimulation relation obtained by only considering (5-6) and ignoring the identifiers in Definition 24 is the 'standard' CCS bisimulation. Hence, it could seem natural to assume that 'simply adding the backwards transitions', i.e. taking (5-8) without the identifiers, giving SB&F, would be 'the right' bisimulation for RCCS. Processes like (a.a) | b and a | a | b are SB&F, but their encodings, presented in Fig. 4c and4d, are not HPB and hence not HHPB: SB&F does not account for reversibility in a satisfactory manner.

Both the bijection on identifiers and backward transitions are necessary to capture HHPB. Indeed, as suggested by Example 27, 'simply' considering forward and backward transitions is not enough. Let us now consider the role of the bijection on identifiers a bit further. A first remark is that Theorem 26 shows that it is easy to overlook the role of identifiers when restricting the class of processes considered. Secondly, we can prove, as an immediate corolary of Theorems 29 and 30, that considering only (5-6) (with the identifiers) in Definition 24 gives a characterization of HPB (Corollary 49): if anything, having a bijection between identifiers-thanks to the order on events that can be deducted from it-helps getting closer to 'truly concurrent' bisimulation than adding backward transitions does. However, as HPB and HHPB do not coincide, the identifiers are not enough either.

Of course, similar mechanisms could achieve similar results, but it is our hope that reversibility is fully understood as not 'just' being about adding backward transitions or memories, but to use both to obtain 'backward determinism'.

History-Preserving Bisimulations in (R)CCS

Proving our main result (Corollary 31) will use intermediate relations on processes-called HPB and HHPB as well-that use the encoding of the memories into I-structures. Those relations are proven to correspond to (H)HPB on the encoding of the processes on one hand (Theorem 29), and the one that characterizes HHPB is proven to coincide with B&F (Theorem 30) on the other hand. The proofs and connections between formalisms are gathered in Sect. C.4.

Definition 28 (HPB and HHPB on RCCS

). A relation R ⊆ R × R × (E 1 E 2 ) such that (∅ O R1 , ∅ O R2 , ∅) ∈ R and if (R 1 , R 2 , f ) ∈ R then f is an isomorphism between R 1
and R 2 and ( 9) and ( 10) (resp. (9-12)) hold is called a history-(resp. hereditary history-) preserving bisimulation between R 1 and R 2 .

∀S 1 , R 1 ---→ i:α S 1 ⇒ ∃S 2 , g, R 2 ---→ j:α S 2 , g R1 = f, (S 1 , S 2 , g) ∈ R (9) ∀S 2 , R 2 ---→ i:α S 2 ⇒ ∃S 1 , g, R 1 ---→ j:α S 1 , g R1 = f, (S 1 , S 2 , g) ∈ R (10) ∀S 1 , R 1 ¬¬¬ → i:α S 1 ⇒ ∃S 2 , f, R 2 ¬¬¬ → j:α S 2 , g = f S1 , (S 1 , S 2 , g) ∈ R (11) ∀S 2 , R 2 ¬¬¬ → i:α S 2 ⇒ ∃S 1 , g, R 1 ¬¬¬ → j:α S 1 , g = f S1 , (S 1 , S 2 , g) ∈ R (12)
We write that R 1 and R 2 are (H)HPB if there exists a (H)HPB relation between them.

Above, we write g R for the restriction of each component of g to R . Note that the definitions above reflect the definition of (H)HPB (Definition 22): the condition (∅ O R1 , ∅ O R2 , ∅) ∈ R is intuitively the counterpart to the condition that (∅, ∅, ∅) has to be included in the relation on configuration structures. Also, f shares similarity with the l&o-p bijection, in the sense that it exists, with id as the component on the labels, iff there exists a l&o-p bijection between the unique maximal configurations in R 1 and R 2 (Lemma 46). Relations defined on RCCS (B&F, SB&F, HPB and HHPB) straightforwardly extend to CCS, by simply stating that P 1 and P 2 are in it if ∅ P 1 and ∅ P 2 are too. Therefore we can state below our results in terms of CCS processes.

Theorem 29 (Equivalences). P 1 and P 2 are HHPB (resp. HPB) iff P 1 and P 2 are.

This result can easily be extended to weak-HPB and weak-HHPB [6,28], which are defined by removing from (H)HPB on configuration structures (Definition 22) and on RCCS (Definition 28) the condition that f must be preserved from one step to the next one.

Theorem 30 (Equivalence (contd)). P 1 and P 2 are B&F iff they are HHPB.

Theorem 29 (resp. Theorem 30) uses our operational correspondence between RCCS processes (resp. RCCS memories) and their encodings as configuration structures [2, Lemma 6] (resp. as I-structure (Lemma 19)) to transition between the semantic and syntactic worlds.

Our main result will come as an immediate corollary of Theorems 29 and 30.

Corollary 31 (Main result). P 1 and P 2 are B&F iff P 1 and P 2 are HHPB.

Concluding Remarks

This work offers a 'definitive' answer to the question of finding a meaningful bisimulation for reversible LTS by providing relations that correspond to (H)HPB on their encodings on all processes. We believe this contribution is of value because: 1. This result solves a problem that was open since HHPB was defined [6], nearly 30 years ago, for which despite the use of multiple techniques, only partial results were obtained, 2. This idea in appearance simple still requires a lot of technical work, as detailed in the Appendix, 3. The use of reversibility (both the backtracking capability and the memory mechanism) is critical to characterize HHPB on syntactical terms. This result also enforces the importance of identifiers in general and not just as part of a backtracking mechanism. Indeed, they are generally already present when concurrency is implemented, e.g. when two Unix threads terminate with the same signal, the parent process have the capacity of determining which process sent which signal.

As a byproduct of our result, we also proposed an encoding of RCCS memories into an 'enriched' configuration structure, called identified configuration structure. This observation echoes our previous formalism [2] and similar encoding [18] in an interesting way: as mentioned in the Introduction, a reversible process R was encoded as a pair ( O R , x R ) made of the configuration structure encoding the origin of R, and a configuration x R in it, called the address of R. The intuition was that we could 'match' a partially executed process with a configuration. We can now go further by observing that R is isomorphic to the I-structure generated by x R , which is everything 'below' it. This result (Lemma 48) is used in our proof, and exemplified by Example 16: the encoding of the memory of ( 2, a, 0 . .∅ b) | ( 1, c, 0 . .∅ 0) corresponds the 'past' of the process, whose underlying structure is grayed out in Fig. 3d, and what is left to execute-b | 0-corresponds to the 'future' of that process, and is represented by the configuration {c, a, b} in Fig. 3d.

A Event Structures as Categories

Configuration structures often use the insights provided by the categorical framework [2,30,35]. This appendix regroups the categorical treatment of (identified) configuration structures (Definition 1).

Definition 32 (Category of configuration structures). We define C the category of configuration structures, where an object is a configuration structure, and a morphism f :

C 1 → C 2 is a triple (f E , f L , f C ) such that f L : L 1 → L 2 ; f E : E 1 → E 2 preserves labels: 2 (f E (e)) = f L ( 1 (e)); f C : C 1 → C 2 is defined as f C (x) = {f E (e) | e ∈ x}.
We write C 1 ∼ = C 2 if there exists an isomorphism between C 1 and C 2 .

For simplicity, we often assume that L 1 = L 2 , i.e., that all the configuration structures use the same set of labels, take f L to be the identity and remove it from the notation.

Definition 33 (Category of I-structures). We define D the category of identified configuration structures, where objects are I-structures, and a morphism f :

I 1 → I 2 is a tuple q = (f, f m ) such that f = (f E , f C ) is a morphism in C between the underlying structures of I 1 and I 2 , f m : I 1 → I 2 preserves identifiers: f m (m 1 (e)) = m 2 (f E (e)).
We write I 1 ∼ = I 2 if there exists an isomorphism between I 1 and I 2 .

Observe that C is a subcategory of D. In both C and D, composition is written • and defined componentwise.

Lemma 34. Identified configuration structures and their morphisms form a category.

Proof. Identity For every I-structure I = (E, C, , I, m), id I : I → I is defined to be the identity on the underlying configuration structure id : (E, C, ) → (E, C, ) from C, that trivially preserves identifiers. For any morphism f :

I 1 → I 2 , f • id I1 = f = id I2 •f is trivial. Associativity for f : I 1 → I 2 , g : I 2 → I 3 and h : I 3 → I 4 , h • (g • f ) = (h • g) • f is
inherited from the associativity in C, and since f , g and h all preserves identifiers. Hence D is a category.

Unsurprisingly, a forgetful functor and an enrichment functor can be defined between those two categories. The only assumption is that we need to suppose that every configuration structure can be endowed with a total ordering on its events. Lemma 35. The forgetful functor F : D → C, defined by For (f

F(E, C, , I, m) = (E, C, ) F(f E , f C , f m ) = (f E , f C )
E , f C ) : (E 1 , C 1 , 1 ) → (E 2 , C 2 , 2 ), S(f E , f C ) = (f E , f C , f m ), where we let f m (m 1 (e)) = m 2 (f E (e 2 )).
are functors.

Proof. Proving that F is a functor is immediate.

Proving that S(C) is a I-structure is immediate, since our construction of m trivially insures Collision Freeness. For (f E , f C ) : C 1 → C 2 , proving that S(f E , f C ) is a morphism between S(C 1 ) and S(C 2 ) is also immediate. For the preservation of the identity, we compute:

S(id C ) = S(id E , id C ) = (id E , id C , f m ) where f m (m(e)) = m(id E (e)) = m(e), hence f m = id I : I → I, = (id E , id C , id I ) = id S(C)
For the composition of morphisms, given

f = (f C , f E ) : C 1 → C 2 and g = (g C , g E ) : C 2 → C 3 , we write S(C i ) = (E i , C i , i , I i , m i ) and we compute: S(g) • S(f ) = (g C , g E , g m ) • (f C , f E , f m ) = (g C • f C , g E • f E , g m • f m )
where, for all e ∈ E 1 , we compute:

(g m • f m )(m 1 (e)) = g m (f m (m 1 (e)) = g m (m 2 (f E (e))) (Since f m preserves identifiers) = m 3 (g E (f E (e)))
(Since g m preserves identifiers)

Hence we can conclude:

S(g) • S(f ) = S(g • f ) Remark 36. In D, every morphism f = (f E , f L , f C , f m ) from I 1 to I 2 is actually fully determined by f E whenever f L = id. Indeed, given f E : E 1 → E 2 , then we can define for all x ∈ C 1 , f C (x) = {f E (e) | e ∈ x} and f m as f m (m 1 (e)) = m 2 (f E (e)
). We will often make the abuse of notation of writing f E for f and reciprocally.

B Concurrency in a Trace and Trace Equivalence

We give here a quick reminder on concurrency and causality in CCS [8] and RCCS [11] traces.

Aside from the convenient notation m R/S that represents the memory stack(s) modified by a forward transition from R to S, and of the notation -→ a for a list of names

a 1 , • • • , a n ,
nothing new is introduced in this Section. However, the results reminded below are used in the proofs of Lemma 19 and Theorem 26. Concurrency on events corresponds to a notion of concurrency on transitions in RCCS traces [11,Definition 7 and Lemma 8]. For this reminder we consider only concurrency and causality for forward transitions, so that CCS intuitions work equally well. We make a remark at the end about extending the concurrency to backward transitions, but it should be noted that forward and backward transitions are not mixed.

Two transitions

t 1 = R ----→ i1:α1 R 1 and t 2 = R ----→ i2:α2 R 2 are composable if R 1 = R ,
and in this case, doing t 1 then t 2 is written as the composition t 1 ; t 2 . Given n composable transitions t i : R i ---→ i:αi R i+1 and their composition t 1 ; . . . ; t n , we say that t i is a direct cause of t k for 1 i < k n and write t i < t k (or, for short, i < k) if there is a memory stack m in R i+1 and a memory stack m in R k+1 such that m < m , where the order on memory stacks is given by prefix ordering. Note that, if they exist, m and m are unique, as memory events in reachable processes all have a different pairs (identifier, label).

Let R ---→ i:α S be a transition. If α = τ , we write m R/S = {m} where

R =(• • • ((R 3 | ((R 1 | (m P )) | R 2 )\ - → b 1 ) | R 4 )\ - → b 2 • • • | R n )\ -→ b m S =(• • • ((R 3 | ((R 1 | i, a, Q .m P ) | R 2 )\ - → b 1 ) | R 4 )\ - → b 2 • • • | R n )\ -→ b m
for some R i any of which could be missing and for some -→ b j , possibly missing as well. If α = τ , then m R/S will contain the pair of memory stacks that has been changed by the transition. Intuitively, the notation m R/S is useful to extract the memory stack(s) modified by a forward transition from R to S.

Two transitions are coinitial if they have the same source process and cofinal if they have the same target process. We say that two coinitial transitions t 1 = R ----→ i1:α1 S 1 and

t 2 = R ----→ i2:α2 S 2 are concurrent if m R/S1 ∩ m R/S2 = ∅, that is, if the transitions modify disjoint memories in R.
The square lemma [11, Lemma 8] says that moreover, given two such concurrent transitions, there exists two cofinal and concurrent transitions t 1 = S 1 ----→ i2:α2 S and t 2 = S 2 ----→ i1:α1 S.

The name of the lemma comes from this picture:

R S 1 S 2 S t 1 t 2 t 1 t 2
Moreover, the traces θ 1 = t 1 ; t 1 and θ 2 = t 2 ; t 2 are equivalent [11,Definition 9]. This allows one to define equivalence classes on transitions: t 1 in θ 1 is equivalent to t 2 in θ 2 if θ 1 is equivalent to θ 2 and t 1 and t 2 have the same index. Then in the trace t 1 ; t 1 we are now allowed to say that t 1 is concurrent to t 1 .

In a trace t 1 ; t 2 we have that t 1 is concurrent to t 2 iff t 1 is not a cause of t 2 . This follows from a case analysis using the definitions of concurrency and causality. Thanks to trace equivalence, we also have that in a trace t 1 ; . . . ; t n either t 1 is a cause of t n or the two transitions are concurrent. Those intuitions are enough for us to carry on our development, but a complete treatment of concurrency and causality in the trace of a CCS process [8] can give better insight to the curious reader.

The definitions of concurrency for forward coinitial traces and of causality for forward traces can easily be 'flipped' into definitions of concurrency for backward cofinal traces, and of causality for backward traces.

C Proofs and Auxiliary Materials

In this section we detail the proofs missing from the main text, and introduce some intermediate definitions and lemmas that are necessary for the proofs.

C.1 Operations on Identified Configurations Structures (Sect. 2.1)

Our main goal here is to prove that the operations of Definition 5 preserve I-structures (Lemma 40). The product and coproduct (used to define the nondeterministic choice below) have particular roles, since they have a direct representation in the categorical world.

The structures we considered are full w.r.t. the sets of labels and identifiers, i.e. the labeling and identifying functions are surjective. This only impacts the relabelling and reidentifying operations, where we have to additionally require that and m are surjective.

We redefine the nondeterministic choice of Definition 5 by first defining the coproduct on I-structures and then using relabeling and reidentifying to get rid of the extra indices in the label and the identifier of events. It is easy to check that the two definitions of nondeterministic choice are equivalent, but working with the one from Definition 5 is easier and simpler.

Definition 37. We redefine nondeterministic choice using coproduct as follows:

The coproduct of I 1 and I 2 is I 1 ± I 2 = (E, C, L, , I, m), where

E = {{1} × E 1 } ∪ {{2} × E 2 } with π 1 : E → {1, 2} and π 2 : E → E 1 ∪ E 2 , C = {{i} × x | x ∈ C i }, L = {{1} × L 1 } ∪ {{2} × L 2 }, (e) = (i, i (π 2 (e))) for π 1 (e) = i, I = {{1} × I 1 } ∪ {{2} × I 2 }, m(e) = (i, m i (π 2 (e))) for π 1 (e) = i.
and with the expected injections ι i :

I i → I 1 + I 2 . The nondeterministic choice of I 1 and I 2 is I 1 + I 2 = (I 1 + I 2 )[ / ][m /m] where (e) = a if (e) = (j, a), j ∈ {1, 2}, m (e) = i if (e) = (j, i), j ∈ {1, 2}.
Lemma 38. The product and coproduct of I-structures is the product and coproduct in D.

In the categorical setting, the product and coproduct on labeled configuration structures can be obtained by a straightforward enrichment of the un-labeled configuration structures [37, Propositions 11.2.2 and 11.2.3]. In a similar vein, we obtain the extension of those operations on identified (labeled) configuration structures directly.

Proof. The proof for the product and the coproduct follows the same pattern: assume I is the result of applying the operation to I 1 and I 2 , and observe that 1. I is an I-structure. This follows from the fact that the structure underlying I, F(I) = C is the product or coproduct of the configurations underlying F(I 1 ) = C 1 and F(I 2 ) = C 2 , hence, that it is a valid configuration structure. As m 1 and m 2 are such that Collision Freeness is enforced, then by construction m enforces it too and I = C ⊕ m is an I-structure. 2. The morphisms γ i (for the product) and ι i (for the coproduct) extends the corresponding morphisms on configuration structure with valid morphisms on identifiers. Let us suppose that C is the product and let α 1 : C → C 1 be one of the projections. Let us write I = C ⊕ m = (C, m, I) and

I 1 = C 1 ⊕ m 1 = (C 1 , m 1 , I 1 ).
From the definition of product on I-structures, I = I 1 × I 2 is the product on the sets on identifiers and let p 1 : I → I 1 be one of the projections, defined as p 1 (i 1 , i 2 ) = i 1 , for i 1 = . We can now write γ 1 = (α 1 , p 1 ) the projection on I-structures, which is indeed a morphism: suffices to verify that p 1 (m(e)) = m 1 (α 1 (e)), for all events e, which follows from the definition of m. A similar argument holds for the coproduct and the injections.

The universal properties follow easily by lifting the universal property of the underlying configuration structures in D.

The restriction of the operations of Definition 5 to configuration structures are standard [35,36], except for postfixing. We prove below that the restriction of this operation to configuration structures is correct.

Lemma 39. The postfixing of a label a to an event structure

C 1 = (E 1 , C 1 , L 1 , 1 ), defined as C 1 : :(a) = (E, C, L, ) where E = E 1 ∪ {e}, for e / ∈ E 1 , C = C 1 ∪ {x ∪ {e} | x ∈ C 1 is maximal and finite}, L = L 1 ∪ {a}, = 1 ∪ {e → a}, is a configuration structure.
Proof. Looking back at Definition 1, we simply have to prove that the four axioms of configuration structures are respected by C 1 : :(a), knowing that they are respected by C 1 by assumption.

Finiteness is satisfied because C 1 is a configuration structure, and every configuration in {x ∪ {e} | x ∈ C 1 is maximal and finite} is finite. For Coincidence Freeness, we only have to check the configurations containing e, otherwise it folows from C 1 being a configuration structure. Given y ∈ {x ∪ {e} | x ∈ C 1 is maximal and finite}, there exists y such that y = y ∪ {e}. Given two events e 1 , e 2 in y such that e 1 = e 2 , if e 1 = e or e 2 = e, then y is the configuration we are looking for. Otherwise, it follows from y being a configuration in the configuration structure C 1 . In Finite Completeness, let X be a subset of configurations. If ∀x ∈ X, e / ∈ x, then the result follows from C 1 being a configuration structure. Otherwise, there exists x ∈ X such that e ∈ x , hence we know that x is maximal. Now, assume there is y ∈ C finite such that ∀x ∈ X, x ⊆ y. As x is finite and maximal and y is finite, then x = y. Suppose by contradiction that X / ∈ C. It implies that ∃y ∈ X with e ∈ y such that e / ∈ x . We reach a contradiction: as y ⊆ y, e ∈ y, and as x ⊆ y and e / ∈ x , we obtain that x y, which contradicts the maximality of x . Hence, for all x ∈ X, x ⊆ x , and X = x = y. For Stability let us consider x and y such that x ∪ y ∈ C. If e / ∈ x ∪ y the result follows from the stability of C 1 . Otherwise assume, that e ∈ x, but then x is maximal, and for x ∪ y ∈ C to be the case it must be that either y = ∅ or y ⊆ x, and x ∩ y ∈ C holds trivially.

Lemma 40. The operations of Definition 5 (relabeling, reidentifiying, restriction, prefixing, postfixing, non-deterministic choice and product), coproduct, as well as the parallel composition (Definition 7) preserve I-structures.

Proof. Let us note that 1. the restriction of the relabeling, restrictions, prefixing, postfixing, non-deterministic choice, coproduct and product to configuration structures preserve configuration structures, as their are adaptations of the usual operations [35,36], or proven correct in Lemma 39, 2. any configuration structure endowed with a valid identifying function (i.e., such that no two events in the same configuration have the same identifier, cf. Collision Freeness) is a valid I-structure.

For the relabeling, since this operation does not change anything but the labels, we have nothing to prove. For the reidentifiying, since the function m is supposed to make the resulting I-structure respect the Collision Freeness condition, there is nothing to prove.

For the restriction, note that this operation only removes events in configurations and keeps the identifying function intact. Hence if the initial structure has a valid identifying function, then the identifying function of the new structure is a valid one by assumption.

For the prefixing, since i is a fresh identifier, Collision Freeness is trivially preserved.

For the postfixing, we know that the underlying configuration of I 1 : :(a, i), C 1 : :(a) is a valid configuration structure by Lemma 39. And since i is a fresh identifier, Collision Freeness is trivially preserved.

For the coproduct, it follows trivially from Lemma 38.

For the product, it follows trivially from Lemma 38.

For the nondeterministic choice, note that Collision Freeness holds only if I 1 ∩ I 2 = ∅. We assume this to be the case, as we can always apply a reidentifying operation when it is not, to guarantee that nondeterministic choice is well defined. Moreover the two definitions of nondeterministic choice from Definition 5 and Definition 37 coincide, which follows trivially.

For the parallel composition, we need to first observe that this operation is defined in terms of product, restriction, relabeling, and reidentifiying along m , and we know that those operations are correct provided m respects the Collision Freeness condition. In other terms, given I 1 , I 2 and their product I 3 = (E 3 , C 3 , L 3 , 3 , I 3 , m 3 ), we only need to prove that I 3 [m /m 3 ] is a valid I-structure, and it follows from a case analysis. Given a configuration x ∈ C 3 , as and two events e, e ∈ x, we can reason by case analysis on the first and second projections of both events, and these are the possible cases:

π 2 (e) = and π 2 (e ) = . In this case, looking at the definition of the product in Istructures, m (e) = (m 1 (π 1 (e)), ) and m (e ) = (m 1 (π 1 (e )), ). If m (e) = m (e ), then m 1 (π 1 (e)) = m 1 (π 1 (e )) in the configuration π 1 (x) in I 1 . But that's a contradiction, since π 1 (e) and π 1 (e ) are in the same configuration in I 1 and the identifying function of I 1 is valid.

π 1 (e) = and π 1 (e ) = . This case is similar as the previous one, except that it uses that the identifying function of I 2 is valid. π 1 (e) = , π 2 (e) = and π 2 (e ) = is similar to above, except that it uses Extra .1.

π 1 (e) = ,
Finally, if π 1 (e) = , π 2 (e) = , π 1 (e ) = , π 2 (e ) = , then m (e) = m(e ) would require to have applied either Sync. or Fork or Error to both cases, and both situations would contradict the correctness of the product.

If R is R \a, then it trivially follows by induction hypothesis.

If R is R 1 | R 2 ,
then by induction hypothesis we get that R 1 and R 2 are both posets with a maximal configuration. We also know by Lemma 42 that events in R 1 and R 2 have disjoint identifiers (which does not imply that identifiers occurring in R 1 and in R 2 need to be disjoint). Looking at the definition of parallel composition for I-structures (Definition 7), we may observe that

R = R 1 | R 2 = R 1 | R 2 consists of the structure R 1 × R 2 )[m /m][ / ]
⊥ for a certain m and .

We show that there exists more than one maximal configurations in R 1 × R 2 and that all but one are removed by the restriction.

We show this by first showing that there exists more than one maximal configurations in R 1 × R 2 , denoted here with I. From the definition of product (Definition 5), we have that there exists y 1 , . . . , y n maximal configurations in I such that π 1 (y i ) and π 2 (y i ) are maximal in I 1 and I 2 , respectively. A second step is then to show that the restriction keeps only one maximal configuration.

Let y i and y j be two maximal configurations in R 1 × R 2 . As they are maximal it implies that y i ∪ y j is not a configuration in I, for i = j n. In turn, this implies that there exists e i ∈ y i and e j ∈ y j such that π 1 (e i ) = π 1 (e j ) and e i = e j , as otherwise y i ∪ y j would be defined. Here we assume that π 1 (e i ) = π 1 (e j ) but we could also take π 2 (e i ) = π 2 (e j ) and the argument still holds.

Let us now take d an event in R 1 and take e 1 , . . . , e m the subset of events in E such that π 1 (e i ) = d. The restriction in the parallel composition of R 1 | R 2 keeps only one such event e i and removes the rest: all the other events are reidentified with ⊥ k since no two events can have the same identifier in the same component of the event. Therefore, from all maximal configurations y 1 , . . . , y m such that e i ∈ y i , i m, only one remains. By applying the argument above to all events in R 1 (and R 2 ), we have that the restriction removes all but one y i , which is then the maximal configuration in

R 1 | R 2 .

C.2.2 Operational Correspondence

Lemma 43. If R ≡ S, then the exists an isomorphism f between R and S , with f L = id and f m = id.

Proof. Looking back at Definition 9, there are only limited ways for R and S to be structurally equivalent (i.e., in the ≡ relation), and we review them one by one. Before that, let us observe that the sets of identifiers and of labels occurring in the memories of R and S are identical.

In α-Conversion, it should be noted that the memory is left untouched, so their encodings are equal.

For Distribution of Memory, we have that

m (P | Q) = m and ( .m P ) | ( .m Q) = ( .m P ) | ( .m Q) = .m | .m = m | m
The construction of the isomorphism between m and m | m maps e and (e, e): let e be an event in m . Note that the only event e in m | m such that π 1 (e ) = e is (e, e). For Scope of Restriction, we have that have m (P \a) = m = (m P )\a .

Lemma 44. The event introduced in the postfixing of a memory event to an identified structure is maximal in the resulting identified structure.

Proof. The proof is immediate: the event introduced occurs only in the finite maximal configurations of the identified structure, and hence there cannot be any other event that causes it. If the maximal configuration is infinite, then the event introduced by the postfixing is not in it, and there cannot be any other event causing it.

Furthermore, the maximality of an event can be 'preserved' by parallel composition:

Lemma 45. For all identified structure I 1 = (E 1 , C 1 , L 1 , 1 , I 1 , m 1
) with e 1 ∈ E 1 a maximal event in it, and for all identified configuration

I 2 = (E 2 , C 2 , L 2 , 2 , I 2 , m 2 ) such that m 1 (e 1 ) / ∈ I 2 , (e 1 , ) is maximal in I 1 | I 2 .
Proof. The definition of parallel composition of identified configuration structures (Definition 7) should make it clear that the only event in I 1 | I 2 whose first projection is e 1 is (e 1 , ), since m 1 (e 1 ) / ∈ I 2 : all the other pairings of events from E 2 with e 1 being reidentified with ⊥ k and subsequently removed. Now, suppose for the sake of contradiction that (e 1 , ) is not maximal in I 1 | I 2 . It means that there is a maximal configuration x in I 1 | I 2 and an event e ∈ x such that (e 1 , ) < x e.

By the definition of product of I-structures (Definition 5), π 1 (x) ∈ C 1 , and we prove that π 1 (x) is maximal in I 1 by contradiction. Suppose π 1 (x) is not maximal in I 1 , then there exists z ∈ C 1 such that π 1 (x) z. Assume z is maximal in I 1 (if it is not, then take z the maximal configuration such that z ⊆ z , which always exists), and note that e 1 ∈ z, since e 1 ∈ π 1 (x) and

π 1 (x) ⊂ z. By Stability, since z ∪ π 1 (x) = z is a configuration in C 1 , z ∩ π 1 (x) = z \ π 1 (x)
also is, and note that for all events e in z \ π 1 (x), we have that e 1 z\π1(x) e . Since e ∈ z \ π 1 (x), e ∈ z and e 1 z e , we have that z is a maximal configuration in I 1 where e 1 is not maximal: a contradiction. Hence, we know that π 1 (x) is maximal in I 1 . Now, we prove that π 1 (e) = . For the sake of contradiction, suppose that π 1 (e) = . Then, observe that the underlying configuration structure F(I 1 | I 2 ) also have this configuration x with (e 1 , ) < x e. Without loss of generality, we can assume that e is an immediate cause of (e 1 , ) [2, Definition 20], that is, that there is no e in x such that (e 1 , ) < x e < x e. We can now use a small proposition connecting events in products with the order in their original configuration [2, Proposition 3] to get that it must be the case that either π 1 (e 1 , ) < π1(x) π 1 (e) or π 2 (e 1 , ) < π2(x) π 2 (e). But since π 2 (e 1 , ) = / ∈ π 2 (x), and since we assumed π 1 (e) = / ∈ π 1 (x), both scenario are impossible, so we reached a contradiction, and it must be the case that π 1 (e) = .

Since π 1 (x) is maximal in I 1 , and since π 1 (e), e 1 ∈ π 1 (x), we reached a contradiction: π 1 (e) is not caused by e 1 , but that cannot be since e 1 is not maximal. Hence, there is no such e ∈ x, and (e 1 , ) is maximal in

I 1 | I 2 .
We can now use Lemmas 43-45 to prove our main result for this section. We use an extra notation here, we write d < e if for every x ∈ C such that d, e ∈ x, we have d < x e.

Lemma 19 (Operational Correspondence). For all R and S, writing Proof. We can rephrase the lemma as follows:

(E R , C R , R , I R , m R ) for R and similarly for S, if R ---→ i:α S or S ¬¬¬ → i:α R,
1. For all transitions R ---→ i:α S, R ∼ = S {e} with e maximal in S and m S (e) = i.

2. For all transitions R ¬¬¬ → i:α S, S ∼ = R {e} with e maximal in R and m R (e) = i.

3.

For any maximal event e in R , there is a transition R ¬¬¬¬¬¬¬¬ → m R (e): R (e) S with S ∼ = R {e} .

We prove the three items separately.

1. We proceed by case on α in the transition R ---→ i:α S:

If α = a For the transition R ---→ i:α S to take place, it must be the case that R contains a thread T = m a.P + Q for some m, P and Q, and that T ---→ i:α i, a, Q .m P . Additionally, the par. L , par. R , res. and ≡ rules of Fig. 2, gives us that it must be the case that

R ≡ ((R n-1 • • • ((R 3 | ((R 1 | T ) | R 2 )\ - → b 1 ) | R 4 )\ - → b 2 • • • ) | R n )\ -→ b m
for some R i any of which (and its corresponding | constructor) could be missing and for some -→ b j , any of which (along with their \ constructor) could be missing as well. Hence, the transition can be written as

R ---→ i:a ((R n-1 • • • ((R 3 | ((R 1 | i, a, Q .m P ) | R 2 )\ - → b 1 ) | R 4 )\ - → b 2 • • • ) | R n )\ -→ b m

=S

with S ≡ S. By Lemma 44, we know that there is a maximal event e 1 in i, a, Q .m P that has for identifier i. We show that this event can be 'traced through' S , using four arguments:

From the par. L or par. R rule in Fig. 2 we have that i / ∈ I(R 1 ). Using Lemma 45, it follows that there exists a maximal event e 2 in R 1 | i, a, Q .m P such that π 2 (e 2 ) = e 1 , and from the definition of the parallel composition of I-structures (Definition 7) that its identifier is i. We can use the same reasoning to prove that there is a maximal event e 3 in (R 1 | i, a, Q .m P ) | R 2 such that π 1 (e 3 ) = e 2 and such that its identifier is i.

Since R 3 | ((R 1 | i, a, Q .m P ) | R 2 )\ - → b 1 = R 3 | ((R 1 | i, a, Q .m P ) | R 2 )
, it is trivial that e 3 is a maximal event with identifier i in it. Using those three arguments repeatedly, and 'skipping' them if a parallel composition or a restriction is 'missing', we can 'trace' the maximal event with identifier i in S , that we write e.

But we still need to find a maximal event whose identifier is i in S . Since S ≡ S, Lemma 43 gives us that S ∼ = S . Let us write f this isomorphism, we know that it is such that f L = id, and hence that we can use Remark 36 to study only the part of f that maps events, that we also write f . Now, we want to prove that f (e) is maximal in S . To do so, let us use the 'if' part of the upcoming Lemma 464 to obtain a l&o-p bijection between the maximal configurations of S and the maximal configuration of S , that we also write f . Now, let's suppose that f (e) is not maximal in S . Then, there exists a maximal configuration x m in S and an event e in x m such that f (e) < xm e . But since f is an isomorphism, and since f is order-preserving, we have that it must be the case that e < f -1 (xm) f -1 (e ), which contradicts the maximality of e in S . Hence, f (e) is maximal in S , and since by Lemma 43 f m = id, m S (e) = i. It is obvious that this event is the only one that was added to the encoding of R, so that R = S {e} . If α = τ Then it must be the case that R has two threads, T = m a.P + Q and T = m ā.P + Q for some m, m , a, P , P , Q, and Q , and that

R = (• • • (R 3 | (((R 1 | T ) | R 2 )\ - → b 1 | R 4 ))\ - → b 2 • • • | ((R 1 | T ) | R 2 )\ - → c 1 • • • | R n )\ -→ b m
for some R i , R i any of which (and its corresponding | constructor) could be missing and for some -→ b j , -→ c k , any of which (along with their \ constructor) could be missing as well. Then the transition becomes

R ---→ i:τ (• • • ((R 3 | (R 1 | ( i, a, Q .m P ) | R 2 ))\ - → b 1 | R 4 )\ - → b 2 • • • (R 1 | (( i, ā, Q .m P ) | R 2 )\ - → c 1 • • • | R n )\ -→ b m ≡ S.
We use the same reasoning as in the case above where α = a to deduce that there is a maximal event in ( i, a, Q .m P , let us name it e 1 , and one in i, ā, Q .m P , let us name it e 1 , that both have identifier i. Using the same argument as in the first case, we can 'trace' in parallel e 1 and e 1 , until the I-structures that hold their 'descendants' are put in parallel: at that point, by the definition of parallel composition of I-structures (Definition 7), it should be clear that a single maximal event resulting from their composition will emerge, that it will be labeled τ and have identifier i. Finally, using again the same argument as in the first case, this event resulting from the synchronization of our two maximal events will still be maximal in S , and hence we can conclude that there exists a maximal event in S labeled τ whose identifier is i.

If R ¬¬¬ →

i:α S, then by the Loop Lemma [11, Lemma 6], S ---→ i:α R. By 1., we have that S ∼ = R {e} with e maximal in R and m R (e) = i, which is what we wanted to show.

3.

For any reachable process R, from Definition 10 and the remark below it [11, Lemma 10], we have that there exists a forward-only trace O R == ⇒ ⇒ R. We consider without loss of generality the following trace:

∅ O R = R 0 ----→ 1:α1 R 1 • • • ----→ k:α k R k = R, for some k, α 1 , . . . , α k .
Using 1., we have that R j {ej } = R j-1 , for j k and m(e j ) = j. Therefore we can construct a bijection h between events e j in R and transitions t j : R j-1 ----→ j:αj R j with m(e j ) = j.

Let e be a maximal event in R and let h(e) = R j-1 ----→ j:αj R j , where

R 0 ----→ 1:α1 R 1 • • • R j-1 ----→ j:αj R j -------→ j+1:αj+1 R j+1 • • • R k-1 ----→ k:α k R k = R
S in R, then we need to prove that the identifiers of the backward transitions leading to S and S are 'matched', i.e., in bijection in f . Stated formally, we want to show that for any (R 1 , R 2 ) ∈ R with f constructed as above, then for all R 1 ¬¬¬ → i:α S 1 and R 2 ¬¬¬ → j:α S 2 such that (S 1 , S 2 ) ∈ R, {i → j} ∈ f . We show this by contradiction: suppose that we have two pairs of indices {i → j} and {i → j } in f , and that R 1 ¬¬¬ → i :α S 1 and R 2 ¬¬¬ → j:α S 2 such that (S 1 , S 2 ) ∈ R.

First, observe that all four indices , i, i , j and j , are associated to the same label α: due to the way f was constructed, following R, it cannot be the case that two transitions with different labels have their identifiers paired. Secondly, since R 2 ¬¬¬ → j:α S 2 and {i → j} is in f , it must be the case that there is a transition in θ 1 with the identifier i by construction of f . Let us denote t

i : S 1 ---→ i:α R 1 and t i : S 1 ---→ i :α R 1 .
Now, let us put the remarks on trace of Appendix B to good use. Observe that i and i cannot be concurrent in θ 1 . If they were, then in the encoding of R 1 , there would be two events-the one introduced by t i and the one introduced by t j -that are concurrent, with the same label, but that is not possible since R 1 is without auto-concurrency. Since two transitions are either concurrent or causal, it follows that either i < i or i < i5 .

As the cause cannot backtrack before the effect it follows that the case i < i is not possible. Then i < i . We now reason by cases on the order of the traces t j and t j : either j < j or j < j.

If j < j then R 1 must have already backtracked on j , which implies that the there is no j in f as we assumed. The case j < j is not possible. Note that i < i implies an order in which the pair of indices are added to the bijection, in this case the pair {i → j} occurs before {i → j } and therefore it cannot be that j < j.

From this reasoning, we get that for any R 1 ¬¬¬ → i:α S 1 and R 2 ¬¬¬ → j:α S 2 such that (S 1 , S 2 ) ∈ R, {i → j} ∈ f . We still need to show that (S 1 , S 2 , f \ {i → j}) ∈ R is a 'valid' relation. We only need to show that f \ {i → j} matches the 'right' indices in case of a backward transition, but we can simply iterate the previous reasoning until we reach (∅ O R1 , ∅ O R2 , ∅) ∈ R . This concludes this direction of the proof.

C.4 Lemmas and Proofs for Sect. 3.3

Our goal here is to prove Theorems 29 and 30, which give as an immediate corollary our main result (Corollary 31) and an interesting remark (Corollary 49). We first (Sect. C.4.1) identify isomorphisms of I-structures with l&o-p functions (Lemma 46) and then connect our previous formalism with the encoding of memories (Lemma 48). Then, using this connection and the operational correspondence detailed in Sect. 2.5, Sect. C.4.2 concludes by proving our two main theorems. Below, we abuse the notation by writing R = ( O R , x R ), for the encoding of a reversible process into a pair made of the CCS encoding of its origin and a particular configuration in it, that we call the address of R [2]. The formal connection made in Lemma 48 will justify this abuse, and the context should always make it clear which encoding we are referring to.

C.4.1 On Connecting Formalisms

We first establish a connection between isomorphisms (in Category theory) and l&o-p bijections (that are used to define (H)HPB). Then, we construct a bridge between R and our previous formalism [2].

Lemma 46. Letting x m

1 and x m 2 be the unique maximal configurations in R 1 and R 2 , there is an isomorphism f between R 1 and R 2 with f L = id iff there exists a l&o-p bijection between x m 1 and x m 2 .

Proof. Let f : R 1 → R 2 be an isomorphism: since, by hypothesis, f L = id, we can use Remark 36 to take f to be fully determined by its function between events f E , that we also write f . Then f : x m 1 → x m 2 is by definition a label-preserving bijection, as instantiating Definition 32 with f L = id precisely gives the condition of Definition 21. For two events e, e in R 1 , if e < x m 1 e it follows that for all x 1 in R 1 such that e ∈ x 1 then e ∈ x 1 . From f an isomorphism we have that f -1 : R 2 → R 1 is a well defined morphism. As f -1 preserves configurations it follows that for all x 2 in R 2 , there exists x 1 in R 1 such that f (x 1 ) = x 2 . Then for all x 2 , such that f (e ) ∈ x 2 it implies that e ∈ f -1 (x 2 ) and e ∈ f -1 (x 2 ) and finally, f (e) ∈ x 2 . Then f (e) < x m 2 f (e ), as for all x 2 , x 2 ⊆ x m 2 , since R 2 is a poset (Lemma 17). Similarly we proceed for the concurrent events, and obtain that f is an order-preserving bijection on top of being label-preserving, hence that it is l&o-p.

For the reverse direction, let f : x m 1 → x m 2 be a l&o-p bijection. All events in R 1 are present in x m 1 , since it is the maximal element in R 1 , and therefore f : R 1 → R 2 is a bijection on events. As f is label-preserving, it is the identity on the labels, and we can study only this mapping on events thanks to Remark 36. Remains to show that f preserves configurations, that is, for all

x 1 ⊆ x m 1 , f (x 1 ) = {f (e) | e ∈ x 1 } is a configuration in R 2 .
In other words, f (x 1 ) = x 2 must satisfies the properties of Definition 1.

Finiteness follows from the fact that all configurations in the encoding of an RCCS memory are finite. For Coincidence Freeness let us first note that there is a unique and finite maximal configuration x m 2 in which all distinct events are either causal or concurrent. Let us consider e 2 = e 2 two events in x 2 . Since e 2 = e 2 then either 1. e 2 x m 2 e 2 (or e 2 x m 2 e 2 but this is similar), or 2. e 2 co x m 2 e 2 . As x m 2 is the unique maximal configuration, the relations above hold for x 2 as well. In the case 1., as e 2 = e 2 then e 2 x2 e 2 . We apply the definition of causality (Definition 2) to obtain the configuration z ⊆ x 2 where e 2 ∈ z and e 2 / ∈ z as required by Coincidence Freeness. In the case 2., we use the definition of concurrency, which implies that e 2 x2 e 2 and e 2 x2 e 2 . Then there exists z ⊆ x 2 such that e 2 ∈ z and e 2 / ∈ z and moreover, there exists z ⊆ x 2 such that e 2 ∈ z and e 2 / ∈ z. To show Finite Completeness, it suffices to note that there exists a unique maximal configuration x m 2 which can be an upper bound for the union of any subset of configurations in R 2 .

To show Stability we have to show that ∀x

2 , x 2 ∈ C 2 such that ∃x 1 , x 1 ∈ C 1 , with x 1 = f -1 (x 2 ) and x 1 = f -1 (x 2 ), x 2 ∪ x 2 ∈ C 2 =⇒ x 2 ∩ x 2 ∈ C 2 . We will show that x 2 ∩ x 2 = f (x 1 ∩ x 1
) is a configuration in R 2 by exploiting the causality and concurrency relations in x 1 ∩ x 1 . As R 1 and R 2 are both posets by Lemma 17, we can w.l.o.g consider x 1 ⊆ x 1 and x 1 = x m 1 . We can assume, for i ∈ {1, 2}, that R i = 0 (otherwise the property would be trivial). Hence, there is a backward transition R i ¬¬¬ → j:α S i . Now, by the second item of Lemma 19 we have that there exists a maximal event e 1 1 in x 1 and from R 1 {e 1 1 } ⊂ S 1 , x 1 \e 1 is a configuration in R 1 . We can re-use the same reasoning for x 1 \{e 1 } in S 1 {e 2 1 } with e 2 1 maximal and R

1 {e 1 1 ,e 2 1 } ⊂ S 1 {e 1 1 } ⊂ S 1 . We have then a sequence of events e 1 1 , • • • e n 1 such that x 1 \{e 1 , • • • , e n } = x 1 ∩ x 1 .
Let us consider e 2 = e 2 two events in x 2 and as f is a bijection, let e 1 = e 1 be two events in f -1 (x 2 ) = x 1 such that f -1 (e 2 ) = e 1 and f -1 (e 2 ) = e 1 . If e 2 = e 2 then either e 2 x m 2 e 2 or e 2 co x m 2 e 2 . It follows that either e 1 x m 1 e 1 or e 1 co x m 1 e 1 , respectively, since f -1 is l&o-p as well. As x m 1 , x m 2 are the unique maximal configurations the relations above hold for x 2 and x 1 as well. We therefore have that f (e 1 1 ) is the maximal event in x 2 . Again we use the second item of Lemma 19 and as above we obtain the sequence of events f (e 1 1 ), • • • f (e n 1 ) such that f (x 1 )\f (e 1 ),

• • • , f (e n ) = f (x 1 ∩ x 1 ) is a configuration in R 2 .
For the reader familiar with event structures, a configuration x defines an event structure (x, x , ). The construction below mirrors the transformation from an event structure to a configuration structure [37]. Proof. As R is reachable there exists a forward-only trace [11,Lemma 10] 

θ : O R ----→ i1:α1 • • • ----→
in:αn R. We reason then by induction on the trace θ. As the base case is similar, we only treat the inductive case.

By induction, we have that the result holds for R, that is let h : R → x R ↓ be an isomorphism. As both R and x R ↓ result from encoding the same process R, we can consider w.l.o.g. that h L = id and h m = id. We use an argument similar to Lemma 46 to show that instead of an isomorphism, we can reason on h : x m → x R as a l&o-p bijection, where x m is the maximal configuration of R , and x R is the maximal configuration in x R ↓.

Let R ---→ By the operational correspondence between R and R (Lemma 19) there exists a memory event e m such that R = S {em} with e m maximal in S , S (e m ) = α and m S (e m ) = i.

As there is only one maximal configuration in S and as R = S {em} , it follows that x m ∪ {e m } is the maximal configuration in S .

We have then to show that if h : x m → x R is l&o-p bijection then so is h = h ∪ {e m → e} : x m ∪{e m } → x R ∪{e}. The label preserving part follows from h L = id and S (e m ) = (e) = α. To show that h is order preserving we exploit again the operational correspondences between the encoding of RCCS terms and RCCS, and between the encoding of memories and RCCS. As a corollary from [2, Lemma 6] we get that transitions are concurrent in the forward-only trace θ : O R ----→ i1:α1 • • • ----→ in:αn R ---→ i:α S iff the corresponding events are concurrent in S , that is in x S . Similarly, from Lemma 19, we get that transitions are concurrent in the forward-only trace θ iff their corresponding events are concurrent in S , and consequently in x m ∪ {e m }. Finally we can conclude that h is order preserving. Lastly we can lift h from a l&o-p bijection on configurations to an isomorphism on I-structures by endowing the configurations with the identifier set I(S) and h m = id.

We show now that G is an isomorphism between S 1 and S 2 . G preserves identifiers by definition; it preserves labels as 1 (e 1 ) = 2 (e 2 ) = α. Lastly we have to show that it preserves configurations. We can use Lemma 46 to show instead that G : x m 1 → x m 2 is a l&o-p function, where x m 1 , x m 2 are the maximal configurations in S 1 and S 2 , respectively. Also by Lemma 46 we have that F : y m 1 → y m 2 is a l&o-p function on y m 1 , y m 2 maximal configurations in R 1 and R 2 , respectively. From Lemma 19, x m 1 \{e 1 } ∈ R 1 and using Lemma 17 we have that y m 1 = x m 1 \ {e 1 }. Therefore we have that G : x m 1 → x m 2 is a l&o-p function on all events e = e 1 . Let us suppose, by contradiction, that there exists e such that e 1 co x m 1 e but that e 2 co x m 2 F (e) does not hold. Take the maximal event e with such a property. Moreover, let F (e) = e < x m 2 e 2 without loss of generality. There exists at least one sequence of events e 1 • • • e n such that e x m 1 e 1 and such that e n is maximal. For simplicity we suppose that there is only one such sequence (the general case uses the same reasoning). From Lemma 19, we have that S 1 ¬¬¬¬¬¬¬¬ → m(e n ): (e n ) S 1 .

We have F (e) < F (e 1 ) < • • • < F (e n ) and F (e n ) maximal, since F is l&o-p on all these events. As (S 1 , S 2 , g) ∈ R, we have also (S 1 , S 2 , g ) ∈ R, where g is defined as g.

We apply this reasoning until we reach the process T 1 where e is maximal. Then there exists T 2 such that (T 1 , T 2 , g ) and g is defined as g on the identifiers i, j and m(e).

Then e is maximal however e is not and we reach a contradiction: from Lemma 19 S 1 ¬¬¬¬¬¬¬ → m(e): (e) S 1 but S 2 cannot backtrack on e . It implies then that G : x m 1 → x m 2 is a l&o-p function on all events in x m 1 . For backward transitions Now let R 1 ¬¬¬ → i:α S 1 for which we have that R 2 ¬¬¬ → j:α S 2 and g : I(S 1 ) → I(S 2 ) is a bijection defined as f on I(S 1 ) ⊂ I(R 1 ), and (S 1 , S 2 , g) ∈ R.

Then we have (S 1 , S 2 , G) ∈ S with G is defined by g(m 1 (e 1 )) = m 2 (e 2 ). We only have to show that G is the restriction of F to S 1 and a bijection. The latter follows from the former, as F is itself a bijection, and that G = F S1 follows from g being a restriction of f and the way G and F are defined.

⇐ Let P 1 , P 2 be two processes and let R be a HHPB relation between them as defined in Definition 28. Then for any R 1 , R 2 two RCCS processes and f : R 1 → R 2 an isomorphism such that (R 1 , R 2 , f ) ∈ R, f is also a bijection on the event identifiers of the memories of R 1 , R 2 . The relation Proof. This is an immediate consequence of Theorem 30, as the proof does not mix forward and backward moves, it suffices to consider only the forward moves to obtain this result.

S = (R 1 , R 2 , F ) | (R 1 , R 2 , f ) ∈ R
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 1 Figure 1 Examples of I-structures

  We denote I(e) (resp I(m), I(R)) the set of identifiers occurring in e (resp. m, R), and let nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names occurring in m.

Figure 3

 3 Figure 3 I-structures for Examples 14, 15, 16 and 20, with the CCS term their underlying configuration encode in caption.

Figure 4

 4 Figure 4 Configuration structures for Examples 23 and 27

  and HHPB are two different relations, as e.g. (a | (b+c))+(a | b)+((a+c) | b) and (a | (b + c)) + ((a + c) | b) have HPB but not HHPB encodings [33] . Example 23. The encoding of the two processes a.(b + b) and (a.b) + (a.b), in Fig. 4a and 4b, are HHPB: the relation can start by mapping a to a 1 or a 2 , and then maps b 1 or b 2

  and the enrichment functor S : C → D, defined by S(E, C, ) = (E, C, , I, m), where I = {1, . . . , |E|} for |E| the cardinality of E, and m(e) = 1 if ∀e , e e i + 1 if ∃e , e e, m(e ) = i and there is no e s.t. e e e

  π 2 (e) = and π 2 (e ) = (with either π 1 (e ) = or π 1 (e ) = ). If m (e) = ⊥ (m1(π1(e)), ) , then clearly m (e) = m (e ) as π 2 (e ) = . If m (e) = m 1 (π 1 (e)), then we know that ∀e 2 ∈ E 2 , m 2 (e 2 ) = m 1 (π 1 (e)), and it is impossible that m (e ) = m (e), as π 2 (m (e )) = m 1 (π 1 (e)) cannot be.π 1 (e) = , π 2 (e) = and π 2 (e ) = (again with either π 1 (e ) = or π 1 (e ) = ). If m (e) = ⊥ m3(e) , then having m (e) = m (e ) would imply m (e ) = ⊥ m3(e ) and m 3 (e) = m 3 (e ), which would contradict that product is well-defined. Otherwise, e is a synchronization or a fork (cf. Sync. or Fork in Definition 7), and it follows that m 1 (π 1 (e)) = m 2 (π 2 (e)) and m (e) = m 1 (π 1 (e)). We prove by case analysis that m (e) = m (e ) can not be the case:If π 1 (e ) = , then m (e ) = ⊥ m3(e ) as π 1 (e) prevents from applying Extra .2. If π 1 (e ) = , m 3 (e ) = m 3 (e), which would contradict the correctness of the product.

  Indeed, suppose (e, e ) is in m | m , for e = e. Then, by Lemma 42, m(e) = m(e ), since they are both events in m . But by the definition of parallel composition of I-structures (Definition 7), (e, e ) should have been re-identified with ⊥ k and then discarded. Similarly, (e, ) can not be an event in m | m , since it should have been re-identified with ⊥ k and then discarded. Hence, we can map e in m and (e, e) in m | m and obtain our isomorphism. It follows from the definition of parallel composition of I-structures that the functions f L and f m in the isomorphism are indeed the identities.

  then there exists e ∈ E S maximal in S with m S (e) = i s.t. R ∼ = S {e} . For all R and e a maximal event in R , there is a transition R¬¬¬¬¬¬¬¬ → m R (e): R (e) S with S ∼ = R {e} .

Definition 47 (

 47 Generation of a I-structure from a configuration). Given I = (E, C, L, , I, m),for x ∈ C, the I-structure generated by x is x↓ = (x, {y | y ∈ C, y ⊆ x}, {a | ∃e ∈ x R , (e) = a}, x , {i | ∃e ∈ x R , m(e) = i}, m x ). Lemma 48. The I-structure R is isomorphic to x R ↓, where R = ( O R , x R ) is the encoding previously defined [2].

S

  be an RCCS transition. We have to show that S ∼ = x S ↓, where S = ( O R , x S ). By the operational correspondence between R and ( O R , x R ) [2, Lemma 6] there exists an event e in O R such thatR ---→ i:α S =⇒ ( O R , x R ) --→ e ( O R , x R ∪{e}),with (e) = α and S = ( O R , x R ∪{e}).

  and F (i) = j ⇐⇒ f (e 1 ) = e 2 , m 1 (e 1 ) = i, m 2 (e 2 ) = j is a B&F relation as defined in Definition 24. As above, we are using the operational correspondence of Lemma 19.Corollary 49. The relation obtained by considering only (5-6) in the definition of B&F (Definition 24) is equal to HPB on CCS terms (Definition 28).

This version of sum is used for simplifying the presentation of the LTS in Fig.

2 Traces and trace equivalences for RCCS are reminded in Appendix B: they are needed for some proofs and they are similar to their CCS's counterpart [8], but are not required to understand our results.

Similar to the operational correspondance between configuration structures and CCS processes [7, Section 3] i.e., if P --→ α Q, then P = Q {e} , where e is an event in P such that (e) = α.

This part of the lemma is not proved using the lemma we are currently proving, but the 'and only if' part does, hence the choice of postponing it after this current lemma.

Remember that we write i < k for t i < t k .

C.2 Properties of Memory Encodings and Operational Correspondence (Sections 2.3 and 2.5)

Our goal here is to show that there is an operational correspondence between R and R (Lemma 19, Sect. C.2.2), and this requires intermediate lemmas about the encoding of memories and their relation to maximal events. To prove those, we start by exhibiting some useful properties of memory encoding (Sect. C.2.1).

C.2.1 Properties of Memory Encodings

We assume given reachable processes R and S and we write O R for the origin of R, and R as (E R , C R , R , I R , m R ) and similarly for S.

To prove interesting properties about the encoding of memory, we first need this small technical lemma.

Lemma 41. For every reversible thread m P of a reachable process R, and for all i ∈ I(m), i occurs once in m.

Proof. We prove it by induction on the structure of m.

if m = ∅, then it is obvious. if m = .m , then by induction hypothesis, for all i ∈ I(m ), i occurs only once in m , and since no identifier occur in , i occurs only once in m. if m = j, λ, Q .m then there exists S such that m S ---→ j:λ j, λ, Q .m P since R is reachable and j, λ, Q .m P is a thread in it. By induction we know that for all i ∈ I(m ), i occurs once in m . We reason on the derivation tree of the transition that adds the memory event j, λ, Q and we have that for any such transition, the rule act.of Fig. 2 is applied as axiom at the top of the derivation tree. By the side condition of the rule act., we know that j / ∈ I(m ), hence that for all i ∈ I(m), i occurs once in m.

Note that the property above holds for reversible threads, and not for RCCS processes in general: we actually want memory events to sometimes share the same identifiers. Indeed, two memory events need to have the same identifiers if they result from a synchronization (i.e., the application of the syn.rule of Fig. 2) or a fork (i.e., the application of the Distribution of Memory rule of structural equivalence, Definition 9).

Lemma 42 (Uniqueness of identifiers). For all e

Proof. We proceed by structural induction on R. From Lemma 41 the only interesting case is the parallel composition, i.e. R = R 1 | R 2 . From the definition of parallel composition of I-structures (Definition 7), it follows that m R (e 1 ) = m R (e 2 ) implies e 1 = e 2 .

Lemma 17 (Memories give posets). For all R, letting x be the maximal configuration in R (Definition 2), ( R , ⊆) is a partially ordered set (poset) with maximal element x.

Proof. We proceed by induction on R.

If R is m P , we prove that m P is a partially ordered set (poset) with one maximal element by induction on m. The base case, if m is ∅, is trivial, since ∅ = 0 is a poset with one maximal element, ∅. If m is .m , then it follows by induction hypothesis, since .m = m . If m is i, α, P .m , then by induction hypothesis, m is a poset with one maximal element, and the postfixing construction used to define i, α, P .m , detailed in Definition 5, preserves that property.

As e is maximal, by Definition 18, there exists no event e in R such that e < e . From R i+1 {ei+1} = R i , for i k, we have that R i ⊆ R i+1 and by induction, R i ⊆ R k , for all i k. Then R j+i ⊆ R k and we have that e i e, for all j + 1 i k. It implies that e i is concurrent with e, for all j + 1 i k.

We use now concurrency in traces, trace equivalences and the m R/S notations from Appendix B. Consider two consecutive transitions

Using the bijection h defined above between transitions and events, we have that there exists two event e j , e j+1 in R j+2 such that h(e j ) = t j and h(e j+1 ) = t j+1 .

Suppose that e j is concurrent to e j+1 . By an induction on the structure of memories in R j+2 , we have that m Rj /Rj+1 ∩ m Rj+1/Rj+2 = ∅ which implies that there exists a transition

Recall that e i is concurrent with e, for all j + 1 i k in our trace. We can now use the trace equivalence [11, Definition 9] reminded in Appendix B, and use the previous remark repeatedly to re-organize our original trace as follows:

The core idea being that we can 'postpone' the transition that will create the event e in the encoding of R, by flipping it with the other transitions, and have it become the last transition that leads to the same R.

We can now use the Loop Lemma [11, Lemma 6] to 'reverse' the last transition and get that R ¬¬¬¬ → j:αj R k . Using 2. on this transition, we have that R k = R {e} .

C.3 Proof for Sect. 3.2

Theorem 26 (Collapsing B&F and SB&F). If R 1 and R 2 are without auto-concurrency, then they are B&F iff they are SB&F.

Proof. Let R 1 , R 2 be two reversible processes without auto-concurrency. We want to show that

that there exists f a bijection between I(R 1 ) and

For 1., there is nothing to prove, since we are dropping a requirement, the existence of the bijection.

For 2., we first note that there exists forward-only traces from ∅ O R1 to R 1 [11, Lemma 10]. We pick one, θ 1 , and construct the bijection f between I(R 1 ) and I(R 2 ) using it. We start by letting

and we let (R 1 , R 2 , {i → j}) ∈ R . We iterate this construction until we obtain a bijection f and let (R 1 , R 2 , f ) ∈ R . Now, we need to show that (R 1 , R 2 , f ) ∈ R is a valid relation, and for this we must show that it can accommodate the forward and backward transitions. That the bijection f can be extended in case of forward transitions from R 1 or R 2 is obvious, using R. The more difficult part of the proof concerns the backward transition, which requires to show that f is 'right'. Indeed, if R 1 or R 2 does a backward transition to a term S, and if S is paired with

C.4.2 Proofs of Theorems 29 and 30

Theorem 29 (Equivalences). P 1 and P 2 are HHPB (resp. HPB) iff P 1 and P 2 are.

Proof. Let us prove the HHPB case, the other case being similar, and actually simpler.

⇒ Let R RCCS be a HHPB between P 1 and P 2 (Definition 28). We show that the following relation

is a HHPB between P 1 and P 2 . We first show that for any tuple (

For a tuple (R 1 , R 2 , F ) ∈ R RCCS with F : R 1 → R 2 an isomorphism, we get, by Lemma 46, that we can instead consider F : x m 1 → x m 2 to be a l&o-p bijection between the maximal configurations x m 1 , x m 2 . The functor F maps isomorphisms on identified structures to isomorphisms on configuration structures, by Lemma 35, and therefore f = F(F ) : F(x m 1 ) → F(x m 2 ). Moreover, x 1 and x 2 are the maximal configurations in x 1 ↓ and x 2 ↓, by Definition 47. By Lemma 48, R i ∼ = x i ↓ which implies that F(x m i ) = x i , for i ∈ {1, 2}. Thus f = F(F ) is well defined and indeed, a l&o-p bijection. The rest of the proof follows the same structure as in [2, Proposition 6]. Note that (∅, ∅, ∅) ∈ R: indeed (∅ P 1 , ∅ P 2 , ∅) ∈ R RCCS and

To show that R is a HHPB we have to show that if x 1 --→ e1 y 1 (or x 1 ¬¬ → e1 y 1 ) then there exists y 2 such that x 2 --→ e1 y 2 (or x 2 ¬¬ → e2 y 2 respectively) and such that (y

Let x 1 --→ e1 y 1 , hence by definition, y 1 = x 1 ∪{e 1 }. From the correspondence between RCCS and their encodings [2, Lemma 6], it follows that R 1 ---→ i:α S 1 such that S 1 = ( P 1 , y 1 ).

As (R 1 , R 2 , F ) ∈ R RCCS and as R 1 ---→ i:α S 1 , it follows that there exists a transition

Again from the correspondence between R 2 and R 2 we have that x 2 --→ e2 y 2 such that y 2 = x 2 ∪ {e 2 } and S 2 = ( P 2 , y 2 ). Then we show that (y 1 , y 2 , F(F )) ∈ R. The only missing argument is that F(F ) = f ∪ {e 1 → e 2 }. Note that, again using Lemma 46, we can consider F : x m 1 → x m 2 and F : y m 1 → y m 2 to be l&o-p bijections on the maximal configurations of R 1 , R 2 and S 1 , S 2 , respectively. From the definition of postfixing and parallel composition, in Definitions 5 and 7, we have that

} by which we conclude. We treat similarly the cases where x 2 does a transition, or when the transitions are backwards. ⇐ Let R CONF be a HHPB between P 1 and P 2 . We show that the following relation

For f : x 1 → x 2 a l&o-p bijection, and for two functions m 1 :

and m 2 : x 2 → I 2 (from R 2 ) then there exists a unique function f m :

, for all e ∈ x 1 . This follows from Collision Freeness in the definition of identified structures and from f being a bijection. We write then

. Moreover, as in the first case, we derive that x 1 , x 2 are maximal in R 1 , R 2 , respectively. We use Lemma 46 to conclude that F : R 1 → R 2 is an isomorphism. We have that (∅ P 1 , ∅ P 2 , ∅) ∈ R as (∅, ∅, ∅) ∈ R CONF and ∅ P i = ( P i , ∅), for i ∈ {1, 2}.

We suppose now that (R

To show that R is a HHPB we have to show that if R 1 ---→ i:α S 1 (or R 1 ¬¬¬ → i:α S 1 ) then there exists S 2 such that R 2 ---→ j:α S 2 (or R 2 ¬¬¬ → j:α S 2 respectively) and such that (S 1 , S 2 , F ) ∈ R for some F .

Let R 1 ---→ i:α S 1 . We use again the correspondence between RCCS and their encodings [2,

Lemma 6] from which we have that there exists e 1 and y 1 = x 1 ∪ {e 1 } such that x 1 --→ e1 y 1

and S 1 = ( P 1 , y 1 ). As (x 1 , x 2 , f ) ∈ R CONF it implies that there exists e 2 , y 2 and

Again, from the correspondence between RCCS and configuration structures we have that, from x 2 --→ e2 y 2 , there exists S 2 such that R 2 ---→ j:α S 2 with S 2 = ( P 2 , y 2 ). From

We conclude therefore that (S 1 , S 2 , F ) ∈ R.

Similarly we show the cases where R 1 does a backward transition, or if R 2 does a forward or backward transition.

Theorem 30 (Equivalence (contd)). P 1 and P 2 are B&F iff they are HHPB.

Proof. ⇒ P 1 , P 2 be two processes and let R be a B&F relation between them as in Definition 24. Then for any (R 1 , R 2 , f ) ∈ R, R 1 , R 2 are two RCCS processes and f : I(R 1 ) → I(R 2 ) is a bijection on their identifiers. Letting R i = (E i , C i , L i , i , I i , m i ), for i ∈ {1, 2}, we show that the relation

is a HHPB relation as in Definition 28. Let us start by observing that F = (F E , F L , F C , F m ) is correctly defined as an isomorphism between R 1 and R 2 by our condition. We start by letting F m = f , and observe that by Lemma 42, no two events can have the same identifier in R 1 , and similarly for R 2 : hence having the F m component is enough to define the F E component, and they are both isomorphisms. By Definition 24, no two identifiers can be paired by f unless they have the same label: hence, 1 (e) = 2 (F E (e)) iff F L ( 1 (e)) = 2 (F E (e)), which forces F L = id. We see that F respects the conditions of Definition 32, and that by Remark 36, we can simply write F for F E in the following. We prove that S is a HHPB relation as in Definition 28 by induction on the processes R 1 and R 2 , as any process reachable from P 1 has to be in R (and in S) and vice versa. The base case (∅ P 1 , ∅ P 2 , ∅) ∈ S is trivial. Suppose that for (R 1 , R 2 , f ) ∈ R, we have that (R 1 , R 2 , F ) ∈ S.

For forward transitions Now let R 1 ---→ i:α S 1 for which we have that R 2 ---→ j:α S 2 and g : I(S 1 ) → I(S 2 ) is a bijection defined as f on I(R 1 ) ⊂ I(S 1 ) and g(i) = j. Let e 1 ∈ S 1 such that m 1 (e 1 ) = i and e 2 ∈ S 2 such that m 2 (e 2 ) = j. Then G = F ∪ {e 1 → e 2 } is defined by g(m 1 (e 1 )) = m 2 (e 2 ), and thus (S 1 , S 2 , G) ∈ S.