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Abstract

This paper aims to describe a statistical model of wrapped densities for bi-invariant
statistics on the group of rigid motions of a Euclidean space. Probability distributions
on the group are constructed from distributions on tangent spaces and pushed to the
group by the exponential map. We provide an expression of the Jacobian determinant
of the exponential map of SE(n) which enables the obtaining of explicit expressions of
the densities on the group. Besides having explicit expressions, the strengths of this
statistical model are that densities are parametrized by their moments and are easy to
sample from. Unfortunately, we are not able to provide convergence rates for density
estimation. We provide instead a numerical comparison between the moment-matching
estimators on SE(2) and R3, which shows similar behaviors.

keywords: wrapped distributions; rigid motions; Euclidean groups; differential of the
exponential; moment-matching estimator; density estimation; sampling

1 Introduction

This work is an extended version of the conference paper [1], focused on SE(2). We provide
here a formula for SE(n) with arbitrary n ≥ 2, and a numerical evaluation of the convergence
of the moment-matching density estimator on SE(2).

Probability density estimation problems generally fall in one of two categories: estimating
a density on a Euclidean vector space or estimating a density on a non-Euclidean manifold.
In turn, estimation problems on non-Euclidean manifolds can be divided in different cat-
egories depending on the nature of the manifold. The two main classes of non-Euclidean
manifold encountered in statistics are Riemannian manifolds and Lie groups. On Rieman-
nian manifolds, the objects studied in statistics should be consistent with the Riemannian
distance. For instance, means of distributions are defined as points minimizing the average
square Riemannian distances. On a Lie group, the objects should be consistent with the
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group law. Direct products of compact Lie groups and vector spaces for examples belong to
both categories, they admit a Riemannian metric invariant by left and right multiplications.
However, in full generality, Lie groups do not admit such nice metrics, hence the need for
statistical tools based solely on the group law and not on the Riemannian distance.

The definition of a statistical mean on Lie groups was addressed by Pennec and Ar-
signy in [2] where authors define bi-invariant means on arbitrary Lie groups as exponential
barycenters [3]. Once the bi-invariant mean is defined, higher order bi-invariant centered
moments can be defined in the tangent space at the mean. We build on this notion of
moments to address the problem of constructing statistical models on SE(n), the group of
direct isometries of Rn. The wrapped distributions model we propose has several advantages.
First, it is stable under left and right multiplications. Second, densities have explicit expres-
sions and are parameterized by their mean and covariance rather than their concentration
matrix as for normal distributions defined in [4]. Third, the densities are easy to sample
from. To do so, we construct wrapped densities on SE(n) similar to the densities defined
in [11, 5, 6, 7, 9, 10, 8] on Riemannian manifolds. Similar types of probability distributions
have already been considered for robotics applications on SE(3) to model uncertainty in
motion estimation, see for instance [12].

Harmonic analysis is another well-known approach to density estimation, see [13] for
SE(2) and [14, 16, 15] on other manifolds. Beside the technicalities and numerical diffi-
culties introduced by harmonic analysis on non-abelian and non-compact groups, the main
motivation for using wrapped distributions over harmonic analysis techniques, is that it
enables the definition of parametric models.

This work is based on two facts. First, the exponential map can be translated from
the identity element to any point of the group regardless of the choice of left or right
multiplication. This property was already of primary importance in the construction of
the bi-invariant mean [2] and enables the definition of bi-invariant estimation procedures.
The second important fact is that the Jacobian of the exponential map on SE(n) admits a
closed form expression which we compute in Section 3.2. This Jacobian provides an easy way
to define probability densities with explicit expressions on the group by pushing densities
from tangent spaces using the exponential map.

Unfortunately, the literature on convergence of bi-invariant moments on Lie group is still
very limited. Therefore, we were not able to characterize the convergence of estimators using
the proposed model. Instead, we compared numerically the convergence of the moment-
matching estimator on SE(2) and on R3.

The paper is organized as follows. Section 2 describes the group of direct isometries of
the Euclidean space. Section 3 includes relevant properties of the exponential mapping and
the computation of the Jacobian determinant. Section 4 recalls the definitions of the first
and second centered moments on a Lie group. A statistical model together with a sampling
and an estimation procedure is introduced in Section 5. Section 6 concludes the paper.

2



2 Euclidean Groups

For a condensed introduction to Lie group theory for robotics, see [17], and for several
relevant calculations on low-dimensional rigid motions, see the series of notes [18, 19, 20].

SE(n) is the set of all direct isometries of the Euclidean space Rn. The composition law
of maps makes SE(n) a group. For each element g of SE(n) there are a unique rotation R
and a unique vector t such that

g(u) = Ru+ t,

hence the isometry g can be represented by the couple (R, t). The group structure
of SE(n) is not a direct product between the special orthogonal group and the group of
translations, but a semi direct product with translations as the normal subgroup:

SE(n) = SO(n) nφ Rn

(R, t)(R′, t′) = (RR′, φR(t′) + t)

where we simply have φR = R. Let Ψ(R,t) denote the conjugation by (R, t). A short
calculation gives

Ψ(R,t)(R
′, t′) = (R, t)(R′, t′)(R, t)−1 = (RR′Rt,−RR′Rtt+Rt′ + t).

Recall that AdR,t = d
(
Ψ(R,t)

)
e
. Hence, after unfolding the elements of the Lie algebra

se(n) into column vectors, the matrix representation of AdR,t is given by

Ad(R,t) :

(
AdR 0
C R

)
(1)

where C is a n by n(n−1)
2 matrix, AdR is the adjoint representation of rotations. The

structure of this adjoint matrix implies first that SE(n) is unimodular, i.e., admits a bi-
invariant measure and the derivative of the exponential admits an explicit expression as we
will see in Section 3.2. To see that SE(n) is unimodular, consider a left-invariant volume
form ω. The volume form is bi-invariant if and only if

dLg ◦ dRg−1(ωe) = ωe,

or equivalently det(dLg ◦ dRg−1) = det(Adg) = 1. Since SO(n) is compact, it admits a
bi-invariant measure. Hence det(AdR) = 1, and we have

det(Ad(R,t)) = det(AdR).det(R) = 1.

We note µG the bi-invariant measure associated with ω. The fact that SE(n) is unimodular
has a significant impact on the definition of statistical tools: it is possible to manipulate
densities of probability distributions with respect to a canonical measure.
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A convenient way to represent elements of SE(n) is to identify the isometry (R, t) with
the matrix (

R t
0 1

)
∈ GLn+1(R).

It is easy to check that the composition of isometries corresponds to the matrix mul-
tiplication. SE(n) is thus seen as a Lie subgroup of GLn+1(R). Our density modelling
framework is intrinsic and does not depend on a specific choice of coordinates. However, it
is useful for some computations to set a reference basis. The tangent space at the identity
element, noted TeSE(n), is spanned by the matrices of the form

Ai,j =

(
Ei,j − Ej,i 0

0 0

)
and Ti =

(
0 ei
0 0

)
where Ei,j is the n × n matrix with a 1 at index (i, j) and zeros elsewhere and ei is the
i-th basis vector of Rn. Let Be = (Ai,j)

⋃
(Ti) be the reference basis of TeSE(n). Be can

be translated by left multiplication to make a left-invariant field of basis B. Depending on
context A will denote an n× n skew-symmetric matrix or its embedding in the Lie algebra
of GLn+1, and tangent vectors will be noted with the letter u: u = (A, T ).

Recall that a skew-symmetric matrix can be block-diagonalized with 2 by 2 rotations on
the diagonal, followed by a 0 when the dimension is odd. For each n by n skew-symmetric
matrix A, we note θ1, . . . , θbn

2
c the set of angles of the 2 by 2 rotations.

The identification of SE(n) with a Lie subgroup of GLn+1(R) makes the computation
of the exponential map easy: the group exponential is simply the matrix exponential. Let
U be the subset of TeSE(n) defined by

U = {u = (A, T )| ∀i, θi ∈ [−π, π[}.

It can be checked that the exponential map on U is a bijection. Therefore, we can define
the logarithm on SE(n) as the inverse of the exponential on U .

3 Bi-Invariant Local Linearizations

Moments and densities are defined using local linearizations of the group. Hence, to obtain
bi-invariant statistics, the linearization must be compatible with left and right multiplica-
tions. This section describes why the exponential map provides such linearizations from
arbitrary elements.

Though we do not use this formalism, the construction of the exponential at g can be
viewed in the general setting of Cartan connections on Lie groups. The exponential at g is
then the exponential of a bi-invariant connection, see [21, 23, 22].
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3.1 The Exponential at Point G

Since the exponential maps the lines of the tangent space at e to the one parameter subgroups
of SE(n), it is a natural candidate to linearize the group near the identity. To linearize
the group around an arbitrary element g, it is possible to move g to the identity by a
multiplication by g−1, use the linearization at identity to obtain a tangent vector in TeSE(n),
and map the resulting tangent vector to TgSE(n) with a multiplication by g. Fortunately,
we can check that this procedure does not depend on a choice of left or right multiplication.
Recall that on a Lie group,

g exp(u)g−1 = exp(Adg(u)) = exp(dLg(dRg−1(u))) = exp(dRg−1(dLg(u))),

where dLg and dRg are the differentials of the left and right multiplication. This property
enables the transport of the exponential application to any element of the group without
ambiguity on the choice of left or right multiplication,

expg : TgSE(n)→ SE(n)

u 7→ expg(u) = g. exp
(
dLg−1u

)
= exp

(
dRg−1u

)
g,

see Figure 1 for a visual illustration.

TgSE(n)

TeSE(n)

SE(n)

SE(n)

TeSE(n)

SE(n)

dL−1
g

expe

Lg

dR−1
g

expe

Rg

expg

Figure 1: Commutation of the Adjoint/conjugation and the exponential.

Note Ug ⊂ TgSE(n) = dLg (U) the injectivity domain of expg. The logarithm logg :
SE(n)→ Ug becomes

logg0(g) = dLg0
(
log
(
g−1

0 g
))

(2)

= dRg0
(
log
(
gg−1

0

))
. (3)
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We now have a linearization of the group around an arbitrary g ∈ SE(n). The bi-
invariant nature of the linearization is summarized in Figure 2. Independence from the
choice of left or right multiplication in the definition of the exponential at an arbitrary point
was the key ingredient of the definition of the bi-invariant mean in [2]. It is again a key
property in our statistical model.

Figure 2: Bi-invariant linearization.

The strength of the exponential map is that it turns some general algebra problems into
linear algebra. Once the space has been lifted to a tangent space, the problem of left and
right invariances is reduced to the study of the commutation with the differentials of left
and right multiplications. Since the tangent spaces do not have a canonical basis or scalar
product, the manipulations we perform such as computing a mean, a covariance or estimating
a density should not depend on the choice of a particular coordinate system. Hence if these
manipulations commute with all the linear invertible transformations, in particular with the
left and right differentials, they induce bi-invariant operations.
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3.2 Jacobian Determinant of the Exponential

A measure µ on TgSE(n) can be pushed forward to the group using the exponential at g.
This push-forward measure is noted expg∗(µ). Since expg commutes with the right and left
actions, so does the push-forward of measures. To obtain expressions of the densities on the
group, it is necessary to compute the Jacobian determinant of the exponential, see Figure 3.

Figure 3: To push a density from a tangent space to the group, it is necessary to know the
ratios between red and blue areas.

Assume µ has a density f with respect to a Lebesgue measure of TgSE(n) and that its
support is contained in an injectivity domain Ug of expg. The density fSE(n) of the measure
pushed on the group is given by

fSE(n)(expg u) =
d expg∗(µ)

dµG
(expg(u)) =

1

| det(d(expg)u)|
f(u)

where d(expg)u is the differential of expg at the vector u expressed in the left-invariant
reference field of basis. Since SE(n) is unimodular, i.e., µG is bi-invariant, the density of
the pushed forward measure also commutes with the left and right translations of SE(n).

We now compute this Jacobian determinant at the identity element. For the sake of
notation, we drop the index e and let d expu be the differential of the group exponential
at the tangent vector u expressed in the bases Be and Bexp(u). d expu has the following
expression (see [24] and [20]):

d expu = dLexpu
◦

∑
k≥0

(−1)k

(k + 1)!
adku

 .

Since det(dLexpu
) = 1, the Jacobian determinant of the exponential is given by the determi-

nant of the series. Fortunately, the adjoint action can be diagonalized and the determinant
can be computed explicitly. Recall that adu=(A,T ) = d(Ad(R,t))(R,t)=e(A, T ). Using Equa-
tion(1) we have that the matrix of adu has the following form
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adu :

(
adA 0
D A

)
, (4)

where on the left side A is an n× n skew-symmetric matrix, adA is the adjoint map in the
Lie algebra of skew-symmetric matrices, and D is an n(n−1)

2 by n matrix. Since the matrix
of ad(A,T ) is block triangular,

det(d expu) = det

∑
k≥0

(−1)k

(k + 1)!
adkA

 .det

∑
k≥0

(−1)k

(k + 1)!
Ak

 .

Both determinants are obtained by diagonalizing A and adA. Take a d × d real skew-
symmetric matrix M . There is an unitary matrix P such that M = PDP̄ t, where D is
diagonal with eigenvalues iλ1,−iλ1, . . . , iλb d

2
c,−iλb d

2
c with λi ∈ R followed by a 0 when d is

odd. For λ 6= 0 we have,

∑
k≥0

(−1)k

(k + 1)!
λk =

1− e−λ

λ
,

and when λ = 0, the left term equals 1 and the right term can be extended by continuity. The
right terms are the eigenvalues of the series in M . Hence using the fact that the determinant
of a diagonalizable matrix is the product of its eigenvalues we have

det

∑
k≥0

(−1)k

(k + 1)!
Mk

 =
∏
i

1− e−iλi

iλi

1− eiλi
−iλi

=
∏
i

2
1− cos(λi)

λ2
i

. (5)

A is by definition skew-symmetric. Since the adjoint representation of SO(n) is compact,
there is a basis of matrices such that adA are skew-symmetric. Hence, Equation (5) enables
the computation of det(d expu) from the eigenvalues of A and adA. The eigenvalues of adA
are usually obtained by computing the roots of the complexified Lie algebra of the group
SO(n), see [25, chap. 3, sec. 8]. We provide a direct computation in appendix. If n is even,
we have then

det(d expu) =
∏
i

2
1− cos(θi)

θ2
i

·
∏
i<j

(
4 · 1 + cos(θi + θj)

(θi + θj)2
· 1 + cos(θi − θj)

(θi − θj)2

)
(6)

and for n odd,

det(d expu) =

(∏
i

2
1− cos(θi)

θ2
i

)2

·
∏
i<j

(
4 · 1 + cos(θi + θj)

(θi + θj)2
· 1 + cos(θi − θj)

(θi − θj)2

)
. (7)
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Let Jg(u) = |det(d expg,u)|. Since expg(u) = g · expe
(
dLg−1u

)
,

d expg,u = dLg ◦ d expe,dLg−1 (u) ◦dLg−1 .

Furthermore,

dLg−1 (Bg) = Be and Bexpg(u) = dLg

(
Bexpe(dLg−1 (u))

)
.

Hence expressed in the basis Bg and Bexpg(u), the determinant of d expg,u is given by

Jg(u) = Je
(
dLg−1(u)

)
.

When all tangent vectors are expressed in the left-invariant basis, it is possible to drop
the subscripts and write

J(A, T ) = J(θ1, . . . , θbn
2
c, T ) =

∣∣∣det(d exp(A,T ))
∣∣∣ . (8)

On SE(2) we simply have

J(θ, T ) =

∣∣∣∣21− cos(θ)
θ2

∣∣∣∣ . (9)

4 First and Second Moments of a Distribution on a Lie Group

4.1 Bi-Invariant Means

Bi-invariant means on Lie groups have been introduced by Pennec and Arsigny, see [2]. An
element ḡ in a Lie group G is said to be a bi-invariant mean of g1, . . . , gk ∈ G or of probability
distribution µ on G, if ∑

i

logḡ(gi) = 0 or

∫
G

logḡ(g)dµ(g) = 0.

Observe that ḡ is not necessarily unique, see [2, 26, 27] for more details. Using Equation (2),
it is straightforward to check that the mean is compatible with left and right multiplications:

dLg′

(∑
i

logg(gi)

)
=
∑
i

logg′g(g
′gi) and dRg′

(∑
i

logg(gi)

)
=
∑
i

loggg′(gig
′),

Hence if
∑

i logḡ(gi) = 0 we also have
∑

i logg′ḡ(g
′gi) = 0 and

∑
i logḡg′(gig

′) = 0.
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4.2 Covariance in a Vector Space

In this section, the bold letter u represents a vector and the letter u its coordinate in a basis.
Let us recall the definition of the covariance of a distribution on a vector space in a coordinate
system. Let e1, . . . , en be a basis of the vector space V and µ a distribution on V . The
covariance of µ in V is defined by

Σ = Eµ((u− µ̄)(u− µ̄)t) =

∫
V

(u− µ̄)(u− µ̄)tdµ(u),

where u and µ̄ are the coordinate expressions of the vector u and the average of µ and Eµ()
is the expectation with respect to µ.

Let K : R+ → R+ be such that K(‖x‖) is a probability density on Rn whose covariance
matrix in the canonical basis is the identity matrix, and µ be the distribution on V whose
density is

dµ

dλe
(u) =

1

det
(√

Σ
)K (√utΣ−1u

)
. (10)

where λe is the Lebesgue measure induced by e1, . . . , en. It is easy to check that the
covariance of µ is Σ.

Since the tangent space of a Lie group does not have a canonical basis, it is sometimes
useful to define objects independently of coordinates. The coordinate free definition of the
covariance becomes

Σ =

∫
V

(u− µ̄)⊗ (u− µ̄)dµ(u).

Recall that V ⊗ V is naturally identified with the space of bilinear forms on V ∗ . Let
B∗ be the bilinear form on V ∗ associated with Σ. If B∗ is positive definite, it induces an
isomorphism between V ∗ and V and is then naturally identified with a bilinear form B on
V . The definition µ in Equation (10) becomes

dµ

dλB
(u) = K

(√
B (u,u)

)
,

where λB is the Lebesgue measure on V induced by B. In this formulation it clearly appears
that µ does not depends on a basis.

4.3 Covariance of a Distribution on SE(N)

Let µ be a distribution on SE(n) such that its bi-invariant mean ḡ is uniquely defined. The
covariance tensor of µ is defined as

Σ = Eµ
(
logḡ(g)⊗ logḡ(g)

)
=

∫
SE(n)

logḡ(g)⊗ logḡ(g)dµ(g) ∈ TḡSE(n)⊗ TḡSE(n),
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see Figure 4 for a visual illustration.

Figure 4: Covariance of an empirical measure.

Again, using Equation (2) and the bi-invariance of the mean, the compatibility of the
covariance with left and right multiplication is straightforward. Note g · Σ and Σ · g the
pushforwards by left and right multiplication by g of the tensor Σ. We have then

g′ ·Σ = Eµ
(
dLg′(logḡ(g))⊗ dLg′(logḡ(g))

)
= Eµ

(
logg′ḡ(g′g)⊗ logg′ḡ(g′g)

)
= Σ′

where Σ′ is the covariance of the distribution g′ · µ, the push-forward of µ by Lg′ . The
same goes for right multiplications. However, it is important to note that for a covariance
Σ defined on TgSE(n), pushing the covariance to the tangent space at identity using left
and right multiplication usually gives different results:

g−1 ·Σ = Adg−1

(
Σ · g−1

)
6= Σ · g−1,

where Adg(·) is interpreted as the map on tensors induced by the adjoint representation.

For two distributions µ1 and µ2 with different means, their covariance tensors are objects
defined in different tangent spaces. The collection of all these spaces form the tangent bundle
TSE(n), and covariances are identified to points in the tensor bundle TSE(n)⊗ TSE(n).

In the reference field of basis B, the covariance Σ has a matrix Σ given by

Σ =

∫
SE(n)

logḡ(g) logḡ(g)tdµ(g).
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In principal geodesic analysis, the matrix Σ is sometimes referred to as a linearized
quantity in contrast to the exact principal geodesic analysis, see [28].

5 Statistical Models for Bi-Invariant Statistics

5.1 The Model

Let K : R+ → R+ be such that

(i)
∫
Rn K(‖u‖)du = 1

(ii)
∫
Rn uu

tK(‖u‖)du = I, I being the n× n identity matrix

(iii) K(x > a) = 0 for some a ∈ R.

Condition (i) imposes that K(‖u‖) is a probability density on Rn, condition (ii) that the
covariance matrix is the identity matrix and condition (iii) that it has a bounded support.

The statistical model is defined by pushing densities of the form K(‖u‖) from tangent
spaces to the group via the exponential, where the Euclidean norms on tangent spaces are
parameters of the distributions. To avoid summing densities over the multiple inverse images
of the exponential map, it is convenient to deal with densities K(‖u‖) whose support are
included in injectivity domains, hence the (iii) requirement. Let Cg be the set of covariance
matrices compatible with the injectivity domain Ug,

Cg =
{

Σ|∀u /∈ Ug, utΣ−1u > a
}
,

see Figure 5. When covariance matrices are expressed in the left-invariant reference basis,
the set Cg is the same for all g and the subscript can be dropped.

Figure 5: Σ /∈ Cg.

12



When Σ ∈ Cg, the support of the probability distribution µ on TgSE(n) defined by

dµ̃

dλg
(u) =

1√
det(Σ)

K
(√

utΣ−1u
)
,

where µ̃ is the lift of µ by logg, is contained in Ug. Here λg denotes the Lebesgue measure
of TgSE(n). The density of the push-forward of µ is then

f(expg(u)) =
1

J(u)
√

det(Σ)
K
(√

utΣ−1u
)
, (11)

or, expressed at g′ ∈ SE(n),

f(g′) =
1

J(logg(g
′))
√

det(Σ)
K
(√

logg(g
′)tΣ−1 logg(g

′)
)
, (12)

where J is given in Equation (8). The set of such probability densities when g and Σ
vary form a natural parametric statistical model:

M = {fg,Σ : g ∈ SE(n) and Σ ∈ Cg} .

The commutation relations of Section 3.1 imply that M is closed under left and right
multiplications. The fact that g and Σ are the moments of fg,Σ plays a major role in the
relevance of the model M. This fact holds when Σ is small enough, a more precise result
should follow in a future work.

5.2 Sampling Distributions of M

An advantage of constructing distributions from tangent spaces is that they are easy to
sample: it suffices to be able to sample from the probability density p on R proportional
to K(x), p ∝ K. Recall that the dimension of tangent spaces is d = n(n+1)

2 . Let vi =
(x1,i, . . . , xd,i)

t be random column vectors with xk,l i.i.d. reals distributed according to p.
Then the vectors

ui = Σ
1
2 vi

are i.i.d. of density 1√
det(Σ)

K
(√

utΣ−1u
)

on Rd, and the points

gi = expg(ui)

are i.i.d. according to the density fg,Σ on SE(n).
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5.3 Evaluation of the Convergence of the Moment-Matching Estimator

All the experiments in this section were performed using the Python package geomstats,
see [29], available at http:geomstats.ai. Let g1, . . . , gk be points in SE(n) with a unique
bi-invariant mean ĝ and such that the empirical covariance

Σ̂(g1, . . . , gk) =
1

k

∑
i

logĝ(gi) logĝ(gi)
t

is contained in Cĝ and that the moments of fĝ,Σ̂µG are (ĝ, Σ̂). The compatibilities with left
multiplications,

fg′g,g′Σ = g′ · fg,Σ and Σ̂(g′ · g1, . . . , g
′ · gk) = g′.Σ̂(g1, . . . , gk),

and right multiplications, implies that the maximum likelihood and the moment-matching
estimators are bi-invariant.

On the one hand, finding the maximum likelihood estimation when g1, . . . , gk are i.i.d.
requires an optimization procedure. On the other hand, matching moments is straightfor-
ward, provided that the moments of fḡ,Σ are (ḡ,Σ). In most cases, this moment-matching
estimator is expected to have reasonable convergence properties; however there are currently
no theoretical results on the convergence of bi-invariant means and covariance on Lie groups.
Hence for now it is only possible to provide empirical convergence on specific examples. Let

K(x) =
3

4π53/2
1[0,
√

5](x), Σ1 =

1 0 0
0 1 0
0 0 1

 , Σ2 =

0 −1 0
1 0 0
0 0 1

0.5 0 0
0 0.2 0
0 0 1

 0 1 0
−1 0 0
0 0 1

 .

(13)
The function K verifies i),ii) and ii) of Section 5.1. Since

√
5 < π

2 , Σ1 and Σ2 are admissible
covariances, Σ1,2 ∈ C. Σ2 is chosen such that it correlates the rotation and translation
coordinates.

Given a set of i.i.d. samples g1, . . . , gk of the density fe,Σ, the estimated density of the
moment-matching estimator is fĝ,Σ̂. For the sake of notations, we drop subscripts and simply

write f and f̂ . To characterize the convergence of the estimator, we compare the convergence
of f̂ on SE(2) with the analogous moment-matching estimator on TeSE(2) ∼ R3 using the
samples log(g1), . . . , log(gk).

Any Lp distance between densities provides a way to evaluate the convergence in a bi-
invariant way. The L1 is particularly meaningful in the context of probabilities and presents
the advantage of being independent from a reference measure. Therefore, we evaluated the
expectation of the L1 distance to f :

ek = Ef

(∫
SE(2)

|f(g)− f̂(g)|dµG(g)

)
,
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and the Euclidean analogous, where k is the number of samples of f . The integrals over
SE(2) can be estimated using a Monte-Carlo sampling adapted to the distributions. Indeed,∫ ∣∣∣f − f̂ ∣∣∣ dµG =

∫
S

∣∣∣∣∣1− f̂

f

∣∣∣∣∣ fdµG +

∫
Sc

f̂dµG (14)

= Ef

(∣∣∣∣∣1− f̂

f

∣∣∣∣∣
)

+ 1− Ef

(
f̂

f

)
(15)

≈ 1 +
∑
i

(∣∣∣∣∣1− f̂

f
(ui)

∣∣∣∣∣− f̂

f
(ui)

)
(16)

where S is the support of f and the (ui) are i.i.d. samples of f . The L1 distances between f
and f̂ are estimated using 5000 Monte-Carlo samples, and the expectation of the L1 distance
is estimated using 200 estimates f̂ . Figure 6 depicts the decay of the expected L1 distance
with the number of samples for the SE(2) and R3 cases using the covariance Σ1 and Figure 7
using the covariance Σ2. For a given covariance Σ, the error decay on SE(2) and R3 seem
to be asymptotically related by a multiplicative factor close to 1. Future work should focus
on gaining insights into the phenomena underlying the error decay in the general case.
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Figure 6: L1 errors and their ratios on SE(2) and TeSE(2) ∼ R3 for the covariance Σ1, see
Equation (13).
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Figure 7: L1 errors and their ratios on SE(2) and TeSE(2) ∼ R3 for the covariance Σ2, see
Equation (13).
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6 Conclusion and Perspectives

In this paper, we have described a statistical modelM of densities for bi-invariant statistics
on SE(n). Even though we do not provide convergence rates, we showed experimentally on
an example that the density estimation on SE(2) behaves similarly to the estimation on R3.
Further works will focus on a deeper analysis of the performance of the moment-matching
estimator, on proposing detailed algorithms to estimate densities in a mixture model, and
on generalizing the construction to other Lie groups.
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der the European Union’s Horizon 2020 research and innovation program (grant agreement
G-Statistics No 786854).

Acknowledgments: Authors would like to thank the anonymous reviewers for their helpful
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A Eigenvalues of adA

Let A be the set of skew-symmetric n × n matrices. Let A ∈ A and adA : X ∈ A 7→
AX −XA ∈ A. We aim at computing the eigenvalues of adA. Since A is in A, there exists
an orthogonal matrix P such that D = P−1AP is a matrix with vanishing entries outside

of bn2 c 2 by 2 matrices Aj =

(
0 −aj
aj 0

)
along the diagonal. If n is even, the eigenvalues of

adA are the numbers

i(±aj ± ak), 1 ≤ j < k ≤ n

2

0, with multiplicity
n

2
.

If n is odd the eigenvalues of adA are the numbers

i(±aj ± ak), 1 ≤ j < k ≤ n− 1

2

±aj , 1 ≤ j ≤ n− 1

2
,

0, with multiplicity
n− 1

2
.

Proof. Let gP (X) = PXP−1. Since gP is invertible and that adA = gP ◦ adD ◦ g−1
P , adA

and adD have the same eigenvalues. Consider first the case n odd. Let X ∈ A, X can

18



be decomposed in n−1
2 ×

n−1
2 2 by 2 sub-matrices Bi,j ,

n−1
2 1 by 2 sub-matrices uj on the

last line of X, and n−1
2 2 by 1 utj on the last column, and a 1 by 1 sub-matrix x = Xn,n.

Y = adA(X) can be decomposed the same way in sub-matrices ci,j , vi,j , v
t
i,j and y = Yn,n.

With the block products we obtain,

Ci,j = AiBi,j −Bi,jAi, 1 ≤ j ≤ k ≤ n− 1

2

vj = −ujAj 1 ≤ j ≤ n− 1

2
,

y = 0.

it follows that each subspace Aij,i6=j with vanishing entries outside the 2 by 2 blocks ij and
ji, are adD stable. These spaces are four-dimensional and direct calculation shows that the
eigenvalues of adD restricted to these spaces are i(±ai ± aj). The subspace Ai defined by
the blocks ui and uti are stable as well, and the computation shows that the corresponding
eigenvalues are i(±aj). adD restricted to blocks Ai,i vanishes, thus 0 is of multiplicity n−1

2 .
In the n even case, only the eigenvalues associated with blocks Ai,j remain.
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