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Characteristic Points, Fundamental Cubic Form
and Euler Characteristic of Projective Surfaces

By Maxim Kazarian∗, and Ricardo Uribe-Vargas†

Abstract

We define local indices for projective umbilics and godrons (also called cusps of
Gauss) on generic smooth surfaces in projective 3-space. By means of these indices,
we provide formulas that relate the algebraic numbers of those characteristic points
on a surface (and on domains of the surface) with the Euler characteristic of that
surface (resp. of those domains). These relations determine the possible coexis-
tences of projective umbilics and godrons on the surface. Our study is based on a
“fundamental cubic form” for which we provide a simple expression.

Keywords. Differential geometry, surface, front, singularity, parabolic curve, flecnodal curve, index,
projective umbilic, quadratic point, godron, cusp of Gauss.
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1 Introduction
1.1 Counting Characteristic Points. The classical Möbius theorem asserts that a
non-contractible curve C embedded in the projective plane has at least three inflections
(points where the curve has unusual tangency with its tangent line). Its dual curve,
denoted C∨ ⊂ (RP2)∨, consists of the tangent lines to C. The higher contact of C with
its tangent line at an inflection is expressed as a cusp of C∨ (Fig. 1).

Fig. 1. Möebius Theorem. Fig. 2. Four-vertex Theorem.
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The classical 4-Vertex Theorem (S. Mukhopadhyaya, 1909) asserts that an embedded
closed curve in Euclidean plane has at least 4 vertices (points where the curve has unusual
tangency with its osculating circle). The caustic (or evolute) of a curve C of Euclidean
plane is the envelope of its normal lines. The higher contact of C with its osculating
circle at a vertex is expressed as a cusp of the caustic (Fig. 2).

Mukhopadhyaya also proved the statement that a convex closed plane curve has at
least 6 sextactic points (where the curve has unusual tangency with its osculating conic).

The recent activity on variations and generalisations of these theorems (cf. [5, 10, 14,
4, 9]) was in part stimulated by the works of V. I. Arnold who presented these results as
special cases of general theorems of contact and symplectic topology, in which singularity
theory plays an important rôle (cf. [1, 2, 3]).

In this paper, we provide a “global counting” of projective umbilics and godrons
(both defined below) of generic smooth surfaces of RP3 (and R3), and we state some
coexistence relations :

A generic smooth surface of RP3 (or R3) consists of three parts, may be empty : an
open elliptic domain at which the second fundamental form Q is definite (the Gaussian
curvature K being positive); an open hyperbolic domain where the form Q is indefinite
(K being negative); and a parabolic curve P where Q is degenerate (K = 0). The two
lines on which Q vanish at a given hyperbolic point are called asymptotic lines of the
surface at that point. At the parabolic points there is a unique (but double) asymptotic
line.

Each of the above three parts contains characteristic isolated points : a godron (or
cusp of Gauss) is a parabolic point at which the unique (but double) asymptotic line is
tangent to the parabolic curve; a hyperbolic or an elliptic projective umbilic1 (or node)
is a point where the surface is approximated by a quadric up to order 3. We also call
hyperbonodes the hyperbolic projective umbilics and ellipnodes the elliptic ones.

Thus ellipnodes and hyperbonodes of surfaces are the analogues of sextactic points of curves.

Each godron of a generic surface has an intrinsic index with value −1 or +1 (cf.
[10, 17]). Below, we characterise the hyperbonodes and ellipnodes as the singular points
of an intrinsic field of (triples of) lines, which ascribes also to them an index.

A godron, a hyperbonode or an ellipnode is said to be positive (or negative) if its
index is positive (resp. negative). Let us state our main result.

Given a generic smooth compact surface S of RP3, let H be a connected component
of the hyperbolic domain and E a connected component of the elliptic domain.

Write #e(E), #g(E), #h(H) and #g(H) for the respective algebraic numbers of
ellipnodes in E, godrons on ∂E, hyperbonodes in H and godrons on ∂H.

Theorem 1. For a generic surface S of RP3 the following three equalities hold

(a) #h(H) = χ(H);
(b) #g(∂H) = 2χ(H);
(c) #e(E) − #g(∂E) = 3χ(E).

1Projective umbilics are also called quadratic points (see [9]).
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Summing up the three equalities of Theorem 1 over all connected components of both
hyperbolic and elliptic domains, we obtain the following relation derived first in [10].

Corollary 1. For a generic surface S of RP3 the sum of the algebraic numbers of
ellipnodes and hyperbonodes on S is thrice the Euler characteristic of S :

#e(S) + #h(S) = 3χ(S) .

Example. A surface diffeomorphic to a sphere has at least 6 projective umbilics. For example, an
ovaloid of a cubic surface has exactly 6 positive ellipnodes [10]. Consider a local continuous deformation
that produces a small hyperbolic island H (Fig. 3-left). By Theorem1 a and b, H has one positive
hyperbonode and its boundary ∂H has two positive godrons (in the simplest case). Then, by Theorem1
c, the elliptic domain has five positive ellipnodes (in the simplest case). The local transition is described
in Fig. 3-right.

Fig. 3. Left: an ovaloid and its deformation. Right: a generic local transition ([16]).

1.2 Fundamental Cubic Form. To prove Theorem1 we characterise the projective
umbilics as the singular points of the field of zeroes of a “fundamental cubic form”.

Similarly as the second fundamental form describes the quadratic deviation of a
surface from its tangent plane, the fundamental cubic form describes the cubic deviation
of the surface from its quadratic part. Let us introduce our notations.
Monge form. To give an expression of the fundamental cubic form, we identify the affine
chart of the projective space, {[x : y : z : 1]} ⊂ RP3 with R3, and present the germs of
surfaces at the origin in Monge form z = f(x, y) with f(0, 0) = 0 and df(0, 0) = 0.

We shall express the partial derivatives of f with numerical subscripts :

fij(x, y) := ∂i+jf

∂xi∂yj
(x, y) and fij := fij(0, 0) .

Take the Taylor expansion f = Q + C + . . ., where Q is the quadratic part and C
the cubic part. The discriminant of the quadratic form Q (multiplied by 4) is given by
the Hessian

H = f20(x, y)f02(x, y)− f2
11(x, y)

(which is positive at the elliptic points and negative at the hyperbolic points, so that
the parabolic curve is given by the equation H = 0).

Formula for the Fundamental Cubic Form. The fundamental cubic form of a surface
is the homogeneous degree 3 form on the tangent space given by

W = 4HC −QdH

3



where dH is the linear part of the Taylor expansion of the function H.

In the hyperbolic domain, the zeroes of the form W define a field τ of lines whose
singular points are the hyperbonodes; while in the elliptic domain, the zeroes ofW define
a field τ of triples of lines whose singular points are the ellipnodes.

1.3 Expressions for the Indices. Take the asymptotic lines as coordinate axes. At
a hyperbonode h, the index of the field τ of lines is given by (Proposition 2):

indh(τ) = 1 · sign
(
4f2

11f40f04 − (2f11f31 − 3f2
21)(2f11f13 − 3f2

12)
)
. (1)

At an ellipnode e for which Q = α
2 (x2 + y2), and the cubic terms are absent, the

index of the field τ of triples of lines is given by the expression (Proposition 3):

inde(τ) = 1
3 · sign ((f31 − 3f13)(f13 − 3f31)− (f40 − 3f22)(f04 − 3f22)) .

Remark (on a cross-ratio invariant). At a hyperbonode h the tangent lines to the
flecnodal curves and the asymptotic lines define a cross-ratio invariant, that we note
ρ(h). The asymptotic lines at h have 4-point contact with the surface. We say that h
has parity σ(h) = +1 if both asymptotic lines locally lie on the same side of the surface
and σ(h) = −1 otherwise.

Taking the asymptotic lines as coordinate axes, ρ(h) and σ(h) are given by ([18]):

ρ(h) = 1− (3f2
21 − 2f11f31)(3f2

12 − 2f11f13)
4f2

11f40f04
,

σ(h) = sign(f40f04) .

From these expressions and equality (1) we get the formula

indh(τ) = sign(ρ(h)σ(h)) .

A similar formula holds for the ellipnodes.
Organisation of the paper. In § 2, we recall some basic properties of generic smooth surfaces related to
the characteristic points. In § 3, we give a formal definition of the fundamental cubic form and the proofs
of its properties. In § 4, we extend the statement of Poincaré-Hopf theorem to the case of “multivalued
fields of lines” on a surface with boundary. In § 5, we prove Theorem1. In § 6, we compute the index of
the field of (triples of) lines τ at hyperbonodes, ellipnodes and godrons (as boundary singular points).

Acknowlegments. We are grateful to J.J.NuñoBallesteros who communicated to us reference [8]. M.
Kazarian appreciates the support of Russian Science Foundation, project 16-11-10316. R. Uribe-Vargas is
grateful to Laboratory Solomon Lefschetz UMI2001 CNRS, Universidad Nacional Autonoma de México.

2 Properties of surfaces related to the characteristic points
Let us mention some basic features of generic smooth surfaces related to the characteristic points.
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2.1 Contact with Lines. There are several characterisations of the different kinds
of points of smooth surfaces. Let us describe the classification of points of generic
surfaces according to their contact with lines. The points of a surface in 3-space are
characterised by asymptotic lines (tangent lines of the surface with more than 2-point
contact). A point is called hyperbolic (resp. elliptic) if there is two distinct asymptotic
lines (resp. no asymptotic line). The parabolic curve consists of the points where there
is a unique (but double) asymptotic line. The flecnodal curve is the locus of hyperbolic
points where an asymptotic line admits more than 3-point contact with the surface.

2.2 Flecnodal Curve, Hyperbonodes and Godrons. An asymptotic curve is an
integral curve of a field of asymptotic lines.

Through each hyperbolic point of a surface in oriented space RP3 there passe two
asymptotic curves; one of them is left (the first 3 derivatives form a negative frame) and
the other is right (the frame of the first 3 derivatives is positive). The flecnodal curve
consists of the inflections of the asymptotic curves. The branch formed by the inflections
of the left (right) asymptotic curves is called left (right) flecnodal curve.

A hyperbonode is an intersection point of the left and right flecnodal curves (Fig. 4).
Moreover, a godron is a point of tangency of the flecnodal and parabolic curves. It

locally separates the left and right branches of the flecnodal curve (Fig. 5).

Fig. 4. A hyperbonode. Fig. 5. Flecnodal curve at a godron.

Example 1. A one sheet hyperboloid is infinitely degenerate : the asymptotic lines, at
every point, are part of the surface. Therefore every point is a hyperbonode (Fig. 6).

Example 2. A generic torus (non-symmetric) is a more typical example. Its exterior
part is elliptic and the interior one is hyperbolic. The parabolic curve consists of two
closed curves that separate the hyperbolic domain from the elliptic one (Fig. 7).
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Fig. 6. A one sheet hyperboloid. Fig. 7. A generic torus.

2.3 Positive and Negative Godrons. A godron is said to be positive or of index
+1 (resp. negative or of index −1) if, at the neighbouring parabolic points, the half-
asymptotic lines directed to the hyperbolic domain point towards (resp. away from) the
godron :

Fig. 8. A positive and a negative godron.

Many characterisations and several local and global properties of positive and nega-
tive godrons (and swallowtails) are geometrically described in [17].

2.4 Tangential Map, Godrons and Swallowtails. The tangential map of a smooth
surface S, τS : S → (RP3)∨, associates to each point of S its tangent plane at that point.
The image S∨ of τS is called the dual surface of S.

It is known (cf. [12]) that under the tangential map of S the parabolic curve of S
corresponds to the cuspidal edge of S∨, a godron corresponds to a swallowtail point, and
the elliptic (hyperbolic) domain of S to the elliptic (resp. hyperbolic) domain of S∨.

A swallowtail point of a generic front is said to be negative (positive) if, locally, its
self-intersection line is contained in the hyperbolic (resp. elliptic) domain.
The dual of a surface at a positive (negative) godron is a positive (resp. negative) swal-
lowtail. (see Fig. 9)

Fig. 9. Duality godron↔ swallowtail for positive and negative godrons.

Thus godrons of surfaces of RP3 “are the analogs” of inflections of curves of RP2.

2.5 Local Transitions and Charateristic Points. If the surface depends on one
real parameter (say the time) the configuration formed by the characteristic points, and
the parabolic and flecnodal curves may change.
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Ellipnodes, hyperbonodes and godrons are crucial in the transitions of the parabolic
curve of evolving smooth surfaces, and in the transitions of wave fronts occurring in
generic 1-parameter families [16] : every Morse transition of the parabolic curve takes
place at an ellipnode which is replaced by a hyperbonode (or the opposite). At such
transition two godrons of equal signs born or die (Fig. 10-left).

Fig. 10. Examples where an ellipnode is replaced by a hyperbonode or vice-versa.

Since the planes tangent to S at the points of the flecnodal curve form the flecnodal
curve of the dual surface S∨, and the projective dual to a hyperbonode (resp. ellipnode)
is again a hyperbonode (resp. ellipnode) [15, 16], we get that

Every A3-transition of a wave front, where two swallowtail points born or die, takes
place at an ellipnode which is replaced by a hyperbonode (or the opposite). The two
involved swallowtails have equal signs (Fig.10-right).

Finding the signs. Corollary 1 implies that in both, a Morse transition of the parabolic
curve of an evolving smooth surface and an A3-transition of an evolving wave front, the
involved ellipnode and hyerbonode have equal signs.

Using Theorem1 one easily gets the signs of the godrons, ellipnodes and hyper-
bonodes that take part in generic local transitions. For example, the hyperbonode of
Fig. 10-left is negative because it appears after the Euler characteristic of the hyperbolic
domain decreases by 1, and, for the same reason, both godrons are positive.

In the same way, we get the signs of the characteristic points for the local transitions
occurring in generic 1-parameter families of smooth surfaces (found in [16]) in which
both, godrons and projective umbilics, are involved (Fig. 11).

Fig. 11. The signs of godrons and projective umbilics involved in generic local transitions.
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2.6 On Normal Forms. Although tangential singularities had been studied in the
19th Century by Salmon, Cayley, Zeuthen et al (cf. [12]), the normal forms of jets of
generic surfaces at different kinds of points was done in the 1980’s [7, 11], while the
normal forms of the jets (up to order 5) of surfaces at points that appear in generic 1-
and 2-parameter families of smooth surfaces were just published in 2017 [13].

The Landis-Platonova normal form for the 4-jet at a godron is equivalent to

z = y2

2 − x
2y + ρx4

2 (ρ 6= 1) , (P)

where ρ > 1 corresponds to positive godrons and ρ < 1 to the negative ones.
According to Landis-Platonova’s Theorem [7, 11] and Ovsienko-Tabachnikov’s Theo-

rem [9], the 4-jet of a surface at a hyperbonode can be sent by projective transformations
to the respective normal forms

z = xy + 1
3!(ax

3y + bxy3) + 1
4!(x

4 ± y4) (ab 6= ±1) , (L-P)

z = xy + 1
3!(x

3y ± xy3) + 1
4!(Ix

4 + Jy4) (IJ 6= ±1) , (O-T)

To encompass both normal forms we shall consider the “prenormal” form

z = xy + 1
3!(ax

3y + bxy3) + 1
4!(Ix

4 + Jy4) (IJ 6= ab) .)

where the genericity conditions on the parameter values (a, b, I, J) are imposed in order
to avoid the moment of creation/annihilation of two hyperbonodes.

In the case of ellipnodes we shall consider the prenormal form

z = 1
2(x2 + y2) + 1

3!(ax
3y + bxy3) + 1

4cx
2y2 + 1

4!(Ix
4 + Jy4) .)

where the corresponding genericity condition is (a− 3b)(b− 3a) 6= (I − 3c)(J − 3c).

3 Fundamental cubic form
In this section we introduce an important local projective invariant of a surface, the so
called fundamental cubic form. The second fundamental form describes the quadratic
deviation of a surface from its tangent plane. In the same way, the fundamental cubic
form describes the cubic deviation of the surface from its quadratic part.

Let S be a smooth surface generically embedded to the affine 3-space. Assume that
it is given in Monge form z = f(x, y). Consider the Taylor expansion of f ,

f(x, y) = Q(x, y) + C(x, y) + . . . ,

where Q is homogeneous of degree 2 and C of degree 3. Observe that linear changes
of the coordinates x and y preserve the homogeneous forms regarded as forms on the
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tangent plane. We discuss the ambiguity in the definition of these forms for more general
affine changes of coordinates in the ambient space.

Second Fundamental Form. It is easy to see that Q provides a correctly defined
quadratic form on the tangent plane taking values on the “normal line” νpS = TpRP3/TpS.
It is called second fundamental form of the surface. However, if we treat this form as
taking values in real numbers, it is defined up to a factor only. It is sign definite, indef-
inite or degenerate if the surface is respectively elliptic, hyperbolic or parabolic at the
corresponding point.

The action of affine changes on the cubic part of the Taylor expansion is more com-
plicated. Namely, the cubic term C provides a cubic form on the tangent plane up to
a factor and up to a summand of the form QL where L is linear. Theorem2 below
claims that, given Q, the family of cubic forms C +QL for all possible choices of L has
a canonical representative that we call fundamental cubic form. This means that the
quadratic form Q produces a splitting of the space of cubic forms in two parts:

Canonical splitting of the space of cubic forms. Given a nondegenerate quadratic
form Q on an abstract 2-dimensional vector space V ≈ R2, the “convolution with the
inverse of Q” is an operation on the homogeneous forms which lowers the degree by
two. In coordinates, if Q = a x2 + 2b x y + c y2, this operation acts as the second order
differential operator

Λ := c
∂2

∂x2 − 2b ∂2

∂x∂y
+ a

∂2

∂y2 . (2)

Observe that
(

1
4(ac−b2)

)
ΛQ = 1 and that this “convolution operation” determines

the surjective linear map λQ : Sym3V ∗ → Sym1V ∗ given by λQ(C) = ΛC.

Splitting Lemma. The form Q determines a canonical splitting of the 4-dimensional
space of cubic forms as a direct sum of two 2-dimensional subspaces,

Sym3V ∗ = U+
Q ⊕ U

−
Q , (3)

where U+
Q consists of the cubic forms multiples of Q (i.e. written as QL with L linear)

and U−Q is the kernel of the surjective linear map λQ : Sym3V ∗ → Sym1V ∗.

Proof. To prove that U+
Q and U−Q are transversal, it is sufficient to check this fact for Q

in a normal form, one for the hyperbolic case and one for the elliptic one.
In the hyperbolic case, we choose coordinites such that Q = x y, then U+

Q is spanned
by x2y and x y2, and U−Q is spanned by x3 and y3.

In the elliptic case, we choose coordinates such that Q = ±(x2 + y2). Then U+
Q is

spanned by x3 + x y2 and x2y + y3 while U−Q is spanned by x3 − 3x y2 and 3x2y − y3.
Therefore the splitting (3) holds true for any nondegenerate quadratic form Q.

Now we assume V is the tangent space to the surface at a non-parabolic point :
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Fundamental Cubic Form. The fundamental cubic form W of a surface (FCF) is the
homogeneous degree 3 form (on the tangent plane V ) obtained as the projection of the
form C to the space U−Q along the space U+

Q .
This definition leads to the following explicit formula:

Theorem 2 (proved below). If f(x, y) = Q(x, y) +C(x, y) + . . . with Q non degenerate,
the FCF is given by

Ŵ = C −Q dH

4H , (4)

where H(x, y) = f20(x, y)f02(x, y)− f2
11(x, y) and dH is the linear part of H.

In the parabolic case (i.e. when Q is degenerate) there is no splitting because in
that case U−Q = U+

Q . [For example, if Q = cy2, then Λ = c∂2
x so that U−Q is spanned by {x y2, y3},

coinciding thus with U+
Q .] It follows that our definition and expression (4) are not applicable

at the parabolic points. But since the cubic form is defined up to a factor, we rescale
the form (4) to

W = 4HC −QdH (5)

extending it continuously (and unambiguously) to the parabolic points. Thus we consider
(5) as the coordinate expression of the fundamental cubic form for all points.
Remark. In an abstract vector space V ' R2, the canonical representative of the cubic forms C +QL
for all possible choices of L, defined up to a factor, is the form

W = 4HQC − 2QΛC ,

where HQ = 4(ac− b2) is the Hessian of the quadratic form Q.

Projective Umbilics or Nodes. A non parabolic point of a generic surface (i.e., Q is
nondegenerate) is called projective umbilic or node (ellipnode or hyperbonode) if the cubic
form C is divisible by Q, that is, C = QL for some linear function L.

Theorem 3. Let W be the fundamental cubic form of a smooth surface.

1. The lines of zeroes of the form W are well defined tangent lines on the surface;
2. The form W vanishes at the projective umbilics (ellipnodes or hyperbonodes);
3. At every elliptic point which is not an ellipnode, the form W has three distinct real

lines of zeroes;
4. At every hyperbolic point which is not a hyperbonode, the form W has one real line

of zeroes;
5. At the parabolic points different from godrons the form W has a double zero line

which is also a double zero line of Q, and a simple zero line tangent to the parabolic
curve;

6. At every godron the form W has the triple zero line tangent to the parabolic curve.
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Proof. Item 1 follows because the form W is well defined up to a factor.
Item 2 follows because at the projective umbilics the form C lies, by definition, in

the kernel of the projection to U−Q along U+
Q .

At a parabolic point we have H = 0 so that W = QdH, which implies immediately
the statements of item 1 as well as of items 5 and 6.

To prove items 3 and 4, it is sufficient to check them for Q in a normal form:
In the elliptic case, we choose coordinates such that Q = ±(x2 + y2). Then U−Q is

spanned by x3 − 3x y2 and 3x2y − y3 and assertion 3 follows from the fact that any
nonzero combination of the forms x3 − 3x y2 and 3x2y − y3 has three real zero lines.

In the hyperbolic case, we choose coordinates such that Q = x y. Then U−Q is spanned
by x3 and y3 and assertion 4 follows from the fact that any nonzero combination of the
forms x3 and y3 has one real zero line. Theorem 3 is proved.

Remark. The fundamental cubic form of a surface is actually a known and well studied
object in affine differential geometry, see, e.g., [8]. It is defined by

C(X,Y, Z) = (∇Xh)(Y,Z) , (6)

where ∇ is the connection on the (tangent bundle of the) surface defined by its canonical
Blaschke structure associated with the affine embedding, and h is the quadratic funda-
mental form with a normalisation that differ from our form Q by a factor, see details
in [8]. Namely, for a surface of the form z = f(x, y) we have explicitly

h = H−1/4Q,

C = H−1/4
(
C − 1

4Qd logH
)
.

We see the forms h and C agree with our respective forms Q and W up to a factor.
The statements 2–4 of Theorem 3 are also known, see [8, Sect. II.11].

Observe, however, that our approach to the definition of the fundamental cubic form
is completely different from that one of affine differential geometry. It is important to
notice also that, up to a factor, the quadratic and the cubic fundamental forms are well
defined local invariants of the surface which come from the projective structure of the
ambient space, rather than the affine one. Besides, the asymptotic behavior of the field
of zeroes of the cubic form on the parabolic line subject to statements 5–6 of Theorem3
has not been studied before, to our knowledge. In fact, the definition of the cubic
form (6) assumes the nondegeneracy of h and is not applicable to parabolic points, in
contrast to our definition of the (normalised) form W .

3.1 Proof of Theorem2

Notice that if f(x, y) = Q(x, y) + C(x, y) + . . . and Hf denotes its Hessian function

Hf (x, y) = f20(x, y)f02(x, y)− f2
11(x, y) ,
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then at the origin we have Hf (0, 0) = HQ = 4(ac− b2); and its differential depends only
onQ and C : dHf (0, 0) = dHQ+C . Therefore in the following lemma, which characterises
the cubic forms divisible by Q, we consider the functions f(x, y) = Q(x, y) + C(x, y).

Lemma 1. If f(x, y) = Q(x, y) + C(x, y) where Q is a non degenerate quadratic form
and C = QL with L linear (i.e. the cubic form C is divisible by Q) then at the origin

dHQ+QL = 4HQL , (7)

where dHQ+QL is the linear part of the function HQ+QL and HQ = 4(ac − b2) is the
Hessian of the non degenerate quadratic form Q.

Proof. If f = Q+QL with Q(x, y) = ax2 + 2bxy + cy2 and L(x, y) = ux+ vy, then

Hf (x, y) = (2a(L+ 1) + 2uQx) (2c(L+ 1) + 2vQy)− (2b(L+ 1) + vQx + uQy)2 .

Since L = Qx = Qy = 0 at the origin, the linear part of the Hessian at the origin is given
by dHf = 42(ac− b2)ux+ 42(ac− b2)vy, that is dHf = 4HQL.

Lemma1 suggests the canonical representative W of the cubic forms C +QL for all
possible choices of L should satisfy dHQ+W = 0. A simple calculation proves the

Lemma 2. Let f = Q+ Ĉ with Q non degenerate. Then at the origin we have

ΛĈ = 1
2dHQ+Ĉ , (8)

where Λ is the operator (2) determined by Q.

Proof of Theorem 2. From the Lemmas 1 and 2 we get (1/4H)QdH = (1/2HQ)QΛC.
Then the linearity of the map λQ applied to Ŵ (see (4)) provides the equality

Λ (C − (1/2HQ)QΛC ) = ΛC − (1/2HQ) Λ(QΛC) . (9)

So relation (8) applied to Ĉ = QΛC and then relation (7) applied to L = ΛC provide

(1/2HQ) Λ(QΛC) = (1/2HQ)1
2dHQ+QΛC = (1/4HQ)4HQ ΛC . (10)

Finally, equalities (9) and (10) imply that Ŵ is annihilated by the operator Λ.
The definition of the FCF implies that a change of C by a summand of the form QL

(i.e., lying in U+) does not change its image under the projection. This proves Theorem2,
in the non-parabolic case, because the splitting (3) is defined intrinsically.
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4 Poincaré-Hopf theorem for multivalued line fields
The classical Poicaré-Hopf theorem claims that the sum of indices of singular points of
a vector field v on a compact smooth n-dimensional manifold equals the Euler charac-
teristic of that manifold. This equality holds true also for a manifold with boundary if
the field is transverse to the boundary and directed, say, outside the manifold at every
its boundary point. The index is defined as the degree of the mapping Sn−1 → Sn−1

where the source sphere is the boundary of a small ball on the manifold centred at a
singular point of the field, and the mapping is given by x 7→ v(x)/‖v(x)‖. In the case of
a surface (n = 2) the index can be treated also as the number of rotations of the vector
v(x) about the origin while the point x makes one turn rotation around the singular
point of the field.

In this section, we extend, following the idea of [6], the statement of the Poincaré-
Hopf theorem to the case of “multivalued fields of lines” on a surface.
k-Valued Line Fields. A k-valued line field τ on a surface is a correspondence that
associates to a point on a surface an unordered k-tuple of pairwise distinct non oriented
tangent lines. We assume that this k-tuple of tangent lines depends continuously on the
point of the surface and is defined for all but finitely many points on the surface. We
refer to the points where the k-valued line field is not defined as the singular points of
this field.

If a point of the surface follows a loop, the continuity of the multivalued line field
along this loop leads to a (cyclic) permutation of its lines.
Fractional Index. The fractional index of a singular point of a k-valued line field is the
rational number p/q such that each line of the field comes to its initial position with
the same orientation and makes p turns of rotations while the point of the base makes q
turns around the singular point of the surface in positive direction. It is an element of
(1/2k)Z.

In order to apply this definition, one needs to fix a choice of the orientation of the
surface in a neighbourhood of a singular point of the field. However, the actual value of
the fractional index is independent of this choice and the equality holds independently
of whether the surface is orientable or not. Indeed, a change of the orientation of the
surface changes orientations of both the source and the target circles of the mapping
defining the index, thus preserving its value.
Proposition 1. For any closed surface and a multivalued field of lines on it, the sum
of fractional indices of the singular points of the field is equal to the Euler characteristic
of the surface.

This extension of the Poincaré-Hopf theorem can be proved, for example, by passing
to a suitable ramified covering surface such that the field becomes uni-valued and oriented
on the covering surface, and by applying the usual Poincaré-Hopf theorem to the covering
surface.
Remark. Even for a single-valued line field Proposition 1 is not formally equivalent to
Poincaré-Hopf theorem if the field is not oriented; the index being half-integer.
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Triviality condition for surfaces with boundary. The statement of Proposition 1 can
be extended also to the case of a surface with boundary. We say that a multivalued
direction field on a surface is trivialised along the boundary if the boundary contains no
singular point and either the directions of the field are never tangent to the boundary
or if at each point of the boundary one of the branches of the field is tangent to the
boundary. Then the equality of Proposition 1 holds as well.

5 Proof of Theorem1
Proof of Theorem 1a. Let S be a compact surface in the projective 3-space and H be
one of the connected components of its hyperbolic domain. Take for τ the field of zeroes
of the cubic fundamental form. By Theorem 3, we have k = 1.

The line field τ extends continuously to the boundary ∂H. The extended field is not
transverse to the boundary, but the triviality condition formulated above is satisfied since
the extended field is tangent to the parabolic curve ∂H at each of its points (including
the godrons). The internal singular points of τ are exactly the hyperbonodes and the
local computations (Proposition 2 below) show that

indhτ = ±1 .

We obtain immediately the equality

#h(H) = χ(H) . �

Fractional index of singular points on the boundary. Let us also extend the
equality of Proposition 1 to the case when the multivalued field of directions has singular
points on the boundary. Assume the triviality condition of the multivalued line field
holds along the boundary, except at a finite number of its points. Take one of these
points and pick a small disk centred at this point. Write γ for the part of the boundary
of the disk lying in the surface, and A and B for the endpoints of γ. Since A and B
belong to the part of the boundary of the surface where the field is trivialised, there
is a homeomorphism of the tangent planes at the points A and B that identifies both
values of the direction field and the (cooriented) tangent direction of the boundary. This
identification provides a multivalued direction field along the closed path γ/(A ∼ B).

Border Fractional Index. Define the fractional index of the multivalued field of lines at
a singular point on the boundary as the index of the obtained closed path γ/(A ∼ B).

For example, using this definition, the fractioanl indices of the 2-valued fields of lines
of Fig. 12 along the closed paths γ/(A ∼ B) are respectively 1/2 and −1/2.

This definition is justified by the following theorem (with its proof).

Theorem 4. For any multivalued direction field on a surface with boundary, the sum
of indices of all singular points, both internal and lying on the boundary, is equal to the
Euler characteristic of the surface.

14



Fig. 12. Boundary singular points with fractional indices 1/2 (left) and −1/2 (right).

Proof. Let us extend the surface by attaching a collar along the boundary which is a
narrow strip (Fig. 13-centre). The field can be extended to the collar in such a way that
it becomes trivialised along the (new) boundary, without singularities inside the collar,
and the boundary singularity of the original field becomes a internal singularity for the
extended field (Fig. 13-right). Thus, the situation of Proposition 1 is applied and leads
to the equality of Theorem4.

Fig. 13. Computation of the index at a boundary singular point.

Remark. The statement of Theorem4 is applicable, for example, in the case of a vector
field which is not necessarily transverse to the boundary. A point of the boundary is
‘singular’ for the field if it is an isolated point where the field is tangent to the boundary.
The index of such point is half-integer. For example, the vector field v = ∂x on the unit
disk D = x2 + y2 ≤ 1 has no internal singular points, but it has two boundary singular
points of indices 1/2 both, which gives χ(D) = 1/2 + 1/2 = 1.

Proof of Theorem 1b. The only singularities of the 2-valued field of asymptotic lines,
on a connected component H of the hyperbolic domain, are the godrons.

Consider the normal form (P) near a godron: f(x, y) = y2/2 − x2y + ρx4/2. The
asymptotic lines are the zeroes of the second fundamental form

Q = (−y + 6ρx2) dx2 − 4x dxdy + dy2 .

Fact 1b. Near the godron the asymptotic lines are never parallel to the y-axis (because
the coefficient of dy2 inQ is constant) and the sectors where Q takes positive (or negative)
values are symmetric with respect to the y-axis: Q(x,y)(vx, vy) = Q(−x,y)(−vx, vy).

At the parabolic points near a positive godron g+, the half-asymptotic lines directed
to the hyperbolic domain point towards g+ (see Fig. 8). So at a hyperbolic point A near
g+ with x > 0 we have two close half-lines of zeroes that determine a thin sector directed
to H and to g+ (Fig. 12-left). Fact 1b implies that after moving on γ to a hyperbolic
point B with x < 0, near g+, the considered sector is directed away from g+ and towards
the elliptic side. Therefore the fractional index of the field at g+ equals 1/2.

Exactly in the same way, one proves that the fractional index of the 2-valued field of
asymptotic lines at a negative godron equals −1/2 (see Fig. 12-right).
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Since the Euler characteristic of H equals the sum of indices at the godrons on the
boundary ∂H (by Theorem4), the algebraic sum of godrons on ∂H equals 2χ(H). �

One also can prove the equality #g(∂H) = 2χ(H) by using the double covering of the asymptotic
directions (it is explained and used in [17]).

Proof of Theorem 1c. Let E be one of the connected components of the elliptic
domain. We are going to apply Theorem4 to the line field τ of zeroes of the fundamental
cubic form on E. By Theorem 3, τ is a 3-valued line field that has singularities at the
ellipnodes (which are internal points of the elliptic domain) and at the godrons (which
are boundary points of that elliptic domain). Thus, to obtain the Euler characteristic
of E, we have to sum the contribution of the indices of the ellipnodes in E, and that of
the indices of the godrons lying on the boundary ∂E.
Fact 1c. The local computations for the ellipnodes (Proposition 3 below) show that

indeτ = ±1
3 . (11)

To find the local index of τ at a godron, notice that the field τ extends continuously
to the boundary ∂E, but the extended field does not satisfy the triviality condition:
two of the directions glue together at the boundary points and the third one becomes
tangent to the boundary. This degeneracy can be resolved by moving slightly from the
boundary point to a close internal point of E. Applying a small such modification we
obtain a field satisfying the necessary conditions on the boundary of E. The fractional
index of τ at a godron is then computed using the above definition (Fig. 12).
Fact 2c. The local computations at the godrons on ∂E (Proposition 4 below) show that
the index at a positive godron equals −1/3 and at a negative godron equals 1/3 :

indg+τ = −1
3 , indg−τ = 1

3 . (12)

Theorem4 together with equalities (11) and (12) imply the relation

#e(E) − #g(∂E) = 3χ(E) . �

6 Local indices at hyperbonodes, ellipnodes and godrons
We shall compute the local index of the multivalued line field τ , defined by the fundamental cubic form
W = 4HC − QdH, at generic hyperbonodes, ellipnodes and godrons. To perform these computations
(by hand), we only need to find the relevant terms of C, Q, H and dH.

6.1 Local Index at a Hyperbonode. Write the surface in Monge form z = f(x, y).

Proposition 2. The local index of a hyperbonode h, taking the asymptotic lines as
coordinate axes, equals

indh(τ) = 1 · sign
(
4f2

11f40f04 − (2f11f31 − 3f2
21)(2f11f13 − 3f2

12)
)
.
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Corollary. For the above normal forms of Landis-Platonova and of Ovsienko-Tabachnikov
we get the respective expressions of the index

indh(τ) = ±1− ab and indh(τ) = IJ ∓ 1 .

Remark 1. If at h we take the diagonals y = ±x as asymptotic lines and we assume
the cubic terms of f are missing for the chosen affine coordinate system, then

indh(τ) = 1 · sign ((f40 + 3f22)(f04 + 3f22)− (f31 + 3f13)(f13 + 3f31)) . (13)

Notation. In order to get not so long lines along the proofs, we shall replace the partial derivatives fij

with constants α, u, v, a, b, I, J , etc, just for the calculations.

Proof of Proposition 2. Let us locally express the surface in Monge form

f(x, y) = αxy + 1
2ux

2y + 1
2vxy

2 + 1
3!(ax

3y + bxy3) + 1
4!(Ix

4 + Jy4).

The explicit expressions of the relevant terms for H, dH, Q and C are
H ≈ −α2 − 2α(ux+ vy) + . . . ;
dH ≈ −(2αu+ 2(u2 + αa)x+ uvy + . . .)dx− (2αv + 2(v2 + αb)y + uvx+ . . .)dy ;

Q ≈ 1
2(uy + axy + . . .)dx2 + (α+ ux+ vy + . . .)dxdy + 1

2(vx+ bxy + . . .)dy2 ;

C = (ay + Ix)dx3

3! + (u+ ax)dx2dy

2 + (v + by)dxdy2

2 + (bx+ Jy)dy3

3! .

Then the expression for 4HC up to terms of order 1 in x, y is

4HC ≈ −2
3α

2(ay + Ix)dx3 + ϕ(x, y)dx2dy + ψ(x, y)dxdy2 − 2
3α

2(bx+ Jy)dy3,

where ϕ(x, y) = −2α2(u+ax)+4αu(ux+vy) and ψ(x, y) = −2α2(v+by)+4αv(ux+vy).
The corresponding expression for QdH, up to its first order terms, is

QdH ≈ −αu2y dx3 + ϕ(x, y)dx2dy + ψ(x, y)dxdy2 − αv2x dy3 .

Therefore, the fundamental cubic form W = 4HC −QdH is given by

W ≈ −α3
(
2αIx+ (2αa− 3u2)y

)
dx3 − α

3
(
(2αb− 3v2)x+ 2αJy

)
dy3. (14)

Given a point that makes a positive turn on a very small circle around the origin,
the line of zeroes of (14) makes a positive turn if and only if the image of our small
circle by the map (x, y) 7→

(
2αIx+ (2αa− 3u2)y, (2αb− 3v2)x+ 2αJy

)
makes a positive

turn around (0, 0); that is, if and only if this map preserves the orientation. Since its
determinant is equal to 4α2IJ − (2αa− 3u2)(2αb− 3v2), we get that

indh(τ) = 1 · sign
(
4f2

11f40f04 − (2f11f31 − 3f2
21)(2f11f13 − 3f2

12)
)
. �
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6.2 Local Index at an Ellipnode. Writing the surface in Monge form z = f(x, y)
with Q = α

2 (x2 + y2) and assuming the cubic terms of f are missing (for the chosen
affine coordinate system) we get the

Proposition 3. The local index of τ at an ellipnode e for which Q = α
2 (x2 + y2), equals

inde(τ) = 1
3 · sign ((f31 − 3f13)(f13 − 3f31)− (f40 − 3f22)(f04 − 3f22)) .

(Compare this formula with expression (13) of Remark 1.)

Proof of Proposition 3. Let us locally express the surface in Monge form

f(x, y) = α

2 (x2 + y2) + 1
3!(ax

3y + bxy3) + c

4x
2y2 + 1

4!(Ix
4 + Jy4).

The explicit expressions of the relevant terms for H, dH, Q and C are
H ≈ α2 + . . . ;
dH ≈ α ((a+ b)y + (c+ I)x+ . . .) dx+ α ((a+ b)x+ (c+ J)y + . . .) dy ;

Q ≈ 1
2(α+ . . .)dx2 + (. . .)dxdy + 1

2(α+ . . .)dy2 ;

C = (ay + Ix)dx3

3! + (ax+ cy)dx2dy

2 + (by + cx)dxdy2

2 + (bx+ Jy)dy3

3! .

Then the expression for 4HC up to terms of order 1 in x, y is

4HC ≈ 2α2
(1

3(ay + Ix)dx3 + (ax+ cy)dx2dy + (by + cx)dxdy2 + 1
3(bx+ Jy)dy3

)
,

and the corresponding expression for QdH, up to its first order terms, is

QdH ≈ α2

2
(
((a+ b)y + (c+ I)x) (dx3 + dxdy2) + ((a+ b)x+ (c+ J)y) (dx2dy + dy3)

)
.

Therefore, the fundamental cubic form W = 4HC −QdH is given by

W ≈ α2

6
(
((I − 3c)x+ (a− 3b)y) (dx3 − 3dxdy2) + ((3a− b)x+ (3c− J)y) (3dx2dy − dy3)

)
.

Hence, the local index of the ellipnode e is 1/3 multiplied by the sign of the deter-
minant of the linear map (x, y) 7→ ((I − 3c)x+ (a− 3b)y, (3a− b)x+ (3c− J)y), which
is equal to (a− 3b)(b− 3a)− (I − 3c)(J − 3c). Therefore

ind(e) = 1
3 · sign ((f31 − 3f13)(f13 − 3f31)− (f40 − 3f22)(f04 − 3f22)) . �
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6.3 Local Index at a Godron. In this case, we base our computations on basic
geometric properties of the three-valued line field τ near the considered godron.

Proposition 4. At a positive godron the local index of the field τ equals −1/3 and at a
negative godron it is equal to 1/3 :

indg+(τ) = −1
3 and indg−(τ) = 1

3 .

Proof. Near a godron given in Landis-Platonova normal form

f(x, y) = 1
2y

2 − x2y + 1
2ρx

4 ,

we get the following expression for the fundamental cubic form

W =
(
−(4ρ+ 8)y + (12ρ2 − 8ρ)x2

)
xdx3 + 6

(
y + ρx2

)
dx2dy− (6ρx)dxdy2 +dy3. (15)

Basic observations. By formula (15) the lines of zeroes of W are never vertical (never
parallel to the y-axis) because the coefficient of dy3 is the constant 1 (near a godron the
three lines are close to the horizontal). Moreover, these lines of zeroes and the sectors
where W takes positive (or negative) values are symmetric with respect to the y-axis:
W(x,y)(vx, vy) = W(−x,y)(−vx, vy). We only need these basic observations from W .

At the parabolic points near a positive godron g+, the half-asymptotic lines directed
to the hyperbolic domain point towards g+ (see Fig. 8). Then at the elliptic points
with x < 0, near g+, we have two close half-lines of zeroes that determine a thin sector
pointing to H and to g+ (sector 1 in Fig.14). Our basic observations imply that after
moving to the elliptic points with x > 0, near g+, the considered sector points away
from g+ and is adjacent to the parabolic curve from the elliptic side. Then we get the
index −1/3 because the sector makes a complete negative turn after three such loops
around g+.

Fig. 14. A positive godron contributes −1/3 to the Euler characteristic of E.

At the parabolic points near a negative godron g−, the half-asymptotic lines directed
to the hyperbolic domain point away from g− (Fig. 8). Thus at the elliptic points with
x < 0, near g−, we have two close half-lines of zeroes that determine a thin sector
pointing to H and away from g− (sector 1 in Fig.15). Our basic observations imply that
after moving to the elliptic points with x > 0, near g−, the considered sector points to
g− and is adjacent to the parabolic curve from the elliptic side. Then we get the index
1/3 because the sector makes a complete positive turn after three such loops around
g−.
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Fig. 15. A negative godron contributes +1/3 to the Euler characteristic of E.
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