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Inferring Sequences Produced by Elliptic Curve Generators using
Coppersmith’s Methods?

Thierry Mefenza1, Damien Vergnaud2,

Abstract

We analyze the security of two number-theoretic pseudo-random generators based on elliptic curves: the
elliptic curve linear congruential generator and the elliptic curve power generator. We show that these
recursive generators are insecure if sufficiently many bits are output at each iteration (improving notably
the prior cryptanalysis of Gutierrez and Ibeas from 2007). We present several theoretical attacks based on
Coppersmith’s techniques for finding small roots on polynomial equations. Our results confirm that these
generators are not appropriate for cryptographic purposes.
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1. Introduction

In cryptography, a pseudo-random number generator is a polynomial-time deterministic algorithm which
takes as input a short random seed and outputs a long sequence which is indistinguishable in polynomial
time from a truly random sequence. Pseudo-random numbers have found numerous applications in the
literature. For instance they are useful in cryptography for key generation, encryption and digital signature.
Number-theoretic pseudorandom generators work by iterating an algebraic map F (public or private) over
a residue ring ZN (where N is usually a prime number or an RSA modulus) on a secret random initial seed
value s0 ∈ ZN to compute the intermediate state values si+1 = F (si) mod N for i ∈ N and outputting (some
consecutive bits of) the state value si at each iteration. The input s0 of the generator (and possibly the
description of F ) is called the seed and the output is called the pseudorandom sequence. The case where F
is an affine function is known as the linear congruential generator. This generator is efficient and has good
statistical properties. Unfortunately, it is cryptographically insecure: Boyar [Boy89] proved that - with a
sufficiently long run of the pseudorandom sequence - one can recover the seed in time polynomial in the
bit-size of N . It was suggested to use a non-linear algebraic map F in order to avoid these attacks. The
provably secure classical power-generator from [BBS86] uses the algebraic map is F : x 7−→ xe mod N for
some integer e ∈ N and outputs asymptotically only at most O((log logN)/(log e)) bits per multiply modulo
an RSA modulus N , and hence are too slow to be used in many practical applications. Even if one wants to
use this generator with no proven security guarantees, it outputs at most O(logN/ log e) bits per multiply
modulo N and for this reason, this generator is used only with a very small integer e (typically e ∈ {2, 3}).

In 1994, Hallgren [Hal94] proposed a pseudo-random number generator based on a subgroup of points
of an elliptic curve defined over a prime finite field. This generator is known as the Linear Congruential

?A preliminary version of this work appeared in the proceedings of the conference International Computing and Combina-
torics Conference – COCOON 2016 [Mef16]. This is the full version.

Email addresses: thierrymefenza@yahoo.fr (Thierry Mefenza), damien.vergnaud@lip6.fr (Damien Vergnaud)
1Department of Mathematics, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
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Generator on Elliptic Curves (EC-LCG). Let p be a prime number (with p > 5) and let E be an elliptic
curve defined over a prime finite field Fp, that is a rational curve given by the following Weierstrass equation

E : y2 = x3 + ax+ b

for some a, b ∈ Fp with 4a3 + 27b2 6= 0. It is well known that the set E(Fp) of Fp-rational points (including
the special point O at infinity) forms an Abelian group with an appropriate composition rule (denoted ⊕)
where O is the neutral element. For a given point G ∈ E(Fp), the EC-LCG generates a sequence Un of
points defined by the relation:

Un = Un−1 ⊕G = [n]G⊕ U0, n ∈ N

where U0 ∈ E(Fp) is the initial value or seed. We refer to G as the composer of the EC-LCG.
For a positive integer e > 1 and a point G ∈ E(Fp) of order ` with gcd(e, `) = 1, the Elliptic Curve

Power Generator (EC-PG), introduced by Lange and Shparlinksi in [LS05], generates a sequence of points
Vn defined by the relation:

Vn = [e]Vn−1 = [en]G, n ∈ N

where V0 ∈ E(Fp) is the initial value or seed.

The EC-LCG and the EC-PG provide a very attractive alternative to linear congruential generators and
power generators and they have been extensively studied in the literature (see [GBS00, GL01, MS02, BD02,
LS05, Shp05, HS02, IS09, Mer17] and the references therein). In cryptography, one may want to use the
output of these generators as a keystream for encryption. One can notice that if two consecutive values
Un, Un+1 of the EC-LCG generator are revealed, it is easy to find U0 and G (see also [Mer17] for the EC-PG).
In order to use the produced sequences for cryptography, one should therefore output only some bits (e.g.
the most significant ones) of each coordinate of Un or Vn, n ∈ N in the hope that this makes the resulting
output sequence difficult to predict. As for the classical power generator [BBS86, BVZ12], in cryptographic
uses of the EC-PG, e is always assumed to be “small” (and does not grow with the security parameter).
Indeed, the computation of Vn from Vn−1 requires Ω(log(e)) multiplications modulo p and the generator
outputs at most O(log(p)) bits. The EC-PG is used only with a very small integer e (typically e ∈ {2, 3})
and it is therefore assumed to be known to the adversary (it this is not the case, the adversary can perform
an exhaustive search on all possible e and this adds only a constant factor overhead to its computational
complexity).

In this paper, we show that the EC-LCG and the EC-PG are insecure if sufficiently many bits are output
at each stage. Therefore a secure use of these generators requires to output fewer bits at each iteration and
the efficiency of the schemes is thus degraded. Our attacks used the well-known Coppersmith’s methods for
finding small roots on polynomial equations. These methods have been introduced in 1996 by Coppersmith
for polynomial of one or two variables [Cop96a, Cop96b] and have been generalized to many variables.
These methods have been used to infer many pseudo-random generators and to cryptanalyze many schemes
in cryptography (see [BCTV16, BVZ12] and the references therein). In this paper we notably used such
techniques to improve the previous bounds known on the security of the EC-LCG in the literature. Our
improvements are theoretical since in practice, the cost of Coppersmith’s method in our case is prohibitive
because of large dimension of the lattice. However, they confirm that these generators are not appropriate
for cryptographic purposes.

Prior work. In the cryptography setting, the initial value U0 and the constants G, a and b may be kept
secret. Gutierrez and Ibeas [GI07] consider two settings: the case where the composer G is known to the
attacker and a, b are kept secret and the case where the composer G is unknown and a, b are kept secret. In
the first case, they showed that the EC-LCG is insecure if a proportion of at most 1/6 of the least significant
bits of two consecutive values of the sequence is hidden. When the composer is unknown, they showed
heuristically that the EC-LCG is insecure if a proportion of at most 1/46 of the least significant bits of three
consecutive values of the sequence is hidden. Their result is based on a lattice basis reduction attack, using
a certain linearization technique. In some sense, their technique can be seen as a special case of the problem
of finding small solutions of multivariate polynomial congruences. The Coppersmith’s methods also tackle
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the problem of finding small solutions of multivariate polynomial congruences. Gutierrez and Ibeas due to
the special structure of the polynomials involved claimed that “the Coppersmith’s methods does not seem
to provide any advantages”, and that “it may be very hard to give any precise rigorous or even convincing
heuristic analysis of this approach”. Our purpose in this paper is to tackle this issue.

Contributions of the paper. We predict the EC-LCG sequence and the EC-PG sequence using Copper-
smith’s method for calculating the small roots of multivariate polynomials modulo an integer. The method
for multivariate polynomials is heuristic since it is not proven and may fail (but in practice it works most
of the time). At the end of the Coppersmith’s methods we use the methods from [BCTV16] to analyze the
success condition.

In the case where the composer is known, we showed that the EC-LCG is insecure if a proportion of at
most 1/5 of the least significant bits of two consecutive values U0 and U1 of the sequence is hidden. This
improves the previous bound of 1/6 of Gutierrez and Ibeas. We further improve this result by considering
several consecutive values of the sequence. We showed that the EC-LCG is insecure if a proportion of at
most 3/11 of the least significant bits of these values is hidden.

We also consider the case where some most significant bits of the abscissa of several points Ukn are given,
with n ∈ N for some fixed integer k. In this case, the addition law on the elliptic curve gives us a system
of polynomials of high degree whose roots are the hidden bits. We use summation polynomials [Sem04]
on elliptic curves to obtain a system of polynomials of low degree. We then showed that the EC-LCG is
insecure if a proportion of at most 1/8 of the least significant bits of two values X(U0) and X(Uk) is hidden,
where X(P ) denotes the abscissa of the point P on the curve. This attack is the first cryptanalytic result on
the EC-LCG when the attacker knows some most significant bits of non-consecutive values of the generator.
We further improve this result by considering several values Ukn, n ∈ N of the sequence. We also show that
the EC-LCG is insecure if a proportion of at most 1/4 of the least significant bits of the abscissa of these
values is hidden.

In the case where the composer is unknown, we showed that the EC-LCG is insecure if a proportion of
at most 1/24 of the least significant bits of two consecutive values U0 and U1 of the sequence is hidden. This
improves significantly the (heuristic) previous bound 1/46 of Gutierrez and Ibeas. We further improve this
result by considering sufficiently many consecutive values of the sequence. We showed that the EC-LCG is
insecure if a proportion of at most 1/8 of the least significant bits of these values is hidden.

Finally, we also showed that the EC-PG is insecure if a proportion of at most 1/2e2 of the least significant
bits of the abscissa of two consecutive values V0 and V1 of the sequence is hidden. We improve this bound
by considering several consecutive values of the sequence and we showed that the EC-PG is insecure if a
proportion of at most 1/e2 of the least significant bits of the abscissa of these values is hidden. To our
knowledge no such results are known in the literature for the EC-PG.

The table below gives a comparison between our results and those known in the literature. It gives the
bound of the proportion of least significant bits hidden from each value necessary to break the EC-LCG in
(heuristic) polynomial time. The basic proportion corresponds to the case where the adversary knows bits
coming from the minimum number of intermediate values leading to a feasible attack; while the asymptotic
proportion corresponds to the case when the bits known by the adversary knows bits coming from arbitrary
number of values.

Generator Setting
Basic proportion Asymptotic proportion

Prior result Our result Prior result Our result

EC-LCG

known composer 1/6 1/5
–

3/11
consecutive values (proven) (heuristic) (heuristic)
known composer

–
1/8

–
1/4

non-consecutive values (heuristic) (heuristic)

unknown composer
1/46 1/24

–
1/8

(heuristic) (heuristic) (heuristic)
EC-PG

–
1/2e2

–
1/e2

(heuristic) (heuristic)
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2. Preliminaries

In this section, we collect some statements about elliptic curves, Coppersmith’s methods and analytic
combinatorics.

2.1. Elliptic curves

Throughout this paper, let p be a prime number (with p > 5). We first recall the arithmetic of the group
law ⊕ on elliptic curves defined by the Weierstrass equation (for more details on elliptic curves, we refer to
[BSS99, Was08]). Let E : y2 = x3 +ax+b be an elliptic curve over Fp. For two points P = (xP , yP ) ∈ E(Fp)
and Q = (xQ, yQ) ∈ E(Fp), with P,Q 6= O, the addition law ⊕ is defined as R = (xR, yR) = P ⊕Q where:

• If xP 6= xQ, then

xR = m2 − xP − xQ mod p, yR = m(xP − xR)− yP mod p, where, m =
yQ − yP
xQ − xP

mod p (1)

• If xP = xQ but yP 6= yQ, then R = O

• If P = Q and yP 6= 0, then

xR = m2 − 2xP mod p, yR = m(xP − xR)− yP mod p, where, m =
3x2

Q + a

2yP
mod p

• If P = Q and yP = 0, then R = O.

2.2. Division polynomials of elliptic curves

With the notation from the previous paragraph, we recall some basic facts on division polynomials of
elliptic curves (see again [Was08] and [BSS99] for details). They provide a way to calculate multiples of
points on elliptic curves and to study the fields generated by torsion points. The division polynomials
ψm(X,Y ) ∈ Fp[X,Y ]/(Y 2 −X3 −AX −B), m > 0, are recursively defined by:

ψ0 = 0

ψ1 = 1

ψ2 = 2Y

ψ3 = 3X4 + 6AX2 + 12BX −A2

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 −A3)

ψ2m+1 = ψm + 2ψ3
m − ψm−1ψ

3
m+1 , m > 2

ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)/ψ2 , m > 3,

where ψm is an abbreviation for ψm(X,Y ).
If m is odd, then ψm(X,Y ) ∈ Fp[X] is univariate and if m is even then

ψm(X,Y ) ∈ ψ2(X,Y )Fp[X] so ψm(X,Y ) ∈ 2Y Fp[X].

Therefore, as ψ2
2(X,Y ) = 4(X3+AX+B), we have ψ2

m(X,Y ) ∈ Fp[X] and ψm−1(X,Y )ψm+1(X,Y ) ∈ Fp[X].
In particular, we may write ψ2m+1(X) and ψ2

m(X).
As mentioned above, the division polynomials can be used to calculate multiples of a point on the elliptic

curve E. Let P = (x, y) ∈ E with P 6= O, then the abscissa of [m]P is given by

θm(x)

ψ2
m(x)

, where θm(X) = Xψ2
m − ψm−1ψm+1.
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The zeros of the denominator ψ2
m(X) are exactly the abscissa of the non-trivial m-torsion points, i.e, the

points Q = (x, y) ∈ Fp
2 \ {O} on E with [m]Q = O. Note, that these points occur in pairs Q = (x, y) and

−Q = (x,−y), which coincide only if 2Q = O, i.e, if x is a zero of ψ2
2(X).

We recall that the group of m-torsion points E[m], for an elliptic curve E defined over a field of char-
acteristic p, is isomorphic to (Z/mZ)2 if p - m and to a proper subgroup of (Z/mZ)2 if p | m. If m is
a power of p then E[m] is either isomorphic to (Z/mZ) or to {O}. Accordingly, the degree of ψ2

m(X) is
m2 − 1 if p - m and strictly less than m2 − 1 otherwise. In particular, for p = 2 and m a power of 2 we have
deg(ψ2

m) = m − 1 if E is not supersingular and deg(ψ2
m) = 0 otherwise. By induction one can show that

θm(X) ∈ Fp[X] is monic of degree m2.

2.3. Summation polynomials

With the same notation as above, for n ∈ N, n > 2, we define introduce n-th summation polynomial
fn = fn(X1, X2, . . . , Xn) introduced by Semaev in [Sem04] such that

fn(x1, . . . , xn) = 0

for xi ∈ Fp (the algebraic closure of Fp if and only if there exist y1, . . . , yn ∈ Fp such that
(x1, y1), . . . , (xn, yn) ∈ E(Fp) and

(x1, y1)⊕ · · · ⊕ (xn, yn) = O.

These polynomials have found interesting applications in cryptography (in particular for solving the
discrete logarithm problem on elliptic curves defined finite fields, see [Die11] and references therein).

The following lemma gives a simple way for calculating them:

Lemma 1. The n-th Semaev summation polynomial fn may be defined by:

f2(X1, X2) = X1 −X2

f3(X1, X2, X3) = (X1 −X2)2X2
3 − 2 ((X1 +X2)(X1X2 + a) + 2a)X3 + (X1X2 − a)2 − 4b(X1 +X2)

fn(X1, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)), n > 4 and 1 6 k 6 n− 1 .

The polynomial fn is symmetric and of degree 2n−2 in each variable Xi for any n > 3. The polynomial fn
is absolutely irreducible and we have

fn(X1, . . . , Xn) = f2
n−1(X1, . . . , Xn−1)X2n−2

n + . . .

2.4. Coppersmith’s methods

In this section, we give a short description of Coppersmith’s method for solving a multivariate modular
polynomial system of equations modulo an integer N . We refer the reader to [JM06] for details and proofs.

2.4.1. Problem definition.

Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible multivariate polynomials defined over Z, having a
root (x1, . . . , xn) modulo a known integer N , namely fi(x1, . . . , xn) ≡ 0 mod N . We want this root to be
small in the sense that each of its components is bounded by a known value Xi. We also need to bound the
sizes of Xi allowing to recover the desired root in polynomial time.

2.4.2. Polynomials collection.

In a first step, one generates a collection P of polynomials {f̃1, . . . , f̃r} linearly independent having
(x1, . . . , xn) as a root modulo N . Usually, multiples and powers of products of fi for i ∈ {1, . . . , s} are chosen,

namely f̃` = y
α1,`

1 · · · yαn,`n f
k1,`
1 · · · fks,`s for some integers α1,`, . . . , αn,`, k1,`, ks,`. Such polynomials satisfy

the relation f̃`(x1, . . . , xn) ≡ 0 mod N
∑s
i=1 ki,` , i.e., there exists an integer ci such that f̃i(x1, . . . , xn) =

ciN
∑s
j=1 kj,` .
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2.4.3. Matrix construction.

We denote as M the set of monomials appearing in collection of polynomials P. Then each polynomial
f̃i can be expressed as a vector with respect to a chosen order on M. We hence construct a matrix M as
follows and we define as L the lattice generated by its rows:

f̃1 · · · f̃r
↓ · · · ↓



1

?
1

X−1
1 y1

. . .
...

X−a11 . . . X−ann ya11 . . . yann

0
N

∑s
i=1 ki,1

. . .

N
∑s
i=1 ki,r

On that figure, every row of the upper part is related to one monomial of M (we assume in the figure
that M contains 1, y1, and ya11 . . . yann among other monomials). The left-hand side contains the bounds
on these monomials (e.g., the coefficient X−1

1 X−2
2 is put in the row related to the monomial y1y

2
2). The

right-hand side is formed by all vectors coming from P.

2.4.4. A short vector in a sublattice.

Let us now consider the row vector

r0 = (1, x1, . . . , x
a1
1 . . . xann ,−c1, . . . ,−cr) .

By multiplying this vector by the matrix M, one obtains:

s0 =

(
1,

(
x1

X1

)
, . . . ,

(
x1

X1

)a1
· · ·
(
xn
Xn

)an
, 0, . . . , 0

)
.

The knowledge of s0 ∈ L is sufficient to recover the root we are searching for and its norm is very small
since ‖s0‖2 6

√
]M. Thus, the recovery of a small vector in L, will likely lead to the recovery of the desired

root (x1, . . . , xn). To this end, we first restrict ourselves in a more appropriated subspace. Indeed, noticing
that the last coefficients of s0 are all null, we know that this vector belongs to a sublattice L′ whose last
coordinates are composed by zero coefficients. By doing elementary operations on the rows of M, one can
construct that sublattice and its determinant is the same as the one of L.

2.4.5. Method conclusion.

From that point, one computes an LLL-reduction on the lattice L′ and computes the Gram-Schmidt’s
orthogonalized basis (b?1, . . . , b

?
t ) of the LLL output basis (b1, . . . , bt). Since s0 belongs to L′, this vector

can be expressed as a linear combination of the b?i ’s. Consequently, if its norm is smaller than those of b?t ,
then s0 is orthogonal to b?t . Extracting the coefficients appearing in b?t , one can construct a polynomial p1

defined over Z such that p1(x1, . . . , xn) = 0. Repeating the same process with the vectors b?t−1, . . . , b
?
t−n+1

leads to the system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the (heuristic) assumption that
all created polynomials define an algebraic variety of dimension 0, the previous system can be solved (e.g.,
using elimination techniques such as Groebner basis) and the desired root recovered in polynomial time.

The conditions on the bounds Xi that make this method work are given by the following (simplified)
inequation (see [JM06] for details): ∏

y
k1
1 ...yknn ∈M

Xk1
1 · · ·Xkn

n < N
∑r
`=1

∑s
i=1 ki,` . (2)
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For such techniques, the most complicated part is the choice of the collection of polynomials, what could be
a really intricate task when working with multiple polynomials.

Remark 1. As noted above, the inequality 2 is simplified. In [JM06], there is an additionnal multiplicative
term in the right-hand side that depends only on the dimension of the lattice and does not depend on N (and
therefore only contributes to an error term as N grows with the security parameter). The non-simplified
equation is ∏

y
k1
1 ...yknn ∈M

Xk1
1 · · ·Xkn

n <
(

2−ω(ω−1)/4ω−ω/2
)
N

∑r
`=1

∑s
i=1 ki,` . (3)

where ω = #M denotes the number of monomials.

2.5. Analytic combinatorics

In the following, we recall the analytic combinatorics methods from [FS09] to estimate the exponents of
the bounds X1, . . . , Xn and of the modulo N on the monomials and polynomials appearing in the inequality
(2) in Coppersmith’s methods. Those methods can be used to compute the cardinalities of the sets P and
M. We used the same notations as in [BCTV16] and for more details of the methods the reader is referred
to that paper.

To make things clear, we will explain the method with one simple example. Suppose we want to solve
the equation: f(y1, . . . , yn) = 0 mod N , with |yi| 6 Xi. We consider the set of polynomials

P = {fk = yk11 . . . yknn fk` mod Nk` : 1 6 k` < t

and deg(fk) = k1 + · · ·+ kn + k`e < te} ,

The set of monomials appearing in the collection P will usually look like

M = {yk = yk11 . . . yknn : 0 6 deg(yk) = k1 + · · ·+ kn < te} .

These considerations imply that for the final condition in Coppersmith’s method (see Equation (2)), one
needs to compute the values

ψ =
∑
fk∈P

k` and ∀i ∈ {1, . . . , n}, αi =
∑
yk∈M

ki .

These values correspond to the exponent of N and Xi (for i ∈ {1, . . . , n}) in Equation (2) respectively. We
show how to compute these sums ψ and αi for polynomials in P or M of a certain degree.

We see P (respectively M) as a combinatorial class with size function S(fk) = deg(fk)(respectively
S(yk) = deg(yk)). We recall that a combinatorial class is a finite or countable set on which a size function is
defined, satisfying the following conditions: (i) the size of an element is a non-negative integer and (ii) the
number of elements of any given size is finite. We define another function χ, called a parameter function,
such that χ(fk) = k` (respectively χ(yk) = ki). This allows us to compute ψ (respectively αi) as:

ψ = χ<te(P) =
∑

a∈P:S(a)<te

χ(a)

(respectively αi = χ<te(M) =
∑
a∈P:S(a)<te χ(a) ). To do so we should be able to compute given a

combinatorial class A (A = P or A = M) with size function S and the parameter function χ,

χ6p(A) =
∑

a∈A:S(a)6p

χ(a) .

We proceed as follows:
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1. We give another description of A with respect to S and χ. This description associates to the combina-
torial class an ordinary generating function (OGF) F (z, u) (using Table 1, see [BCTV16] for details).
When the class contains elements of different sizes (such as variables of degree 1 and polynomials of
degree e), the variables in the OGF are represented by the atomic element Z and the polynomials by
the element Ze, in order to take into account the degree of these polynomials. Then we “mark” the
element useful for the parameter, with a new variable u. At this level we only know how to compute∑
a∈A:S(a)=p χ(a). An easier way to compute χ6p(A) is to force all elements a of size less than or equal

to p to be of size exactly p by adding enough times a dummy element y0 such that χ(y0) = 0. In our
context of polynomials, the aim of the dummy variable y0 is to homogenize the polynomial.

Table 1: Combinatorics constructions and their OGF
Construction OGF

Atomic class Z Z(z) = z
Neutral class ε E(z) = 1
Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)
Complement A = B \ C (when C ⊆ B) A(z) = B(z)− C(z)
Cartesian product A = B × C A(z) = B(z) · C(z)
Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k

Sequence A = Seq(B) = ε+ B + B2 + . . . A(z) = 1
1−B(z)

2. We have:

χ6(A)(z) =

+∞∑
p=0

χ6p(A)zp =
∂F (z, u)

∂u

∣∣∣∣
u=1

,

3. Since Coppersmith’s method is usually used in an asymptotic way, singularity analysis enables us to
find the asymptotic value of the coefficients in an simple way by using the following theorem (see
[FS09], page 392):

Theorem 2 (Transfer Theorem). Let A be a combinatorial class with an ordinary generating function
F regular enough such that there exists a value c verifying

F (z) =

+∞∑
n=0

Fnz
n ∼
z→1

c

(1− z)α

for a non-negative integer α. The asymptotic value of the coefficient Fn is

Fn ∼
n→∞

(cnα−1)/(α− 1)! .

3. Predicting EC-LCG Sequences for Known Composer

Following [GI07], our results involve a parameter ∆ which measures how well some values approximate
the sequence elements. More precisely, we say that W = (xW , yW ) ∈ F2

p is a ∆-approximation to U =
(xU , yU ) ∈ F2

p if there exist integers e, f satisfying: |e|, |f | 6 ∆, xW + e = xU and yW + f = yU .

For a given point G ∈ E(Fp), the EC-LCG generates a sequence Un of points defined by the relation:

Un = Un−1 ⊕G = [n]G⊕ U0, n ∈ N

where U0 ∈ E(Fp) is the initial value or seed. We refer to G as the composer of the EC-LCG. In the
cryptographic setting, the initial value U0 = (x0, y0) and the constants G, a and b are supposed to be the
secret key. In the following we infer the sequence output by the EC-LCG in the case where the composer G
is known and the curve is kept secret.
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We consider two settings: the case where the most significant bits of consecutive values Un of the sequence
is output and the case where the most significant bits of the abscissa of consecutive multiple values Ukn (for
some fixed integer k) of the sequence is output. In the first case, we show that the generator is insecure if
at least a proportion of 4/5 of the most significant bits of two consecutive values U0 and U1 of the sequence
is output. In the second case, We show that the generator is insecure if at least a proportion of 7/8 of the
most significant bits of two values X(U0) and X(Uk) is output, X(P ) denoting the abscissa of the point P .

3.1. Information on consecutive inputs

Theorem 3. (two consecutive outputs) Given ∆-approximations W0, W1 to two consecutive affine value
U0, U1 produced by the EC-LCG, and given the value of the composer G = (xG, yG). Under the heuristic
assumption that all created polynomials we get by applying Coppersmith’s method with the polynomial set P
below define an algebraic variety of dimension 0, one can recover the seed U0 in heuristic polynomial time
in log p as soon as ∆ < p1/5

Proof. We suppose U0 /∈ {−G,G}. Then, clearing denominators in (1), we can translate

U1 = U0 ⊕G

into the following identities in the field Fp:

L1 = L1(x0, y0, x1) = 0mod p, L2 = L2(x0, y0, x1, y1) = 0mod p

where U0 = (x0, y0), U1 = (x1, y1) and

L1 = x3
G + x1x

2
G − x0x

2
G − 2x1xGx0 − xGx2

0 + x3
0 + 2yGy0 + x1x

2
0 − y2

G − y2
0 ,

L2 = y1xG − y1x0 − yGx0 + yGx1 − y0x1 + y0xG.

Set W0 = (α0, β0) and W1 = (α1, β1). Then using the equalities xj = αj + ej and yj = βj + fj , for
j ∈ {0, 1}, where |ej |, |fj | < ∆ leads to the following polynomial system:{

f(e0, e1, f0) = 0 mod p

g(e0, e1, f0, f1) = 0 mod p .

where
f(z1, z2, z3) = A1z1 +A2z2 +A3z3 +A4z

2
1 +A5z1z2 + z3

1 + z2
1z2 − z2

3 +A6

and
g(z1, z2, z3, z4) = B1z1 +B2z2 +B3z3 +B4z4 + z1z4 + z2z3 +B5

are polynomials whose coefficientsAi andBi are functions of xG, and the approximations values α0, α1, β0, β1.
If we fix u = z3

1 + z2
1z2 − z2

3 and v = z1z4 + z2z3, then the polynomial f becomes f1(z1, z2, z3, u) = A1z1 +
A2z2 +A3z3 +A4z

2
1 +A5z1z2 +u+A6 and g becomes g1(z1, z2, z3, z4, v) = B1z1 +B2z2 +B3z3 +B4z4 +v+B5.

Description of the attack. The adversary is therefore looking for the small solutions of the following
modular multivariate polynomial system:{

f1(z1, z2, z3, u) = 0 mod p

g1(z1, z2, z3, z4, v) = 0 mod p .

With |zj | < ∆, |u| < X = ∆3 and |v| < Y = ∆2. The attack consists in applying Coppersmith’s methods
for multivariate polynomials. From now, we use the following collection of polynomials (parameterized by
some integer t ∈ N):

P =
{
zj11 . . . zj44 f

i1
1 g

i2
1 mod pi1+i2 : i1 + i2 > 0 and j1 + · · ·+ j4 + 2i1 + i2 < 2t

}
9



The list of monomials appearing within this collection can be described as:

M =
{
zi11 z

i2
2 z

i3
3 z

i4
4 u

i5vi6 mod ∆i1+i2+i3+i4Xi5Y i6 : i1 + · · ·+ i4 + 2i5 + i6 < 2t
}
.

If we use for instance the monomial order lex (with zi < u < v) on the set of monomials, then the leading
monomial of f1 is LM(f1) = u and LM(g1) = v. Then the polynomials in P are linearly independent since
we have prohibited the multiplication by u and v.

Bounds for the polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(zj11 . . . zj44 f

i1
1 g

i2
1 ) = j1 + · · ·+j4 +2i1 + i2 and the parameter function χ(zj11 . . . zj44 f

i1
1 g

i2
1 ) = i1 + i2.

The degree of each variable zi, u, v is 1, whereas the degree of f1 is 2 and the degree of g1 is 1. For the sake
of simplicity, we can consider 0 6 i1 + i2, since the parameter function equals 0 for elements zj11 . . . zj44 f

i1
1 g

i2
1

with i1 + i2 = 0.
We can describe P as:

4∏
i=1

Seq(Z)× Seq(uZ2)× Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
This leads to the generating function:

F (z, u) =

(
1

1− z

)5

× 1

1− uz2
× 1

1− uz
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
z2(1− z) + z(1− z2)

(1− z)7(1− z2)2
,

as z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

3(1− z)
4(1− z)9

∼ 3

4(1− z)8
,

since 2t ∼ 2t− 1, this leads to:

χ<2t(P) ∼ 3

4
× (2t)7

7!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(zi11 . . . zi44 u

i5vi6) = i1 + · · · + i4 + 2i5 + i6 and the parameter function χ(zi11 . . . zi44 u
i5vi6) =

i1 + · · ·+ i4. As z1, z2, z3, z4, u, v ”count for” 1, 1, 1, 1, 2 and 1 respectively in the condition of the set, we can
describe M as:

Seq(Z2)× Seq(Z)×
4∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) =
1

(1− z2)(1− z)2
×
(

1

1− uz

)4

.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
4z

(1− z)7(1− z2)
,

as z → 1, 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2

(1− z)8
,

since 2t ∼ 2t− 1, this leads to:

χ<2t,∆(M) ∼ 2(2t)7

7!
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Bounds for the monomials modulo X. We consider the set M as a combinatorial class, with the size
function S(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4 + 2i5 + i6 and the parameter function χ(zi11 . . . zi44 u
i5vi6) = i5. As

z1, z2, z3, z4, u, v ”count for” 1, 1, 1, 1, 2 and 1 respectively in the condition of the set, we can describe M as:

5∏
i=1

Seq(Z)× Seq(uZ2)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) =
1

(1− z)6
×
(

1

1− uz2

)
.

This leads to:

χ<2t,X(M) ∼ (2t)7

4× 7!

Bounds for the monomials modulo Y . We consider again the set M as a combinatorial class, with the
size function S(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4 +2i5 + i6 and the parameter function χ(zi11 . . . zi44 u
i5vi6) = i6.

As z1, z2, z3, z4, u, v ”count for” 1, 1, 1, 1, 2 and 1 respectively in the condition of the set, we can describe M
as:

4∏
i=1

Seq(Z)× Seq(Z2)× Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) =
1

(1− z)5(1− z2)
×
(

1

1− uz

)
.

This leads to:

χ<2t,Y (M) ∼ (2t)7

2× 7!

Condition. If we denote by ν1 = χ<2t,∆(M), ν2 = χ<2t,X(M), ν3 = χ<2t,Y (M) and ε = χ<2t(P), the

condition for Coppersmith’s method is pε > ∆ν1Xν2Y ν3 , ie ∆ < p
ε

ν1+3ν2+2ν3 , where:

ε

ν1 + 3ν2 + 2ν3
∼ χ<2t(P)

χ<2t,∆(M) + 3χ<2t,X(M) + 2χ<2t,Y (M)
∼ 1

5
,

this leads to the bound:
∆ < p

1
5 .

Complexity of the attack. The dimensions of the matrix used in Coppersmith methods depend on the
cardinalities of the set of polynomials and monomials. To compute the cardinalities of the sets P and M,
we make use of the parameters functions χ(zj11 . . . zj44 f

i1
1 g

i2
1 ) = 1 and χ(zi11 . . . zi44 u

i5vi6) = 1. This leads to
the generating functions:

F1(z) =

(
1

1− z

)5

×
(

1

1− z2
× 1

1− z
− 1

)
and

F2(z) =

(
1

1− z

)5

× 1

1− z2
× 1

1− z
,
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for P and M respectively.

We have:

F1(z), F2(z) ∼
z→1

1

2(1− z)7
,

which leads when t goes to infinity to the asymptotic bound:

1

2
× (2t)6

6!

From the inequality (2), one can see that the attack works if

pε > ∆ν1Xν2Y ν3 ,

with I1 = {i = (i1, . . . , i6)|0 6 i1 + · · ·+ i4 + 2i5 + i6 < 2t}, I2 = {i = (j1, . . . , j4, i1, i2)| i1 + i2 > 0 and 0 6
j1 + · · ·+ j4 + 2i1 + i2 < 2t},

ν1 =
∑
i∈I1

i1 + · · ·+ i4, ν2 =
∑
i∈I1

i5, ν3 =
∑
i∈I1

i6 and ε =
∑
i∈I2

i1 + i2

. Putting X = ∆3 and Y = ∆2, we then have the following theoretical bound

∆ < pδtheo ,

where δtheo = ε
ν1+3ν2+2ν3

. If one uses the non-simplified inequality (3), we only obtain

∆ <
(

2−ω(ω−1)/4ω−ω/2
)
pδtheo

where ω = #M denotes the number of monomials. The “error term” is thus independent of p but so small
that we can only conclude theoretically that the attack works only for very large p (several hundreds of bits
even for only t = 2). However, our experiments show that the attack works for practical values of p (and
even sometimes for ∆ < pδexp , where δexp > δtheo. We give in the table below the cardinalities of the sets
P, M and the theoretical bound δtheo for smaller t.

t 1 2 3 4 5 6 7 8 9
number of polynomials 1 27 188 776 2393 6111 13664 27672 51897
number of monomials 6 62 314 1106 3108 7476 16044 31548 57882

δtheo 0.167 0.182 0.187 0.190 0.192 0.193 0.194 0.195 0.1953

Unfortunately, even if t is small, the constructed matrix is of huge dimension (since the number of
monomials is quite large) and the computation which is theoretically polynomial-time becomes in practice
prohibitive. These attacks are nethertheless good evidence of a weakness in this pseudo-random generator.

Experimental Results. We have implemented the attack in Sage 7.6 on a MacBook Air laptop computer
(2,2 GHz Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac OSX 10.10.5). Table 2 lists the dimension d of
the lattice (d = ]P + ]m), the theoretical bound δtheo and an experimental bound δexp for a m-bit prime p.
We consider the family of polynomials P with t = 2 (since for t > 2, the dimension of the lattice is huge).
We ran several experiments for all parameters and Table 2 gives the average running time (in seconds) of
the LLL algorithm, the Gram-Schmidt’s orthogonalization algorithm and the Gröbner basis computation.

This bound improves the known bound ∆ < p1/6. Next we further improve the previous bound and we
show that the generator is insecure if at least a proportion of 8/11 of the most significant bits of a large
number of consecutive values Ui of the sequence is output.
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m t δtheo δexp d LLL time(s) Gram-Schmidt’s time(s) Gröbner basis time(s)
128 2 0.182 0.20 89 2.908 20.910 0.567
256 2 0.182 0.12 89 2.957 46.157 6.474

Table 2: Predicting EC-LCG Sequences for Known Composer

Theorem 4. (more consecutive outputs)
Given ∆-approximations W0, W1,. . . ,Wn (for some integer n > 1) to n + 1 consecutive affine values U0,
U1,. . . ,Un produced by the EC-LCG, and given the value of the composer G = (xG, yG). Under the heuristic
assumption that all created polynomials we get by applying Coppersmith’s method with the polynomial set P
below define an algebraic variety of dimension 0, one can recover the seed U0 in polynomial time in log p as

soon as ∆ < p
3n

11n+4

Proof. Let us assume, for instance that the adversary has access to n+ 1 ∆-approximations W0, W1,. . . ,Wn

of U0, U1,. . . ,Un produced by the EC-LCG. Then using the equalities xj = αj + ej and yj = βj + fj , for
j ∈ {0, . . . , n}, where |ej |, |fj | < ∆ and Wj = (αj , βj) and Uj = (xj , yj) leads to the following polynomial
system: 

f ′1(e0, e1, f0) = 0 mod p

g′1(e0, e1, f0, f1) = 0 mod p

...

f ′n(en−1, en, fn−1) = 0 mod p

g′n(en−1, en, fn−1, fn) = 0 mod p .

Where for i ∈ {1, . . . , n},

f ′i(zi−1, zi, zn+i) = A1zi−1 +A2zi +A3zn+i +A4z
2
i−1 +A5zi−1zi + z3

i−1 + z2
i−1zi − z2

n+i +A6

and

g′i(zi−1, zi, zn+i, zn+i+1) = B1zi−1 +B2zi +B3zn+i +B4zn+i+1 + zi−1zn+i+1 + zizn+i +B5

are polynomials whose coefficients Ai and Bi are functions of xG, and the approximations values αk, βk,
(k ∈ {i − 1, i}). If we fix ui = z3

i−1 + z2
i−1zi − z2

n+i and vi = zi−1zn+i+1 + zizn+i, then the polynomial
f ′i becomes fi(zi−1, zi, zn+i, ui) = A1zi−1 + A2zi + A3zn+i + A4z

2
i−1 + A5zi−1zi + ui + A6 and g′i becomes

gi(zi−1, zi, zn+i, zn+i+1, vi) = B1zi−1 +B2zi +B3zn+i +B4zn+i+1 + vi +B5. The adversary is then looking
for the solutions of the modular multivariate polynomial system:

f1(z0, z1, zn+1) = 0 mod p

g1(z0, z1, zn+1, zn+2) = 0 mod p

...

fn(zn−1, zn, z2n) = 0 mod p

gn(zn−1, zn, z2n, z2n+1) = 0 mod p .

With |zj | < ∆, j ∈ {0, . . . , 2n + 1}, |ui| < X = ∆3 and |vi| < Y = ∆2, i = 1, . . . , n. We consider the
following collection of polynomials:

P =

{
f̃j0,...,j2n+1,i1,...,in,l1,...,ln = zj00 . . . z

j2n+1

2n+1 f
i1
1 . . . f inn g

l1
1 . . . glnn mod pi1+l1···+in+ln

s.t. i1 + l1 + · · ·+ in + ln > 0 and j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln < 2t

}
.
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The list of monomials appearing within this collection can be described as:

M =

{
zj00 . . . z

j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n mod ∆j0+···+j2n+1Xi0+···+inY l0+···+ln

s.t. j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln < 2t

}
.

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j0,...,j2n+1,i1,...,in,l1,...,ln) = j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln and the parameter

function χ(f̃j0,...,j2n+1,i1,...,in,l1,...,ln) = i1 + l1 + · · ·+ in + ln. We can describe P as:

2n+1∏
i=0

Seq(Z)×
n∏
j=1

Seq(uZ2)×
n∏
k=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy variable.
This leads to the generating function:

F (z, u) =
1

(1− z)2n+3
× 1

(1− uz2)n
× 1

(1− uz)n
.

We have

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

3n

2n+1(1− z)4n+4
,

since 2t ∼ 2t− 1, we get:

χ<2t(P) ∼ 3n

2n+1
× (2t)4n+3

(4n+ 3)!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function
S(zj00 . . . z

j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln and the parameter function

χ(zj00 . . . z
j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = j0 + · · ·+ j2n+1. We can describe M as:

n∏
i=1

Seq(Z2)×
n∏
i=1

Seq(Z)×
2n+1∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) =
1

(1− z2)n(1− z)n+1
× 1

(1− uz)2n+2
.

As z → 1, 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2n+ 2

2n(1− z)4n+4
,

since 2t ∼ 2t− 1, this leads to:

χ<2t,∆(M) ∼ 2n+ 2

2n
× (2t)4n+3

(4n+ 3)!
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Bounds for the monomials modulo X.. We consider the set M as a combinatorial class, with the size
function
S(zj00 . . . z

j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln and the parameter function

χ(zj00 . . . z
j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = i1 + · · ·+ in. We can describe M as:

2n+1∏
i=0

Seq(Z)×
n∏
i=1

Seq(Z)×
n∏
i=

Seq(uZ2)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) =
1

(1− z)3n+3
× 1

(1− uz2)n
.

This leads to:

χ<2t,X(M) ∼ n

2n+1
× (2t)4n+3

(4n+ 3)!

Bounds for the monomials modulo Y . We consider the set M as a combinatorial class, with the size
function
S(zj00 . . . z

j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln and the parameter function

χ(zj00 . . . z
j2n+1

2n+1 u
i1
1 v

l1
1 . . . uinn v

ln
n ) = l1 + · · ·+ ln. We can describe M as:

2n+1∏
i=0

Seq(Z)×
n∏
i=1

Seq(Z2)×
n∏
i=

Seq(uZ)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) =
1

(1− z)2n+3(1− z2)n
× 1

(1− uz)n
.

This leads to:

χ<2t,Y (M) ∼ n

2n
× (2t)4n+3

(4n+ 3)!

Condition. If we denote by ν1 = χ<2t,∆(M), ν2 = χ<2t,X(M), ν3 = χ<2t,Y (M) and ε = χ<2t(P), the

condition for Coppersmith’s method is pε > ∆ν1Xν2Y ν3 , ie ∆ < p
ε

ν1+3ν2+2ν3 , where:

ε

ν1 + 3ν2 + 2ν3
∼ χ<2t(P)

χ<2t,∆(M) + 3χ<2t,X(M) + 2χ<2t,Y (M)
∼ 3n

11n+ 4
,

this leads to the expecting bound:

∆ < p
3n

11n+4 →
n→∞

∆ < p3/11.

3.2. Information on non-consecutive inputs

In this section, we consider an attacker with information on non-consecutive inputs. Our attacks only
make use of the abscissa of the points generated by the EC-LCG. Given as above parameter ∆ which measures
how well some values approximate the sequence elements, we say that w ∈ Fp is a ∆-approximation to x ∈ Fp
if there exist an integer e satisfying: |e| 6 ∆ and w + e = x.
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Theorem 5. (two outputs) Given ∆-approximations w0, wk to two values X(U0), X(Uk) produced by
the EC-LCG. Under the heuristic assumption that all created polynomials we get by applying Coppersmith’s
method with the polynomial set P below define an algebraic variety of dimension 0, one can recover the seed
U0 in polynomial time in log p as soon as ∆ < p1/8.

Proof. We set U0 = (x0, y0), Uk = (xk, yk) and G = (xG, yG). We then have the equalities:

xi = wi + ei where |ei| < ∆, i ∈ {0, k}.

We have U0 − Uk = −kG, thus U0 − Uk + kG = O. Hence:

f3(x0, xk, X(kG)) = 0,

where f3 is the polynomial defined in section 2. Using the equalities xi = wi + ei, i ∈ {0, k} we obtain the
polynomial equation:

f(e0, ek) = 0,

where f(y1, y2) = f3(w0 + y1, w0 + y2, X(kG)). If we consider monomials with respect to lexicography
ordering, we have LM(f) = y2

1y
2
2 . f is a polynomial of degree 4. We consider the following collection of

polynomials:

P = {f̃j1,j2,i = yj11 y
j6
6 f

i mod pi : i > 0 and j1 + j2 + 4i < 4t

and (j1 < 2 ∨ j2 < 2)} ,

One can check that the polynomials f̃j1,j2,i are linearly independent since LM(f) 6= yj11 y
j2
2 for each

f̃j1,j2,i from P. The list of monomials appearing within this collection can be described as:

M =
{
zj11 z

j2
2 mod ∆j1+j2 : j1 + j2 < 4t

}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j1,j2,i) = j1 +j2 +4i and the parameter function χ(f̃j1,j2,i) = i. Since the degree of each variable
zi is 1 and the degree of f is 4, we can describe P as:

Seq(uZ4)×
(
(ε+ Z)(Seq(Z) + Z2Seq(Z))

)
× Seq(Z),

where the last one is for the dumming value y0.
This leads to the generating function:

F (z, u) =
(1 + z)(1 + z2)

(1− z)2
× z4

1− uz4
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
z4(1 + z)(1 + z2)

(1− z)2(1− z4)2

as z → 1, 1− z4 ∼ 4(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1

4(1− z)4
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ 1

4
× (4t)3

3!
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Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(yj11 y

j2
2 ) = j1 + j2 and the parameter function χ(yj11 y

j2
2 ) = j1 + j2. Since the degree of each zi is

1, we can then described M as:
2∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dumming value y0.
Which leads to the generating function:

F (z, u) =

(
1

1− uz

)2

× 1

1− z
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
2z

(1− z)4
,

as z → 1, 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2

(1− z)4
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ 2(3t)3

3!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)

χ<4t(M)
∼ 1

8
,

this leads to the expecting bound:
∆ < p

1
8 .

We can further improve the previous bound and we show that the generator is insecure if at least a
proportion of 1/4 of the most significant bits of a large number of abscissa of the values Uki of the sequence
is output.

Theorem 6. (more outputs) Given ∆-approximations w0, wk,. . . ,wkn to n+1 values X(U0), X(Uk),. . . ,
X(Ukn) produced by the EC-LCG. Under the heuristic assumption that all created polynomials we get by
applying Coppersmith’s method with the polynomial set P below define an algebraic variety of dimension 0,
one can recover the seed U0 in polynomial time in log p as soon as ∆ < p

n
4(n+1) .

Proof. We set Ukt = (xkt, ykt), for t = 0, . . . , n and G = (xG, yG). We then have the equalities:

xi = wi + ei where |ei| < ∆, i ∈ {0, k, . . . , nk}.

We have Ukt − Uk(t+1) = −kG, for t = 0, . . . , n− 1. Thus Ukt − Uk(t+1) + kG = O. Hence:

f3(xtk, xk(t+1), X(kG)) = 0,

where f3 is the polynomial defined in section 2. Using the equalities xi = wi + ei, i ∈ {0, k, . . . , kn} we
obtain the polynomial system:

fj(e(j−1)k, ejk) = 0, j ∈ {1, . . . , n}

17



where fj(yj−1, yj) = f3(w(j−1)k + yj−1, wjk + yj , X(kG)). If we consider monomials with respect to lexi-
cography ordering, we have LM(fk) = y2

j−1y
2
j . fj is a polynomial of degree 4. We consider the following

collection of polynomials:

P = {f̃j0,...,jn,ik = yj00 . . . yjnn f
ik
k mod pik : k ∈ {1, . . . , n}; (jk−1 < 2 ∨ jk < 2)

(ik > 0) and (j0 + · · ·+ jn + 4ik) < 4t} ,

One can check that the polynomials f̃j0,...,jn,ik are linearly independent. The list of monomials appearing
within this collection can be described as:

M =
{
zj00 . . . zjnn mod ∆j0+···+jn : j0 + · · ·+ jn < 4t

}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j0,...,jn,ik) = j0 + · · ·+ jn + 4ik and the parameter function χ(f̃j0,...,jn,ik) = ik. Since the degree
of each variable zi is 1 and the degree of f is 4, we can describe P as:

n∑
k=1

Seq(uZ4)×
(
(ε+ Z)(Seq(Z) + Z2Seq(Z))

)
×

n∏
j=0,j 6=k−1,k

Seq(Z)× Seq(Z),

where the last one is for the dumming value z0.
This leads to the generating function:

F (z, u) =

n∑
k=1

(1 + z)(1 + z2)

(1− z)n+1
× 1

1− uz4
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
nz4(1 + z)(1 + z2)

(1− z)n+1(1− z4)2

as z → 1, 1− z4 ∼ 4(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

4(1− z)n+3
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ n

4
× (4t)n+2

(n+ 2)!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(yj11 y

j2
2 ) = j0 + · · ·+ jn and the parameter function χ(yj00 . . . yjnn ) = j0 + · · ·+ jn. Since the degree

of each zi is 1, we can then described M as:

n∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dumming value z0.
Which leads to the generating function:

F (z, u) =

(
1

1− uz

)n+1

× 1

1− z
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
2z

(1− z)n+3
,

18



as z → 1, 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n+ 1

(1− z)n+3
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ (n+ 1)(4t)n+2

(n+ 2)!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)

χ<4t(M)
∼ n

4(n+ 1)
,

this leads to the expecting bound:
∆ < p

n
4(n+1) →

n→∞
∆ < p

1
4 .

4. Predicting EC-LCG Sequences for Unknown Composer

In this section, we infer the EC-LCG in the case where the composer G is unknown and the curve is
kept secret. In the following, We show that the generator is insecure if at least a proportion of 23/24 of the
most significant bits of three consecutive values U0 and U1 and U2 of the sequence is output.

Theorem 7. (three consecutive outputs) Given ∆-approximations W0, W1, W2 to three consecutive
affine values U0, U1, U2 produced by the EC-LCG. Under the heuristic assumption that all created polyno-
mials we get by applying Coppersmith’s method with the polynomial set P below define an algebraic variety
of dimension 0, one can recover the seed U0 and the composer G in polynomial time in log p as soon as
∆ < p1/24.

Proof. We set U0 = (x0, y0), U1 = (x1, y1), U2 = (x2, y2), W0 = (α0, β0), W1 = (α1, β1) and W2 = (α2, β2).
We then have the equalities:

xi = αi + ei, yj = βj + fj , where |ei|, |fi| < ∆, i ∈ {0, 1, 2}. (4)

We also have: 
y2

0 = x3
0 + ax0 + b

y2
1 = x3

1 + ax1 + b

y2
2 = x3

2 + ax2 + b .

Eliminating the curve parameters a, b and assuming that U2 6= ±U1(that is, x2 6= x1), we obtain the
following equation:

y2
2(x0 − x1) + x3

2(x1 − x0) + x3
0(x2 − x1) + y3

0(x1 − x2) + x3
1(x0 − x2) + y2

1(x2 − x0) = 0

Using the equalities (3), leads to the equation:

f(e0, e1, e2, f0, f1, f2) = 0 mod p

where f is a polynomial of degree 4 whose coefficients are functions of α0, α1, α2, β0, β2, and β2.
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Description of the attack. The adversary is therefore looking for the solutions smaller than ∆ of the
following modular multivariate polynomial equation:

f(z1, . . . , z6) = 0 mod p

The attack consists in applying Coppersmith’s methods as in the former subsection. If we consider monomials
with respect to lexicographic order, then the leading monomial of f is z3

1z2. From now on, we use the following
collection of polynomials:

P = {f̃j1,...,j6,i = zj11 . . . zj66 f
i mod pi : i > 0 and j1 + · · ·+ j6 + 4i < 4t

and (0 6 j1 < 3 ∨ j2 = 0)} ,

One can check that the polynomials f̃j1,...,j6,i are linearly independent since LM(f) 6= zj11 . . . zj66 for each

f̃j1,...,j6,i from P. The list of monomials appearing within this collection can be described as:

M =
{
zj11 . . . zj66 mod ∆j1+···+j6 : j1 + · · ·+ j6 < 4t

}
.

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j1,...,j6,i) = j1 + · · · + j6 + 4i and the parameter function χ(f̃j1,...,j6,i) = i. Since the degree of
each variable zi is 1 and the degree of f is 4, we can describe P as:

4∏
i=1

Seq(Z)× Seq(uZ4)×

(ε+ Z + Z2︸ ︷︷ ︸
z1

)(ε+ ZSeq(Z)︸ ︷︷ ︸
z2

) + Z3Seq(Z)︸ ︷︷ ︸
z1

× Seq(Z),

where the last one is for the dummy value z0.
This leads to the generating function:

F (z, u) =

(
1

1− z

)5

× 1

1− uz4
×
(

(1 + z + z2)(1 + z/(1− z)) +
z3

1− z

)
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
1 + z + z2 + z3

(1− z)6
× z4

(1− z4)2

as z → 1, 1− z4 ∼ 4(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1

4(1− z)8
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ 1

4
× (4t)7

7!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(zj11 . . . zj66 ) = j1 + · · · + j6 and the parameter function χ(zj11 . . . zj66 ) = j1 + · · · + j6. Since the
degree of each zi is 1, we can then described M as:

6∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) =

(
1

1− uz

)6

× 1

1− z
.
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We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
6z

(1− z)8
,

as z → 1, 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

6

(1− z)8
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ 6(3t)7

7!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)

χ<4t(M)
∼ 1

24
,

this leads to the expecting bound:
∆ < p

1
24 .

Complexity of the attack. To compute the cardinalities of the sets P and M, we make used of the parameters
functions χ(f̃j1,...,j6,i) = 1 and χ(zj11 . . . zj66 ) = 1. This leads to the generating functions:

F1(z) =

(
1

1− z

)5

× z4

1− z4
× 1 + z + z2 + z3

1− z

and

F2(z) =
1

(1− z)7
,

for P and M respectively.
Asymptotic bounds. We have:

F1(z), F2(z) ∼
z→1

1

(1− z)7
,

which leads when t goes to infinity to the asymptotic bound:

(4t)6

6!

Concrete bounds. We give in the table below the cardinalities of the sets P and M for smaller t.

t 1 2 3 4 5
number of polynomials 0 84 1716 12376 54264
number of monomials 84 1716 12376 54264 177100

This bound improves the known bound ∆ < p1/46. Next, we further improve the previous bound and we
show that the generator is insecure if at least a proportion of 7/8 of the most significant bits of an infinite
consecutive values Ui of the sequence is output.

Theorem 8. (more consecutive outputs)
Given ∆-approximations W0, W1,. . . ,Wn+1 (for some integer n > 1) to n+ 2 consecutive affine values U0,
U1,. . . ,Un+1 produced by the EC-LCG. Under the heuristic assumption that all created polynomials we get
by applying Coppersmith’s method with the polynomial set P below define an algebraic variety of dimension
0, one can recover the seed U0 and the composer G in polynomial time in log p as soon as ∆ < pn/4(2n+4).
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Proof. Let us assume, for instance that the adversary has access to n+1 ∆-approximations W0, W1,. . . ,Wn+1

of U0, U1,. . . ,Un+1 produced by the EC-LCG. Then using the equalities xj = αj + ej and yj = βj + fj , for
j ∈ {0, . . . , n}, where |ej |, |fj | < ∆ and Wj = (αj , βj) and Uj = (xj , yj) and the fact that y2

j = x3
j + axj + b,

j ∈ {0, . . . , n + 1} and eliminating the curve parameters from three consecutive points Uj , Uj+1, Uj+2,j ∈
{0, . . . , n− 1} leads to the following polynomial system:

f1(e0, e1, e2, f0, f1, f2) = 0 mod p

...

fn(en−1, en, en+1, fn−1, fn, fn+1) = 0 mod p .

Where fj are polynomials of degrees 4 and LM(fi) = z3
i−1zi. The adversary is then looking for the solutions

of the modular multivariate polynomial system:
f1(z0, z1, z2, zn+2, zn+3, zn+4) = 0 mod p

...

fn(zn−1, zn, zn+1, z2n+1, z2n+2, z2n+3) = 0 mod p .

We consider the following collection of polynomials:

P =

 f̃j0,...,j2n+3,αi = zj00 . . . z
j2n+3

2n+3 f
αi
i mod pαi

s.t. i ∈ {1, . . . , n}; (ji−1 < 3 ∨ ji = 0)
(αi > 0) and (j0 + · · ·+ j2n+3 + 4αi) < 4t

 .

The list of monomials appearing within this collection can be described as:

M =
{
zj00 . . . z

j2n+3

2n+3 mod ∆j0+···+j2n+3 : j0 + · · ·+ j2n+3 < 4t
}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j0,...,j2n+3,αi) = j0 + · · · + j2n+3 + 4αi and the parameter function χ(f̃j0,...,j2n+3,αi) = αi. We
can describe P as:

n∑
i=1

2n+3∏
j=0

j∈{i−1,i}

Seq(Z)× Seq(uZ4)

×
(
(ε+ Z + Z2)(ε+ ZSeq(Z)) + Z3Seq(Z)× ε

)
× Seq(Z),

where the last one is for the dummy variable.
This leads to the generating function:

F (z, u) =

(
1

(1− z)2n+3
× 1

1− uz4

)
× n

(
(1 + z + z2)(1 + z/(1− z)) +

z3

1− z

)
.

We have

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

4(1− z)2n+6
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ n

4
× (4t)2n+5

(2n+ 5)!
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Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(zj00 . . . z

j2n+3

2n+3 ) = j0 + · · ·+ j2n+3 and the parameter function χ(zj00 . . . z
j2n+3

2n+3 ) = j0 + · · ·+ j2n+3.
We can describe M as:

2n+4∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy variable.
This leads to the generating function:

F (z, u) =

(
1

1− uz

)2n+4

× 1

1− z
.

We get

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2n+ 4

(1− z)2n+6
,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ (2n+ 4)× (4t)2n+5

(2n+ 5)!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)

χ<4t(M)
∼ n

4(2n+ 4)
,

This leads to the expecting bound:

∆ < p
n

4(2n+4) →
n→∞

∆ < p1/8.

5. Predicting the Elliptic curve power generator

We show that one can predict the sequences generated by the EC-PG in the case where the constants
a, b and e are known. We show that the generator is insecure if at least a proportion of 1− 1

2e2 of the most
significant bits of two consecutive values X(V0) and X(V1) is output.

Theorem 9. (two consecutive outputs) Given ∆-approximations w0, w1 to two consecutive values X(V0),
X(V0) produced by the EC-PG and under the heuristic assumption that all created polynomials we get by
applying Coppersmith’s method with the polynomial set P below define an algebraic variety of dimension 0,

one can recover the seed V0 in heuristic polynomial time in log p as soon as ∆ < p
1

2e2

Proof. We put V0 = (x0, y0), V1 = (x1, y1). We have x1 = θe(x0)
ψ2
e(x0) since V1 = eV0. Using the equalities

x0 = w0 + α0 and x1 = w1 + α1 with αi < ∆, we have f(α1, α0) = 0, where f(y1, y2) = (y1 + w1)ψ2
e(y2 +

w0)−θe(y2 +w0). We are looking for small modular modulo p. If we monomials with respect to lexicography

ordering, then the leading monomial of f is y1y
e2−1
2 . f is a polynomial of degree e2. We consider the following

collection of polynomials (parameterized by some integer t ∈ N):

P =

{
f̃j1,j2,i = yj11 y

j2
2 f

i mod pi : i > 0 and j1 + j2 + e2i < e2t
and (j1 = 0 ∨ 0 6 j2 6 e2 − 2)

}
.

One can check that the polynomials f̃j1,j2,i are linearly independent since LM(f̃j1,j2,i) 6= yj11 y
j2
2 for each

f̃j1,j2,i. The list of monomials appearing within this collection can be described as:

M =
{
yj11 y

j2
2 mod ∆j1+j2 : j1 + j2 < e2t

}
.
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Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j1,j2,i) = j1 + j2 + e2i and the parameter function χ(f̃j1,j2,i) = i. Since the degree of each
variable zi is 1 and the degree of f is e2, we can describe P as:

Seq(uZe
2

)×

(ε+ Z + · · ·+ Ze
2−2︸ ︷︷ ︸

y2

)(ε+ ZSeq(Z)︸ ︷︷ ︸
y1

) + Ze
2−1Seq(Z)︸ ︷︷ ︸

y2

× Seq(Z),

where the last one is for the dumming value y0.
This leads to the generating function:

F (z, u) =

(
1

1− z

)2

× 1

1− uze2
×
(

1 + z + · · ·+ ze
2−1
)
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
ze

2

(1 + z + · · ·+ +ze
2−1)

(1− z)2(1− ze2)2

as z → 1, 1− ze2 ∼ e2(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1

e2(1− z)4
,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(P) ∼ 1

e2
× (e2t)3

3!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(zj11 . . . zj66 ) = j1 + · · · + j6 and the parameter function χ(yj11 y

j2
2 ) = j1 + j2. Since the degree of

each zi is 1, we can then described M as:

2∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dumming value y0.
Which leads to the generating function:

F (z, u) =

(
1

1− uz

)2

× 1

1− z
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
2z

(1− z)4
,

which leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2

(1− z)4
,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(M) ∼ 2(e2t)3

3!
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Condition. If we denote by ν = χ<e2t(P), and ε = χ<e2t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<e2t(P)

χ<e2t(M)
∼ 1

2e2
,

this leads to the expecting bound:

∆ < p
1

2e2 .

Theorem 10. (more consecutive outputs) Given ∆-approximations w0, w1,. . . ,wn (for some integer
n > 1) to n+1 consecutive values X(V0), X(V1),. . . , X(V1) produced by the EC-PG and under the heuristic
assumption that all created polynomials we get by applying Coppersmith’s method with the polynomial set P
below define an algebraic variety of dimension 0, one can recover the seed V0 in heuristic polynomial time

in log p as soon as ∆ < p
n

(n+1)e2

Proof. We put Vi = (xi, yi), i ∈ {0, . . . , n}. We have xj+1 =
θe(xj)
ψ2
e(xj)

since Vj+1 = eVj for j ∈ {0, . . . , n− 1}.
Using the equalities xi = wi + αi, i ∈ {0, . . . , n} with αi < ∆, we have fj(αj , αj−1) = 0, for j ∈ {1, . . . , n}
where fj(yj−1, yj) = (yj−1 + wj)ψ

2
e(yj + wj−1) − θe(yj + wj−1). We are then looking for small modular

modulo p. We use the Coppersmith’s methods to recover the desired solution in polynomial time. If we

monomials with respect to lexicography ordering, then the leading monomial of each fj is yj−1y
e2−1
j . fj

is a polynomial of degree e2. We consider the following collection of polynomials (parameterized by some
integer t ∈ N):

P =

{
f̃j1,...,jn,ik = yj11 . . . yjnn f

ik
k mod pik : ik > 0, k ∈ {1, . . . , n}, and

j1 + · · ·+ jn + e2ik < e2t and (jk−1 = 0 ∨ 0 6 jk 6 e2 − 2)

}
.

One can check that the polynomials f̃j1,...,jn,ik are linearly independent since LM(f̃j1,...,jn,ik) 6= yj11 . . . yjnn
for each f̃j1,...,jn,ik . The list of monomials appearing within this collection can be described as:

M =
{
yj00 . . . yjnn mod ∆j0+···+jn : j0 + · · ·+ jn < e2t

}
.

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with the size
function S(f̃j1,...,jn,ik) = j1 + · · ·+ j2 + e2ik and the parameter function χ(f̃j1,...,jn,ik) = ik. Since the degree
of each variable zi is 1 and the degree of fk is e2, we can describe P as:

∑n
k=1 Seq(uZe

2

)×

(ε+ Z + · · ·+ Ze
2−2︸ ︷︷ ︸

yk

)(ε+ ZSeq(Z)︸ ︷︷ ︸
yk−1

) + Ze
2−1Seq(Z)︸ ︷︷ ︸

yk

×∏n
j=0,j 6=k,k−1 Seq(Z)×Seq(Z),

where the last one is for the dumming value z0.
This leads to the generating function:

F (z, u) =

n∑
k=1

(
1

1− z

)n+1

× 1 + z + · · ·+ ze
2−1

1− uze2
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
nze

2

(1 + z + · · ·+ +ze
2−1)

(1− z)n+1(1− ze2)2

as z → 1, 1− ze2 ∼ e2(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

e2(1− z)n+3
,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(P) ∼ n

e2
× (e2t)n+2

(n+ 2)!

25



Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with the size
function S(zj11 . . . zj66 ) = j1 + · · · + j6 and the parameter function χ(yj00 . . . yj2n ) = j1 + · · · + jn. Since the
degree of each yi is 1, we can then described M as:

n∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dumming value z0.
Which leads to the generating function:

F (z, u) =

(
1

1− uz

)(n+1)

× 1

1− z
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

=
(n+ 1)z

(1− z)n+3
,

which leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n+ 1

(1− z)(n+ 3)
,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(M) ∼ (n+ 1)(e2t)(n+ 2)

(n+ 2)!

Condition. If we denote by ν = χ<e2t(P), and ε = χ<e2t(M), the condition for Coppersmith’s method is
pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<e2t(P)

χ<e2t(M)
∼ n

(n+ 1)e2
,

this leads to the expecting bound:

∆ < p
n

(n+1)e2 →
n→∞

∆ < p
1
e2 .

6. Conclusion

We analyzed the security of the Elliptic Curve Linear Congruential Generator (EC-LCG) and of the
Elliptic Curve Power Generator (EC-PG). In the case where the composer is known, we showed that the
EC-LCG is insecure if at least a proportion of 8/11 of the most significant bits of an arbitrary large number
of consecutive values Ui of the sequence is output. We also tackle the case where the most significant bits of
an arbitrary large number of non consecutive values (namely the most significant bits of the abscissa of values
Uki for some fixed integer k) of the sequence is output and we showed that the EC-LCG is insecure if at
least a proportion of 3/4 of the most significant bits is output. Furthermore, we consider the cryptographic
setting where the composer is unknown and we showed that this generator is insecure if at least a proportion
of 7/8 of the most significant bits of an arbitrary large number of consecutive values Ui of the sequence is
output. Finally, we showed that the EC-PG is insecure if a proportion of at least 1 − 1/e2 of the most
significant bits of the abscissa of an arbitrary large number of consecutive values Vi of the sequence is
output. However, our results are theoretical since in practice, the performance of Coppersmith’s method in
our attacks is prohibitive because of large dimension of the constructed lattice but they are good evidences
of the weaknesses of these generators.
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