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Abstract
Array measurements can be contaminated by strong noise, especially when dealing with microphones located

near or in a flow. The denoising of these measurements is crucial to allow efficient data analysis or source imaging.
In this paper, a denoising approach based on a Probabilistic Factor Analysis (PFA) is proposed. It relies on
a decomposition of the measured cross-spectral matrix (CSM) using the inherent correlation structure of the
acoustical field and of the flow-induced noise. This method is compared with three existing approaches, aiming at
denoising the CSM, without any reference or background noise measurements and without any information about
the sources of interest. All these methods make the assumption that the noise is statistically uncorrelated over the
microphones, and only one of them significantly impairs the off-diagonal terms of the CSM. The main features of
each method are first reviewed, and their performances are then evaluated by way of numerical simulations along
with measurements in a closed-section wind tunnel.

1 Introduction

Nowadays, the use of multichannel measurements is a
current practice for the experimental characterization
of noise sources. Automotive, health-care and aero-
nautics are a few examples of industries where array
systems are largely employed. In this context, several
techniques based on advanced signal processing have
been developed. Some of them are in the field of acous-
tic imaging techniques, where the main goals are to
locate, quantify and rank noise sources of different ori-
gins. Common to all experimental approaches, is the
presence of (extraneous) measurement noise affecting
the quality of measured signals. Examples of measure-
ment noise are for instance, electronic noise, ambient
noise or flow-induced noise, among others.

The issue of measurement noise has been investigated
since the late 70s in the signal processing community.
One classical work is the well-known multiple signal
classification (MUSIC) algorithm [1]. The MUSIC al-
gorithm exploits the eigenstructure of an estimated
covariance matrix in order to distinguish signal from
noise. The algorithm is based on the assumption that
signal and noise span different subspaces, which can
be identified by a clear transition if one looks at the
eigenvalue spectrum of the covariance matrix. However,
this observation holds only for high signal-to-noise ratio
(SNR) scenarios and small number (as compared to the

number of microphones) of uncorrelated sources. Apart
from these particular cases, the eigenvalues of the co-
variance matrix exhibit a continuous decrease and the
separation of noise and signal subspaces is more cumber-
some. Also in the late 70s, Chung[2] proposed a method
for the extraction of flow-induced noise from simultane-
ous measurements of pressure fluctuations. The method,
which has then been coined as the “three-microphone
method” is based on the coherence function between
each microphone pair of a three-probe system. The
main assumption of this approach is that the flow noise
at three spatially separated transducers is uncorrelated.

In the early 90s, in the underwater acoustics commu-
nity, researchers have started to deal with the scenario
of poor signal-to-noise ratios [3]. In this context, a first
proposition has been formulated for the particular case
of uniform linear arrays. It is known that for uncorre-
lated sources the cross-spectral matrix (CSM) measured
by this particular array under a far-field assumption
has a block Toeplitz structure. Thus, denoising is per-
formed by forcing the estimated CSM to be Toeplitz,
by averaging its elements along its diagonals. In the
signal processing community this method is also known
as Cadzow denoising [4]. Forster and Asté [5, 6] have
later generalized this technique for the case of arbitrary
array configurations. The main idea therein is to first
generate a subspace of Hermitian matrices based upon a
model which depends on the array geometry and on the
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assumption of uncorrelated sources. Denoising is then
simply performed by projecting the estimated CSM
onto the designed subspace.

Aeroacoustics is another field of application that has
shown interest in the problem of denoising acoustical
pressure signals. This is mainly due to the fact that
the signals of interest are often highly disturbed by
the presence of flow-induced noise or installation ef-
fects in aerodynamic wind-tunnels for instance [7]. A
widespread practice is to set the diagonal entries of an
estimated cross-spectral matrix to zero. The justifica-
tion behind it is that flow induced noise has generally
a spatial correlation which is smaller than a typical
microphone inter-spacing encountered in arrays. More
advanced methods have been recently proposed in this
community. For instance, Bulté[8] has applied similar
ideas to the subspace approaches mentioned in the pre-
vious paragraph for the suppression of extraneous noise
inherent to wind tunnel measurements. It is proposed
that the noise subspace may be generated either per-
forming a singular value decomposition of a measured
“background” CSM or by using a Spherical Harmonics
Decomposition of the sound field generated by multiple
equivalent sources around the model. Transforming the
spatially sampled pressure field to other representation
spaces such as the wavenumber domain [9, 10, 11] has
recently seen much use for the separation of pressure
fluctuations stemming from different origins. Ehren-
fried et al. [12, 13] have proposed an algorithm so
called BiClean which uses a wavenumber decomposi-
tion to reduce background noise from wind-tunnel array
measurements.

In practical situations it is sometimes possible to mea-
sure separately the contaminating background noise, by
either simply “switching off” the source of interest or
without the mock-up in wind tunnel measurements for
instance. This background measurement can be used
to advantage to remove its influence when the total
noise field is actually measured. It can be done by
either simply using spectral subtraction approaches or
more advanced methods that take this prior informa-
tion into account in the processing, such as the work
in Refs. 14, 15, 16. Removing unwanted flow-induced
noise by physically suppressing it has also been pro-
posed in the literature. It has been shown that this
can be obtained by setting-up the microphones behind
a Kevlar screen [17] or using a porous layer in order
to absorb sound waves reaching the array at oblique
incidence [18]. Another alternative might be the use of
a vibrating structure (e.g. an thin plate) equipped with
accelerometers [19]. It has been shown that the struc-
ture acts as a low-pass filter in the wavenumber domain,
thus filtering out components with high wavenumbers
associated to flow-induced noise. It is necessary though
to convert the acceleration signals into wall-pressure

signals using inverse techniques[20].
Speech signal processing is another field in which

much research effort has been devoted to developing
noise reduction methods [21]. Spectral subtraction [22]
methods and subspace approaches [23] are examples of
techniques proposed in this community.
The problem addressed in this paper is the suppres-

sion of uncorrelated extraneous noise over a microphone
array in a blind manner. The term “blind” is to be
understood as “without any measurement of a reference
background noise”. Indeed, it is common in practice
that the separate measurement of the unwanted noise
(i.e. without the source of interest) is not available,
since it is the source itself that generates the extrane-
ous noise (see the example of fan noise using in-duct
measurements [24]). Moreover, no assumption is made
about the source location or propagation unlike the
beamforming-based methods proposed by Sijtsma et
al.[25].

In the present work, a new method is proposed which
is based on a Probabilistic Factor Analysis problem and
three other denoising approaches from the literature
are also investigated. After a section dedicated to the
problem statement, an overview of all these methods is
given in Sec. 3. The denoising performance of each ap-
proach is then compared first on numerical simulations
(in Sec. 4) and then on real wind-tunnel measurements
(in Sec. 5).

Since the aforementioned Chung’s method is still
widely used, it is presented in light of the other denoising
methods in Appendix A, but because of its limitations,
this method is not compared with the other methods
for the numerical and experimental applications.

2 Problem statement

Let p(r, ω) be the acoustic signal (i.e. pressure fluctu-
ations) measured by a receiver at position r ∈ R3 in
space at a given angular frequency ω. The measured
signal can be modeled as a linear combination of sig-
nals emitted by noise sources having any distribution
in space. After proper discretization of the domain of
interest, the signal measured at a microphone position
i may be simply written as:

p(ri, ω) = a(ri, ω) + n(ri, ω), (1)

where n(ri, ω) represents additive noise statistically in-
dependent of the signal of interest a(ri, ω). Considering
that the acoustical field is spatially sampled by M re-
ceiver positions, Eq. (1) may be conveniently expressed
in matrix-form as

p = a+ n, (2)
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and the acoustical field is

a = Hq (3)

where H ∈ CM×K is a matrix that maps the acoustic
pressure to K coefficients q of a given representation
basis.
Let us now define the covariance matrix of measure-

ments (i.e. the theoretical cross-spectral matrix if the
covariance between Fourier coefficients is of concern)
as Spp , E{ppH}, where ·H stands for the conjugate
transpose (Hermitian) operator and E{·} is to be un-
derstood as the expected value over realizations of the
stochastic process.

Therefore, from (2) and (3), the theoretical model of
the cross-spectral matrix used in this work is

Spp = HSqqH
H + Snn. (4)

For convenience, let us define the first term in the right
hand side of Eq. (4), thereafter referred to as signal
CSM, Saa = HSqqH

H . The theoretical CSM is thus a
sum of the signal CSM related to the source of interest
and the noise CSM, which gives:

Spp = Saa + Snn, (5)

In practice, whenever the pressure field may be as-
sumed statistically stationary (i.e. ergodic stochastic
process), an estimate of the theoretical CSM may be
obtained from averaging the measurements over a finite
number of snapshots:

Ŝpp = 1
Ns

Ns∑
j=1

pjp
H
j , (6)

where the subscript j refers to the jth snapshot, Ns
is the number of snapshots, and the superscript ·̂
is used throughout the paper to define an estimated
quantity.
Using this estimate, when summing the acoustical

field and the noise as in (4), averages of cross terms
such as (Hq)nH are supposed to be negligible, which
is not necessarily the case in practice if the number of
snapshots is low.

Finally, the denoising problem of interest in this paper
is the following:

Problem 1 Given an estimate of the CSM Ŝpp ≈ Saa+
Snn, where Saa and Snn are both unknown, recover Saa.

It is noteworthy that the noise power is allowed to vary
between different microphones and to be much higher
than the acoustic source power.

In order to solve this problem, it is possible to exploit
the difference of structure of the two terms Saa and Snn.
First, the spatial coherence of the noise field is supposed

to be smaller than the microphone inter-spacing, that
is, the noise is assumed to be spatially uncorrelated
over the microphone array. Second, the sound field is
correlated by the propagation effect, that is, the spatial
coherence associated to the source of interest is much
greater than the noise spatial coherence.

3 Methods to reduce strong
uncorrelated noise from multi-
channel measurements

3.1 Diagonal reconstruction
As discussed in Section 2, it is assumed that the noise
correlation length is smaller than the microphone inter-
spacing. Following this assumption, the theoretical
noise CSM is a diagonal matrix. From Eq. (5), the
measured CSM can then be written as:

Ŝpp ≈ Saa +
⌈
σ2⌋ . (7)

where the notation
⌈
σ2⌋ stands for a diagonal matrix

whose diagonal entries are the elements in vector σ2.
In this section, we describe three methods from the

aeroacoustic literature used to reduce the self-induced
noise concentrated on the diagonal of the measured
CSM. These methods all propose to minimize the diag-
onal elements, while keeping the denoised CSM positive
semi-definite, which can formulated as follows:

maximize
∥∥σ2∥∥

1

subject to Ŝpp −
⌈
σ2⌋ ≥ 0

(8)

where ‖ · ‖1 is the `1 norm. Each method solves this
problem in a different way.

3.1.1 Convex optimization

Hald [26] directly uses semidefinite programming to
solve this problem, more specifically the SDPT3 solver
from CVX Matlab toolbox [27, 28]. This solver is an
interior-point algorithm suitable for such conic opti-
mization problems [29].

3.1.2 Linear optimization

Dougherty [30] restates the problem of Eq. (8) as the fol-
lowing linear programming problem, solved iteratively:

maximize
∥∥∥σ2

(k)

∥∥∥
1

subject to V H
(k−1)

(
Ŝpp −

⌈
σ2⌋

(k)

)
V(k−1) ≥ 0

(9)

at the kth iteration. V(k−1) are the eigenvectors of Ŝpp−⌈
σ2⌋

(1,...,k−1), concatenated from the k − 1 previous
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iterations. This problem is later solved using the dual-
simplex algorithm from the Matlab linprog function.
The concatenation of the eigenvectors increases the
problem dimension – and therefore the calculation time
– at each iteration. Consequently, the convergence can
be very slow and the final denoised CSM may not be
semi-positive definite.

3.1.3 Alternating projections

The minimization problem given by Eq. (8) can also
be solved by an Alternating Projections algorithm, as
proposed in Ref. 31. In this case,Alternating Projections
aims at finding the intersection between 2 convex sets
that are the positive semi-definite matrices (i.e. non-
negativity of eigenvalues) and the matrices with the
same extra-diagonal elements as the measured CSM.
For the sake of clarity, Algorithm 1 is the pseudo-code
of this procedure.

Algorithm 1 Alternating Projections
Require: Ŝpp
S̄pp(0) := Ŝpp − diag

(
Ŝpp

)
. set diagonal to zero

for k do
. computes eigenvalues and eigenvectors:
s(k) := eigenvalues(Spp(k))
V(k) := eigenvectors(Spp(k))

. set negative eigenvalues to zero:
s(k) := s+

(k)

. inject in measured CSM :
Ŝpp(k+1) := S̄pp(0) +

⌈
diag

(
V H

(k) diag
(
s(k)

)
V(k)

)⌋
end for

Return: updated Ŝpp

3.2 Robust Principal Component Anal-
ysis

Another strategy to solve the Problem 1 is to use two
particular properties of Saa and Snn, namely, low-
rankness and sparsity.

Let us start with the discussion on the physical inter-
pretation of the rank of a covariance matrix in acoustic
signal processing. It has been shown elsewhere that the
rank is directly related to the number of statistically in-
dependent noise sources [32, 33] at the origin of a given
acoustical field. In other words, the rank gives the num-
ber of uncorrelated components that are necessary in
order to reproduce a particular sound field. From an
experimental point of view, the number of acquisition
channels in recent systems has been rapidly increasing.
It is common nowadays to take measurements with a

large number of simultaneously acquired signals, leading
to high-dimensional data. Thus, in many practical situ-
ations, the number of independent sources of interest is
much lower than the number of measurement channels.
This justifies the assumption of a low-rank model to
cross-spectral matrices in acoustics.

The use of a sparse model for a CSM of uncorrelated
noise has been discussed in Section 2: the CSM tends
to be diagonal when the number of snapshots tends to
infinity. Thus, when the number of channels is large,
the noise CSM may be approximated by a sparse matrix,
since the number of non-zero diagonal elements is much
less than the null off-diagonal ones.

Finally, the decomposition of the CSM in sparse and
low-rank matrices can be written as the following opti-
mization problem:

minimize
∥∥∥Ŝaa∥∥∥

∗
+ λ

∥∥∥Ŝnn∥∥∥
1

subject to Ŝaa + Ŝnn = Ŝpp

(10)

The nuclear norm ‖ · ‖∗ (sum of the eigenvalues) and
the `1 norm (‖A‖1 =

∑
ij |Aij |) are convex relaxations

of low rank and sparsity constraints, respectively. The
trade-off between sparsity of the noise and low-rankness
of the source CSM is handled by the regularization
parameter λ. The regularization strategies are multiple
and not detailed here. Denoising results are presented
below for two regularization parameters: λopt which
gives the smallest error (known only for simulations)
and the constant parameter λ = M−

1
2 proposed in

Ref. 34.
This procedure, known as Robust Principal Com-

ponent Analysis (RPCA), has been used by Finez et
al.[35] and Amailland et al.[36] to denoise aeroacoustic
and hydroacoustic data. A collection of algorithms is
available to solve this convex problem. The reader can
refer to the LRSLibrary [37, 38] in which the Acceler-
ated Proximal Gradient algorithm, developed by Wright
et al.[34], is used for the denoising applications of the
present paper.

3.3 Canonical Coherence Analysis
The use of Canonical Coherence Analysis (CCA) to
denoise the measured CSM in a context of aeroacoustic
measurements has been introduced recently by Hald[39].
The principle of CCA is to find the linear combination
of two subgroups of sensors with the highest mutual
correlation. The vector of pressure measurements pj at
the jth snapshot is divided into two sub-sets xj and yj
of I and J channels , with M = I + J , such that

xj = Lxcj + nxj and yj = Lycj + nyj , (11)

with cj a vector of N uncorrelated equivalent sources,
where N ≤ min(I, J). Setting E{ccH} = IN (with
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IN the identity matrix of dimension N), without loss
of generality since matrices Lx and Ly can always be
defined accordingly, one has

Sxx = LxL
H
x + E{nxnHx },

Syy = LyL
H
y + E{nynHy },

Sxy = LxL
H
y .

(12)

The last equation shows that noise is canceled if it is
uncorrelated between the two groups x and y. This
gives hope to get estimates of the factors Lx and Ly,
say L̂x and L̂y, from the measured CSM Ŝxy. If so, the
signal CSM can in turn be estimated as

Ŝaa =
(
L̂x
L̂y

)(
L̂x
L̂y

)H
(13)

Estimates of the factors are obtained from a general-
ized singular value decomposition (GSVD)

Ŝxy = ŨΣṼ H , (14)

where Ũ = Ŝ
1/2
xx U and Ṽ = Ŝ

1/2
yy V and with U and V

the left and right singular vectors of Ŝ−1/2
xx ŜxyŜ

−1/2
yy , re-

spectively. Upon truncating the GSVD to its N leading
singular values,

L̂x = ŨNΣ
1/2
N and L̂y = ṼNΣ

1/2
N . (15)

where ŨN (resp. ṼN ) stands for the matrix containing
the corresponding N “leading” left (resp. right) singular
vectors, the complete denoised CSM reads

S̃aa =
(
Ŝ

1/2
xx UNΣ

1/2
N

Ŝ
1/2
yy VNΣ

1/2
N

)(
Ŝ

1/2
xx UNΣ

1/2
N

Ŝ
1/2
yy VNΣ

1/2
N

)H
(16)

The thresholding of the singular values proposed
in Ref. 39 is empirical, and for the applications pre-
sented in Sec. 4 and 5, the same strategy is adopted,
since the application is very similar.

The classical CCA is not able to extract a number of
canonical components that is higher than the number of
channels in the smallest subgroup, which is a limitation
to represent a high number of uncorrelated sources.
Therefore, Hald proposed to overcome this limitation
by performing several CCA iteratively with different
sub-groups, on the residuals of the denoised matrix
from the previous iteration. However, the number of
iterations has to be adapted to the number of sources
in the acoustical field. In the following, the sub-groups
and the number of iterations are chosen to be the same
as the empirical recommendations given in Ref. 39. Any
other sub-arrays of M

2 sensors could have been used.
An idea of the procedure is given in Algorithm 2.

Algorithm 2 Canonical Coherences
Require: Sxx,Syy,Sxy for two sub-arrays
K := S

− 1
2

xx SxyS
− 1

2
yy

. perform a singular value decomposition of K
K := UΣV H

. thresholding of the canonical coherences
Σij = 0 if Σij < σthres

. computes the canonical components
P = S

1
2
xxUΣ

1
2

Q = S
1
2
yyV Σ

1
2

. built the denoised CSM

Saa =
(
PPH PQH

QPH QQH

)
Repeat: for other sub-arrays, depending on the number
of significant canonical coherences
Return: Saa

3.4 Probabilistic Factor Analysis
Probabilistic factor analysis (PFA) is an inference prob-
lem that aims at fitting the measurements with the
following model:

pj = Lcj + nj j = 1, . . . , Ns (17)

where c is the vector of κ < M equivalent sources or
latent factors (the same as in Eq. (11)), L ∈ CM×κ
is the matrix that mixes the factors, n is a vector of
residual errors (independent of the factors) and j refers
to the jth snapshot.
Similarly to Principal Component Analysis (PCA),

Factor Analysis is a mean to reduce data dimension by
fitting the signal CSM to a low-rank matrix model. In
PCA, the data are decomposed into a limited number
of independent variables whose contributions to mea-
surement points are orthogonal. PFA also involves a
linear combination of variables but with contributions
to measurement points that are not necessarily orthog-
onal. Therefore, PFA allows the incorporation of more
assumptions about the latent structures of the data.
No physical interpretation can be made from L and

c, since L 6= H and c 6= q in general. Indeed, if the
Lc decomposition of the acoustical field a is unique, L
and c are not.

In the context of Probabilistic Factor Analysis, all the
unknown parameters of the model are seen as random
variables, with an assigned probability density function
(PDF). In the classical PFA model, all the assigned
PDFs are Gaussian.
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Throughout the paper, the term Gaussian refers in
a short way to the class of circularly-symmetric mul-
tivariate complex Gaussian distributions, and is noted
NC(µ,Ω) where µ is the mean vector and Ω the covari-
ance matrix.
Using the notation [x] for the conditional PDF of x,

the assigned PDF for the factors and the noise vector
are the following:

[c] = NC (0, Iκ) and [n] = NC
(
0,
⌈
σ2⌋) . (18)

Notice that an heteroscedasticity of the noise is assumed,
which means that the noise variance might vary over
the microphones (i.e. the values in the vector σ2 might
be different).

Taking the expectation over the snapshots in Eq. (17)
leads to the following decomposition of the theoretical
CSM:

Spp = LLH +
⌈
σ2⌋ . (19)

There are several methods to solve this fitting prob-
lem. We propose in this paper two of them, based on
a Bayesian approach. Two algorithms are used to find
the maximum a posteriori estimates of the unknown
parameters, namely each element of the matrix L and
of the noise vector σ2:(

L̂, σ̂2
)

= argmax[L,σ2 | Ŝpp], (20)

where [x | y] stands for the conditional PDF of x
given y.

3.4.1 Expectation-Maximization algorithm

The first procedure to solve (20) is an iterative algorithm
that alternates between 2 steps at each iteration i:
• performing the expectation of the complete-data

log-posterior (i.e. including the missing values Scc)
using the estimates of the parameters from the
previous iteration i− 1 (see p. 439-441 of Ref. 40):

Q = E
{

log[L,Scc,σ2 | Ŝpp,Li−1,Scci−1 ,σ
2
i−1]

}
(21)

• finding the parameters that maximize the expected
value from the previous step:(

Li,Scci ,σ
2
i

)
= argmaxQ (22)

These parameters are found making use of the old
parameters to evaluate Scci :

Scci = Iκ −BLi−1 +BŜppBH (23)

with

B = LHi−1

(
Li−1L

H
i−1 +

⌈
σ2⌋

i−1

)−1
. (24)

Then, searching for the local maximum of Q leads to
the following updates of L and σ2:

Li = ŜppB
HS−1

cci , (25)

σ2
i = diag

(
(IM −LiB) Ŝpp (IM −LiB)H

+Li (Iκ −BLi)LHi
)
.

(26)

The reader can refer to the section 12.2.4 of Ref. 40
for detailed calculations and implementation of the
Expectation-Maximization (EM) algorithm for PFA.
The pseudo-code for this procedure is given in Algo-
rithm 3. Note that, by construction, Scc is positive
semi-definite and therefore, so is the denoised CSM.

If the posterior is multimodal, the EM algorithm may
converge toward a local maximum. Multiple strategies
exist to avoid this situation, e.g. performing several
EM iterations with different random initializations.

Algorithm 3 PFA solved with EM
Initialization: L0, σ

2
0

Require: Ŝpp, κ, imax, ε
for i do

Estimation of Scci using Eq. (23)
Estimation of Li using Eq. (25)
Estimation of σ2

i using Eq. (26)
. Convergence criteria
if i ≥ imax or ‖σ2

i − σ2
i−1‖2/‖σ2

i−1‖2 ≤ ε then
Stop

end if
end for

Return: Li, Scci , σ2
i

3.4.2 Monte Carlo Markov Chain algorithm

Another way to solve (20) is to use the Gibbs sam-
pler [41], a Monte Carlo Markov Chain (MCMC) that
consists in iterative draws in the marginal condition
distributions of each parameters of the model until con-
vergence. In this procedure, the sampling of the factors
CSM is needed. Therefore, the unknown parameters
are estimated by their maximum a posteriori:(

L̂, σ̂2, Ŝcc

)
= argmax[L,σ2,Scc | Ŝpp]. (27)

Unlike the EM algorithm, MCMC methods perform
a global optimization and take advantages of the entire
distribution available from the sampling. Therefore,
MCMC can give a credible interval for each estimated
parameter.
As a counterpart, MCMC are known to be far more
computationally expensive than EM or other methods
(see Table 4).
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In Table 1 can be found the prior PDFs assigned to
each parameter of the model (17). First, the mixing
matrix L is assumed to follow a centered Gaussian
PDF, with a normalized variance, such that the energy
of the signal part is only driven by the factors. The
factors are supposed to be a priori independent and
identically distributed, with the same energy γ2 (also
called homoscedasticity of the factors). The factor
variance γ2 is itself assigned a prior PDF in the form of
an inverse Gamma law (written IG). This is a classical
choice for variance parameters (see Ref. 42, p.42-43),
since it has a positive support, it simplifies the maths
thanks to its conjugacy with the Gaussian and finally,
its shape and scale parameters can be tuned to specify
different levels of prior information, from very precise
to very vague.
The noise is supposed to be Gaussian, with a vari-

ance that may vary over the microphones (also called
heteroscedasticity of the noise). This variance is dis-
tributed following an inverse Gamma law, for the same
reason as for the factor variance. As MCMC enables
more flexibility in the parametric model than EM, an
extra unknown matrix dαc can be added, giving this
model extension:

pj = L dαc cj + nj j = 1, . . . , Ns, (28)

and taking the expectation over the snapshots:

Spp = L dαcScc dαcLH +
⌈
σ2⌋ . (29)

This new diagonal matrix add weights to factor in a
way that enforce sparsity on the latent factors. Indeed,
these weights are assigned an exponential PDF (written
E in Tab. 1) which is known to be a sparse prior. As this
distribution has a great mass distributed around zero,
it is prone to quickly shrink many values to zero. By
doing so, even if the user overestimates the number of
factors, unused factors will be set to zero and an optimal
solution will be found with a better convergence rate.
All the posterior distribution that are required to

implement the CSM-based Gibbs sampler are given in
Appendix B. More details for the calculation of the
posterior can be found in Ref. 43. The pseudo-code for
the Gibbs sampler for PFA is shown in Algorithm 4,
for which a thousand of iterations are performed and
the returned estimate of denoised matrix results from
the mean over the last 500 samples (in Algorithm 4,
the number of iterations is denoted as Nrun). Consid-
ering that these last samples tend to have a stationary,
symmetric and unimodal distribution, the maximum a
posteriori is assumed to be well estimated by the mean
value.

Section 4.2 studies the influence of the chosen number
of factors in the PFA models on the estimation error,
through a numerical experiment. It is observed that

Priors Hyper-priors

[c] = NC(0, γ2Iκ)
[γ2] =

IG(aγ , bγ)

[n] = NC
(
0,
⌈
σ2⌋) [σ2] =

IG(aσ, bσ)
[α] = E(aα)
[L] = NC

(
0, IMκκ

)
Table 1: Prior PDF assigned to each parameters of the
PFA model solved with MCMC.

without weight (i.e. α = 1), the reconstruction error
given by the Gibbs sampler increases when the number
of input factors is overestimated. On the contrary, the
estimation error coming from the EM solver and the
one from the MCMC solver fitting data on the sparse
model (29) is minimal for any number of factors greater
than the rank of the signal CSM (see Fig. 2).

Note that instead of adding some weights α, a strat-
egy to promote sparsity of the model order would be
to allow for heteroscedasticity of the factors in the
model (17) as in Ref. 43. These two strategies are very
similar: homoscedasticity is equivalent to a mixture
of Gaussians with different variances following inverse
Gamma laws, which is known to generate a Student-
t marginal distribution for the factors c (see Ref. 40,
p.102-103), whereas the strategy of adding weights α is
equivalent to a mixture of Gaussians with different vari-
ances exponentially distributed, leading to a Laplace
distribution for the product dαc c [44]. The Laplace
and Student-t distributions are both heavy-tailed distri-
butions, which are prompt to produce sparse solutions.
In order to further enhance the sparsity of the solution,
these two strategies may even be used simultaneously.

Algorithm 4 PFA solved with the Gibbs sampler
Initialization: L0, σ

2
0 , γ

2
0 , α0

Require: Ŝpp, κ, aγ , bγ , aσ, bσ, aα , Nrun
for i = 1, . . . , Nrun do

Sample Scci following Eq. (46)
Sample Li in Eq. (48)
Sample γ2

i in Eq. (51)
Sample αi in Eq. (53)
Sample σ2

i in Eq. (54)
end for

Return: Posterior PDFs of Scc, L, σ2, γ2, α

4 Numerical experiments
The denoising processes introduced above rely on dif-
ferent assumptions regarding the signal and noise prop-
erties. One can thus wonder what is the performance
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of each method depending on whether or not these
assumptions hold true.
To answer this question, the denoising algorithms

are tested on multiple CSMs, with varying properties,
namely noise level, rank of the signal CSM and num-
ber of snapshots. The CSM are numerically simulated
through the procedure described in the following sec-
tion.

4.1 Simulation of noisy CSM
The way CSMs are simulated is inspired by a benchmark
case from the aeroacoustic context, described in Ref. 45
and studied in Refs. 46 and 39. A line of free-field
acoustic monopoles with spectra q radiates up to a
circular array, which can be expressed as the linear
system a = Hq, using the following Green’s functions:

Hmn = e−jkrmn

4πrmn
, (30)

with k being the acoustic wavenumber 2πf
c0

and rmn
the distance between a source n and a receiver m. The
location of the sources and receivers is represented on
Fig. 1.
Source spectra are independently drawn from a cen-

tered complex Gaussian distribution, with common vari-
ance σ2

q :
[qj ] = NC

(
0, σ2

qIK
)

(31)
where j refers to the realization number and K is the
number of uncorrelated sources.

An independent Gaussian noise is then added to each
signal a (see Eq. (2)):

[nj ] = NC
(
0, dσ2c

)
,

with σ2 = diag
(
σ2
qHH

H
)

10−SNR/10.
(32)

And finally, the CSM of measurements is estimated us-
ing Eq. (6) and the CSM without noise is also estimated
in the same way: Ŝaa = 1

Ns

∑Ns
i=1 aia

H
i . The objective

of the denoising process is to recover this last quantity.
The deviation of the denoised CSM (written S̃aa) from
the noise-free simulation is evaluated looking at the
reconstruction error of the diagonal elements, given by:

δ =

∥∥∥diag
(
Ŝaa

)
− diag

(
S̃aa

)∥∥∥
2∥∥∥diag

(
Ŝaa

)∥∥∥
2

(33)

where diag (A) is the vector containing the diagonal
elements of A and ‖ · ‖2 is the `2 norm.

This reconstruction error is investigated for each de-
noising method and for varying parameters of the simu-
lation:

• the rank of the signal matrix Saa, given by the
number of uncorrelated monopoles,

−1
0

1

0
−0.5

−1

−1

0

1

x (m)
y (m)

z
(m

)

Figure 1: Receiver (◦) and source (�) positions for
acoustic field simulations, inspired by Ref. 45

• the noise level, given by a SNR varying from -10
to 10 dB,

• the number of snapshots Ns from 10 to 5.104.
When a parameter is varied, the others remain constant,
given by the default values from Tab. 2. Error curves
are shown in Sec. 4.3.

Parameter Default value

Frequency (invariant) f = 15 kHz
Sound velocity (inv.) 340 m/s

Number of receivers (inv.) M = 93
Number of monopoles K = 20

SNR SNR=10 dB
Number of snapshots Ns = 104

Table 2: Default values for the numerical simulations.

The denoising performances of each method are
mainly evaluated considering only the diagonal elements
of the recovered matrix. The reason for this is that all
the compared algorithms modify in a negligible way
the off-diagonal terms. Illustrated explanations of this
choice are given in section 4.4.

4.2 Initialization and input parameters
for PFA

In order to have a satisfying convergence rate, the EM
and MCMC algorithms have to be properly initialized
and the required priors have to be chosen appropriately.

4.2.1 Initialization for PFA

The initial values for PFA solved with EM and MCMC
are given in Table 3. For the MCMC procedure, the
noise is supposed to dominate the diagonal of the mea-
sured CSM Spp, so the noise variance is initialized with
these diagonal elements. For the EM algorithm, the
unknowns are empirically initialized close to zero.
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PFA-EM PFA-MCMC

L0 = 10−16JM,κ L0 sampled in NC
(
0, IMκ

κ

)
σ2

0 = 10−16IM σ2
0 = diag (Spp)

κ = M − 1 κ = M − 1
α0 = eigκ(Spp)
γ2

0 = 1
M

Trace(Spp)
Scc0 sampled in

[
Scc | L0,α0,σ

2
0
]

Table 3: Initial values for PFA solved with EM and
MCMC algorithms. JM,κ is a M ×κ matrix full of ones.
The operator eigκ(A) refers to the κ highest eigenvalues
of A, normalized in order to have

∑
eigκ(A) = 1.

4.2.2 Initial choice for the number of factors κ

In the PFA model, the maximum number of factors κ
that describes the acoustic field has to be set by the
user. If this number is under-estimated (i.e. under the
real number of independent source contributions), the
acoustic field will not be fully described.
If the input number of factors is overestimated, the

computational burden will be high and the convergence
may be slow, until all the useless factors reach zero,
depending on the initialization.
An illustration of this is given in Fig. 2. On this

figure is plotted the reconstruction error of the diagonal
element of the acoustical CSM, as a function of the input
number of factors κ for the EM and MCMC algorithms.
For the two algorithms, the minimum error is obtained
when the input κ is equal to the real number of sources
(20 in this example).

The EM algorithm is known to have a fast conver-
gence if well initialized. That is why, even if κ is over-
estimated, the reconstruction error remains low.
The solid gray line corresponds to the MCMC al-

gorithm with the PFA model described by Eq. (29),
without any update of the weights α, which means no
sparsity enforced. In this case, if the initial number
of factors is overestimated, the reconstruction error in-
creases a bit because some useless factors are not totally
switched off. On the contrary, when the sparsity in the
PFA model is enforced with an update of the weights
α, the effective number of sources is rapidly inferred
from the data by weighting the useless factor, and the
error remains low, even with a high κ.

4.2.3 Prior parameters

According to the Table 1 of the priors for PFA solved
with MCMC, some constant parameters have to be set
by the user. Here are the assigned values:
• aγ = bγ = aσ = bσ = 10−3 which corresponds to a
very flat, and thus vague, prior on the source and
noise variance.
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EM

MCMC, α = 1

MCMC, sparse model

Figure 2: Relative reconstruction error of the signal
CSM diagonal, as a function of the assumed number
of factors in the PFA model. The minimum error is
obtained when the input number of factor is equal to
the number of sources used in the numerical experiment
(default value is 20).

• aα = 1
α0

so that α0 is the probability mass center
of the prior [α].

4.3 Results
In this section, we compare the performance of each
investigated approach to denoise the synthesized data,
looking at the relative reconstruction error for different
configurations of the numerical experiment described
in Sec. 4. A list of the studied methods is given in
Table 4 with a rough approximation of the computing
time required by each method to denoise one 93× 93
CSM, using non-optimized Matlab codes on a laptop.

4.3.1 Comparison of the Diagonal Reconstruc-
tion methods

The three diagonal reconstruction methods described
in Section 3.1 solve a very similar problem. We first
compare them with one another. Error curves are given
in Fig. 3, as a function of the rank of the signal CSM
(a), the noise level (b) and the number of snapshots (c).

As expected, when no denoising is applied, the error
is given by the opposite value of the SNR. The per-
formance of each method mainly differs regarding the
signal rank. As shown in Ref. 26, the error increases
suddenly when the rank of the signal CSM is too high
for the problem to remain identifiable. Convex opti-
mization is less sensible to the increase of the number
of sources, thanks to its faster convergence.
For 20 sources, sensitivity to noise level is the same

for all the methods, and the error decreases linearly with
an increasing SNR, and the same behavior is observed
for a logarithmic increase of the number of snapshots.

As convex optimization runs faster and provides more
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Figure 3: Relative reconstruction error of the diagonal terms of the signal CSM, as a function of the number of
sources (a), SNR (b) and the number of snapshots (c). The diagonal reconstruction methods are: Alternating
Projections ( ), linear optimization ( ), convex optimization (further referred to as DRec, ), no denoising
( ).

Denoising method Acronym Computing
time

Convex optimization DRec 1 sec
Linear optimization 60 sec
Alternating projections 3 sec
Robust Principal Com-
ponent Analysis

RPCA 0.5 sec

Canonical Coherence
Analysis

CCA < 0.1 sec

Probabilistic Factor
analysis,solved with
EM

PFA-EM 1 sec

Probabilistic Factor
analysis, solved with
MCMC

PFA-MCMC 300 sec for
κ = 92
10 sec for
κ = 10

Table 4: List of the denoising methods and their ap-
proximate computing time to denoise one 93× 93 CSM,
using non-optimized Matlab codes on a laptop.

accurate denoising, it is used for comparison with the
other methods, referred to in the following as DRec (for
Diagonal Reconstruction).

4.3.2 Comparison of the other methods

We now present the relative reconstruction error for all
the other denoising methods, still considering only the
diagonal elements of the acoustical CSM. In Fig. 4 is
plotted the error as a function of the number of sources,
SNR and number of averages, for the following methods:

• Convex optimization for diagonal reconstruction,
referred to as DRec,

• RPCA with a constant regularization parameter
close to 1/

√
M ≈ 0.1, as suggested in Ref. 34,

• RPCA with the regularization parameter that gives
the minimal error, written λoptimal. Note that this
optimal value will never be known in practice, since
its calculation requires the knowledge of the ground-
truth CSM Saa,

• CCA with both thresholding of the canonical co-
herences and adaptive iteration count,

• PFA solved with the EM algorithm, referred to as
PFA-EM,

• PFA solved with the MCMC algorithm, referred
to as PFA-MCMC,

• no denoising applied.
The results from the PFA denoising achieved with EM

and MCMC are very similar because both methods rely
on the formulation of a very similar inverse problem.
However, when the number of sources is high, EM
performs better than MCMC, because the latter makes
a stronger assumption on low-rankness of the signal
CSM. Moreover, for very low number of sources, or low
number of snapshots, EM does not converge toward
an optimal solution, whereas MCMC, being a global
optimization algorithm, converges better.

Concerning RPCA, one can see that the selection of
a regularization parameter can have a strong impact on
the denoising performance, especially when the number
of sources increases. The parameter λ = 0.1 proposed
by Wright is tuned for low rank signal matrix. When
the number of sources increases, the regularization pa-
rameter must also increase to keep the balance between
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Figure 4: Relative reconstruction error of the diagonal terms of the signal CSM, as a function of the number of
sources (a), SNR (b) and the number of snapshots (c). The denoising methods are: DRec ( ), RPCA with
λ = 0.1 ( ), RPCA with λoptimal ( ), CCA ( ), PFA-MCMC ( ), PFA-EM ( ), no denoising
( ).

the low-rankness of the signal CSM and sparsity of the
noise CSM.

When proper assumptions are fulfilled (low rank sig-
nal CSM and high number of snapshots), the PFA
solution is similar to one given by RPCA when using
the optimal regularization parameter, whereas the DRec
error is most of the time 5 dB higher.

The reconstruction error given by CCA is very similar
to those presented in Ref. 39 since the simulated case
is nearly the same. The number of iterations automati-
cally selected from the number of significant canonical
coherences is also comparable to Ref. 39. This varying
number of iterations induces significant discontinuities
on the CCA error plotted versus the number of sources,
which can be corrected by an appropriate tuning of
the empirical thresholding values and iteration count
criterion. Note that the CCA method generally suffers
from a bias error – due to the fact that the square root
matrices S−1/2

xx and S−1/2
yy used in Algorithm 2 carry

over the presence of noise – which probably explains
why it has an error a few dB higher than PFA and
RPCA.

4.4 About the denoising of the off-
diagonal terms

All the studied methods make the assumption that the
noise CSM is diagonal or nearly diagonal. Consequently,
the extra-diagonal elements are expected to be almost
unchanged by the denoising process.

To verify this fact, we can compare the relative error

of the off-diagonal elements, defined as follows:

δoff =

∥∥∥Ŝaa − S̃aa − ⌈diag
(
Ŝaa − S̃aa

)⌋∥∥∥
F∥∥∥Ŝaa − ⌈diag

(
Ŝaa

)⌋∥∥∥
F

, (34)

where ‖ · ‖F is the Frobenius norm.
The relative error curves of the cross-spectra are

plotted in Fig. 5, for the denoising performed with
PFA, RPCA and CCA, always from the same numerical
experiments. On this figure, one can see that PFA
and RPCA denoising do not significantly change the
off-diagonal terms, except that PFA provides a slight
denoising for very low SNR. Neither RPCA nor PFA
gives a worse error than without any denoising. This is
not the case for CCA which modifies the cross-spectra,
except when the number of sources is lower than 10 and
when the number of snapshots is lower than 6000.

5 Experimental application
The denoising methods are now compared on data ac-
quired in a wind-tunnel, so as to see how they behave
with a real turbulent boundary layer noise (TBL).

5.1 Experimental setup
The experiment is conducted in a closed-section wind
tunnel at École Centrale de Lyon (LMFA laboratory),
shown in Fig. 6(a). Three acoustic sources are mounted
in the ceiling of the test-section, arranged in a dipole
and a monopole, spaced by 20 cm, excited by two un-
correlated white noises of comparable amplitude. Wall-
pressure fluctuations are measured using an array of 73
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Figure 5: Relative reconstruction error of the signal CSM cross-spectra obtained from 3 denoising methods: RPCA
with λoptimal ( ), PFA-MCMC ( ), PFA-EM ( ), CCA ( ) and without denoising ( ), as a function
of the number of sources (a), SNR (b) and number of snapshots (c).

MEMS microphones in a spiral arrangement, located in
the floor of the tunnel (see Fig. 6(b) and Fig. 6(c)). The
microphone inter-spacing varies from 0.2 cm to 27.4 cm.

A first measurement without flow is performed to be
used as a baseline for the acoustical field CSM. The
measurements to be denoised are conducted with a flow
speed of 20 m/s and with the acoustic sources switched
on. The duration of the acquired signal is 30 s and
the CSM are computed with a 16 Hz resolution, and
a Hanning windows with 66% of overlapping, which is
equivalent to about 994 effective snapshots.

5.2 Results

5.2.1 Denoised autospectra

Figure 7(a) shows the autospectra, averaged over the
microphones, of all the denoised CSMs, along with
the baseline source autospectrum and the 95% cred-
ible interval provided by the PFA-MCMC denoising.
As the noise may vary over the microphones, the aver-
age autospectra may not be fully representative of the
denoising level. Therefore, a denoising error for each
method is also given in Fig. 7(b), which illustrates the
distance from each microphone autospectrum to the
corresponding baseline autospectrum as follows:

δ =

∥∥∥diag (S?aa)− diag
(
S̃aa

)∥∥∥
2

‖diag (S?aa)‖2
, (35)

with S̃aa is the denoised CSM and S?aa is the baseline
source CSM.
It not possible to have S̃aa = S?aa in general, first

because of the estimation error due to the limited num-
ber of snapshots and second, because of the convection

effect. Indeed, the denoised CSM contains the acous-
tical part subjected to a convection effect, which is
not compensated by the denoising process, whereas the
baseline source CSM comes from measurements without
any convection effect. Therefore, even after an optimal
denoising, the denoising error should be limited by these
two thresholds, which are numerically evaluated further
below.
The major differences between the experimental

data and the previous numerical simulations concern
the noise properties. In the real measurements, the
noise is generated by the pressure fluctuations caused
by the turbulent boundary layer and dominates the
data, leading to a very poor signal-to-noise ratio
(from more than -20dB at low frequencies to -5dB at
high frequencies). Moreover, the TBL noise is highly
correlated over the microphones in the low frequency
range, which does not fulfill the requirements of the
denoising methods investigated in the present work.
Therefore, low performance is expected from every
methods at low frequencies.

CCA and PFA associate all the coherent field to
the signal CSM, possibly including the one from the
TBL noise. Therefore, the signal CSM is overestimated
in the frequency range where the TBL noise is highly
correlated over the microphones. RPCA provides a
more efficient denoising below 1.2 kHz, thanks to the
value of the regularization parameter (λ = 0.1), which
drives the solution to a favorable low-rankness of the
signal CSM, and slightly prevent the autospectra from
being overestimated.
The denoising performance provided by PFA-EM is

very variable over frequencies, because the algorithm
converges to local maximima that depend on the initial-
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(b) Sketch of the test section (side view).
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Figure 6: Description of the facility for the wind-tunnel tests.
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(a) Autospectra from the denoised
CSMs, averaged over the microphones
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(b) Denoising error based on the measurement
of the sources without flow (from Eq. (35)).

Figure 7: CSM denoised with DRec ( ), RPCA with λ = 0.1 ( ), CCA ( ), PFA-MCMC ( ), PFA-EM
( ), and the CSM not denoised ( ). On (a) is also plotted the source mean autospectrum ( ) and the 95%
credible interval for PFA-MCMC ( ).

ization and the choice of the stopping criteria. Below
1.5 kHz, PFA-EM provides a very unstable solution,
with a rather high denoising error compared to those
from the other methods.
In the low frequency range, the efficiency of CCA

could be improved by a better thresholding of the canon-
ical coherences, but the appropriate thresholding is hard
to set in practice when no information about the real
source CSM is available. The performance of PFA-
MCMC could also be improved by taking into account
a CSM fitting a TBL model such as Corcos [47] in
Eq. (29), with known or inferred TBL parameters. This
can be done by simply adding one or several sampling
steps in the Gibbs sampler.

Between 2 and 3 kHz, PFA-MCMC provides an esti-
mate of the mean source autospectra very close to the
measurement without noise, thanks to a sparse model
that leads to an exact estimation of 2 uncorrelated
components in the acoustic field.
Up to 5kHz, the autospectra denoised with the

diagonal reconstruction method remain overestimated

of at least 3 dB. Above 3.5 kHz, PFA, CCA and
RPCA provide a similar amount of denoising, but
the denoising error is limited by the convection
effect on the acoustic propagation. Indeed, the effect
of the flow on the acoustic propagation imposes
a lower bound for the denoising error of Eq. (35).
This bound can be evaluated numerically, by simulat-
ing the source propagation with and without convection.

Knowing the positions for the sources and micro-
phones from the experimental setup, two measured
CSM are simulated. First, the baseline source CSM is
simulated using free-field Green functions (see Eq. (30)).
Then, another acoustic CSM is simulated using a con-
vected propagation:

Hconv
mn = ejk∆rmn

4π
√

(M · rmn)2 + β2|rmn|2
(36)

with ∆rmn = 1
β2 (−M ·rmn+

√
(M · rmn)2 + β2|rmn|2)

and whereM is the Mach number vector, β2 = 1−|M |2,
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Figure 8: Same error curve as on Fig. 7(b), along with
the error due to the convection effect on the acoustic
field (black solid line) and the estimation error of the
CSM (black dashed line).

rmn is the difference between the microphone m and
the source n position vectors and · indicates a dot
product. The two simulated CSMs are then injected in
the Eq. (35) (S̃aa being the convected acoustic CSM
and S?aa the free-field one) and the error is plotted in
Fig. 8. This error depends on the frequency because
of the directivity of the dipole. On this figure is also
plotted the estimation error of the CSM due to the
finite number of snapshots (994 for the experimental
test cases). One can see that the denoising error from
3.5 kHz is clearly limited by the convection effect on
the denoised spectra, but not by the estimation error.

5.2.2 Rank of the denoised CSMs

As several denoising methods rely on a low-rankness
assumption for the acoustic CSM, Fig 9 shows the eigen-
values of the denoised CSM at 3 different frequencies.
On this Figure, one can see that RPCA does not pre-
serve the positive-semidefiniteness of the denoised CSM.
A positivity constrain could be added to the RPCA
problem, as proposed in Ref. 36. It is also visible that
DRec performs a reduction of the eigenvalues, until the
smallest one reaches zero.
An overview of the eigenvalues of the denoised CSM
against frequency is also given in Fig. 10. The number
of significant eigenvalues are plotted on this figure –
an eigenvalue is arbitrary considered significant if it is
greater than 1% of the highest one. At low frequencies,
all the methods overestimate the rank of the denoised
CSM, because of the correlation of the TBL noise over
the microphones. Above 2200 Hz, PFA-MCMC provides
a CSM with exactly 2 significant eigenvalues, whereas
PFA-EM often provides only one significant eigenvalue
(which is related to the underestimation of the mean
autospectra on Figure 7(a)). The CSMs denoised by
CCA all shows a jump in their eigenvalues, due to the

thresholding step during the denoising process. In gen-
eral, the experimental setup with 2 uncorrelated sources
is favorable to the PFA-MCMC approach which is able,
thanks to its strong sparsity contraint, to provide a very
low-rank CSM.

6 Conclusion

This work offers an overview of some methods for the
denoising of the CSM in the framework of multi-sensor
acoustic measurements.

The three diagonal reconstruction methods give very
comparable results with varying computational costs.
The diagonal reconstruction method with the lowest
computational cost is the one based on the convex
optimization, but its performance is limited when the
number of sources is very low, as shown by the numerical
and wind-tunnel experiments.
RPCA and CCA provide a higher noise reduction,

but their performance relies on the setting of empirical
parameters, respectively a regularization parameter and
a thresholding of the canonical coherences.

Finally, the Bayesian-based method PFA allows for a
high level of denoising, assessed on numerical simula-
tions and on measurements in presence of a strong TBL
noise, as shown in the present study and in Ref. 48.
The main drawback of the PFA method is its high com-
putational cost, yet this is balanced by some benefits,
among which:
• the denoised CSM is written as a linear combination
of a very limited number of components, which
might result in a high data-compression,

• the Gibbs sampler returns a credible interval for
each inferred parameter,

• the Bayesian framework is very flexible and any
prior information about the acoustic or the noise
CSM can be considered. For example, an extension
of the model could take into account a correlation
structure in the noise CSM.
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Figure 9: Eigenvalues of the CSM denoised with: DRec ( ), RPCA with λ = 0.1 ( ), CCA ( ), PFA-MCMC
( ), PFA-EM ( ), no denoising ( ). Eigenvalues of the baseline source measurements are also plotted ( ).

1,000 2,000 3,000 4,000 5,000
0

20

40

60

Frequency (Hz)

N
u
m

b
er

o
f

si
g
n
ifi

ca
n
t

ei
g
en

va
lu

es

Figure 10: Number of significant eigenvalues of the CSM
denoised with DRec ( ), RPCA with λ = 0.1 ( ),
CCA ( ), PFA-MCMC ( ), PFA-EM ( ), also of
the CSM not denoised ( ) and of the baseline source
CSM ( ). The significant eigenvalues are those greater
than 1% of the highest eigenvalue.

A Relation to Chung’s method
In an early paper, Chung[2] introduced a method for
rejecting flow-noise in measured auto-spectra, in the
special scenario where three microphones measure a
group of completely coherent sources – treated as an
equivalent single source. In lines of the present pa-
per, the method assumes flow-noises to be mutually
uncorrelated at the microphones. By making use of the
coherence functions between microphones, it returns
denoised auto-spectra at each of the three microphones.
As far as the authors know, this is probably one of the
first attempts to denoise the CSM. The principle of the
method is resumed using the notation of the present
paper. Let Ŝpipj denote the measured cross-spectrum

between the pressure signals pi and pj measured by a
pair of microphones and Saiaj the corresponding the-
oretical signal cross-spectrum (Ŝpipj and Saiaj are the
elements in cell (i, j) of the CSMs Ŝpp and Saa, respec-
tively). After some lengthy calculations, Chung arrived
at the following estimator of the signal cross-spectrum,

Ŝaiai = Ŝpipi
γikγli
γlk

, k 6= l 6= i, i = 1, 2, 3 (37)

with γij , Ŝpipj/
√
Ŝpipi Ŝpjpj the coherence function

between pi and pj . This results arrives readily when
reformulating Chung’s problem by means of Eq. (19),

Spp = LLH + dσ2c (38)

where L is now a column vector of an arbitrary dimen-
sion M > 3. It then comes that Ŝpipj ≈ LiL

∗
j and,

therefore,

Ŝaiai = Ŝpipi
γikγli
γlk

= Ŝpipk Ŝplpi

Ŝplpk
≈ |Li|2,

i = 1, . . . ,M.

(39)

This proves in one line that Ŝaiai , as given in Eq. (37),
is a valid estimator of the signal cross-spectrum. One
drawback of Chung’s method is to be limited to the use
of only three microphones out of many more possibly
available. When more than three transducers are avail-
able, it requires the selection of an arbitrary subset of
three microphones in order to apply Eq. (37). Because
of its lack of generality, it will not be compared with
the other methods in the experimental sections.

15



B Posterior distributions for the
Gibbs sampler
Using the Bayes rule, the posterior distribution of each
parameter is given by:

[θ | ∞] ∝
∏
i

[
ith child of θ | Parents of ith child

]︸ ︷︷ ︸
Likelihood

× [θ | Parents of θ]︸ ︷︷ ︸
Prior

(40)

where “| ∞” is to be understood as “conditioned to all
the other variables of the model”. In this expression,
the children of θ are all the parameters of the model
that directly depend on θ, and the parents of θ are all
the parameters on which θ depends.

B.1 Expression of the likelihood of the
data

According to the Central Limit theorem applied to
Fourier coefficients, the likelihood function of the mea-
sured data tends to be Gaussian:

[pj | ∞] = NC
(
L dαc cj ,

⌈
σ2⌋) (41)

for the jth measurement.

B.2 Sampling of Scc

From the expressions of the likelihood (41) and the prior
in Table 1, the posterior of the factors c is:

[cj | ∞] ∝ [pj | ∞][cj ]
∝ NC

(
L dαc cj ,

⌈
σ2⌋)NC(0, γ2Iκ) (42)

Using the multiplication rule of Gaussians (see for ex-
ample Ref. 49) directly gives

[cj | ∞] ∝ NC
(
µcj ,Ωc

)
(43)

with Ωc =
(
dαcLH

⌈
σ−2⌋L dαc+ γ−2Iκ

)−1

and µcj = Ωc dαcLH
⌈
σ−2⌋pj

In order to built a CSM-based Gibbs sampler, the
same approach as in Ref. 43 is followed. As cj | ∞ is
Gaussian, it can be written

cj | ∞ = µcj + xj with [xj ] = NC(0,Ωc). (44)

Then,

Scc = 1
Ns

Ns∑
j=1

µcjµ
H
cj + 1

Ns

Ns∑
j=1

xjx
H
j + 2

Ns

Ns∑
j=1

xjµ
H
cj .

(45)

Since xj and µcj are independent random variables,
the last terms tends to zero, and then

Scc | ∞ ≈ Ωc dαcLH
⌈
σ−2⌋Spp ⌈σ−2⌋H L dαcΩH

c

+ 1
Ns
Wc, (46)

where Wc is a random matrix that follows a complex
Wishart distribution, with Ns degrees of freedom and
variance matrix Ωc.

B.3 Sampling of L
The sampling of L is made using a vectorized form of
L, written λ = vec(L). The posterior of λ is given by

[λ | ∞] ∝
∏Ns
j=1[pj | ∞][λ]

∝ NC
(
L dαc cj ,

⌈
σ2⌋)NC

(
0, IMκκ

)
. (47)

Using the fact that

pj = vec(L dαc cj) + nj =
(
dαc cTj ⊗ IM

)
λ+ nj ,

and some properties of the Kronecker product ⊗ (see
for example Ref. 50, p. 59-60) leads to:

[λ | ∞] ∝ Nc(µλ,Ωλ), (48)

with Ω−1
λ = dαcS∗cc dαc ⊗

⌈
σ−2⌋+ κIMκ

and µλ = Ωλ vec(
⌈
σ−2⌋Spc dαc).

In this last equation, Spc is estimated using the same
decomposition of cj as before (see Eq. (44)),

Spc = 1
Ns

Ns∑
j=1

pjµ
H
cj + 1

Ns

Ns∑
j=1

pjx
H
j

≈ Spp
⌈
σ−2⌋L dαcΩH

c . (49)

B.4 Sampling of γ2

Using the expression (40), the posterior for γ2 can be
written as follows:

[γ2 | ∞] ∝
∏Ns
j=1[cj | γ2][γ2]

∝
∏Ns
j=1NC(0, γ2Iκ)IG(aγ , bγ). (50)

The use of the conjugacy of the inverse-gamma with the
Gaussian directly gives the expression the posterior:

[γ2 | ∞] ∝ IG (aγ + κNs, bγ + Trace(Scc)) . (51)
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B.5 Sampling of α
Still using (40), the kth element of the vector α is
sampled as follows:

[αk|∞] ∝
∏Ns
j=1 [pj |αk,∞] [αk] k = 1, . . . , κ

∝
∏Ns
j=1NC

(
L dαc cj ,

⌈
σ2⌋) E(aαk). (52)

This can be identify to a real Gaussian, truncated over
a positive support:

[αk|∞] ∝ NR(µαk ,σ2
αk

)1{αk≤0}, (53)

with σ2
αk

=
(
2LHk

⌈
σ−2⌋LkScckk)−1

and µαk =2σ2
αk

(
<{LHk

⌈
σ−2⌋ (Spck +αkLkScckk

−L dαcScck)} − aαk
)

where the single subscript notation Ak indicates the kth
column of the matrix A and < is the real part operator.

B.6 Sampling of σ2

From the prior assigned to σ2 and the likelihood func-
tion,

[σ2 | ∞] ∝
∏Ns
j=1[pj | ∞][σ2

n]

∝
∏Ns
j=1NC

(
L dαc cj ,

⌈
σ2⌋)NC(0,

⌈
σ2⌋)

(54)

Again using the conjugacy of the inverse-gamma with
the Gaussian, the expression of the posterior becomes

[σ2
m | ∞] ∝ IG (aσm +Ns, bσm + Tmm) m = 1, . . . ,M

(55)

with T = 1
Ns

∑Ns
j=1 (pj −L dαc cj) (pj −L dαc cj)H

= Spp +LSccLH − SpcLH −LScp

Making use of the expression of Spc given in Eq. (49)
and Scc is replaced by its expression given in Eq. (46).

T = (IM −B)Spp(IM −B) +L dαcWc dαcLH
(56)

where B = L dαcΩc dαcLH
⌈
σ−2⌋ = BH , (57)

By doing so, it is visible that the semi-positivity of T
is preserved.
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