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Abstract

The geometrical quality of AM products is an indispensable concern when conducting Design for Additive Manufacturing (DfAM), since it
dominates the geometrical consistency between the manufactured samples and the design intent and has an impact on the functionality of the
products. Therefore, effective prediction of the geometric deviations prior to the mass production will provide useful information for designers in
order for design optimization. Data-driven methods open up new possibilities to gain high-fidelity prediction based on existing observable data.
In this paper, a Convolutional Neural Network based deep learning method is proposed which enables the prediction of deviations for different
shapes and process settings. A data augmentation technique is also introduced to generate samples for network training based on a small number
of available data. Through a case study, it’s demonstrated that the trained network manages to accurately predict the geometric deviations of
shapes manufactured with varied size and process parameter settings. The predicted deviations could substantially benefit DfAM in evaluation of
geometrical consistency. Moreover, reverse compensation can be accordingly applied to the CAD model prior to the manufacturing process, thus
increasing the geometrical accuracy of the manufactured parts.

c© 2020 The Authors. Published by Elsevier B.V.
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1. Introduction

Additive manufacturing (AM) has brought a great impact to
the manufacturing industry with its novel layer-per-layer build-
ing strategy enabling the mass production of parts with more
complex shapes and internal structures. Despite its profound
industrial potential, the related standards and methodologies re-
garding design, tolerancing and quality control remain to be ex-
ploited and have drawn the interest of many researchers and
practitioners. The thermal-mechanical properties of AM pro-
cess, as well as its almost fully automatic execution with little
human intervention, may induce undesirable geometrical uncer-
tainties on the manufactured parts. Therefore, prediction of the
geometric deviations in the design stage is an important concern
in order to gain effective Design for Additive Manufacturing
(DfAM). With the predicted information, designers could eval-
uate the geometrical consistency of the manufactured products
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with the design intent and accordingly derive pre-compensation
plans to improve the geometrical quality.

The rapid growth of data science technologies have unveiled
the potential to solve engineering problems with the power of
data. Data analytics methods have been employed in different
fields such as economics [7] with the use of artificial neural
networks to predict market prices, and in the medical field [8]
where convolutional neural networks have been used to seg-
ment medical images or in the language processing field [11]
where recurring Long-Short Term Memory (LSTM) neural net-
works are now commonly used to predict the next words in a
sentence. In the topic of deviation modeling for AM, the highly
non-linear relationships among the deviations and their sources
are hard to capture with traditional analytical methods, and the
promising learning algorithms will be of significant help. Ar-
tificial Neural Network has been adopted in several works to
evaluate thermal deformation [3] and surface quality [12] with
respect to FDM process parameters. An unsupervised machine
learning approach is used in [4] to characterize the geometric
accuracy by recognizing clusters from the point cloud that are
linked to certain process conditions, thus significantly reducing
the amount of data required for the characterization. In [13],
a transformation perspective coupled with a multi-task trans-2212-8271 c© 2020 The Authors. Published by Elsevier B.V.
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fer learning algorithm is proposed to model and predict the
in-plane shape deviations. The layer-wise deviations towards
the build direction (out-of-plane deviation) are also investigated
in [14, 15] with respect to a set of process parameters. Whereas,
the respective modeling of in-plane (2D) and out-of-plane (3D)
deviation makes it hard to integrate both models and yet a com-
prehensive predictive model that could be applied for different
shapes is absent.

The use of deep learning techniques can also be anticipated,
which, however, remains unexploited under this topic. There-
fore, a deep learning method based on Convolutional Neural
Network (CNN) will be proposed to enable the prediction of
geometric deviations in the Selective Laser Melting (SLM) pro-
cess. This method considers the shape, size of the part and also
process parameters, which is quite comprehensive compared to
existing works that only cover one or two aspects. Following the
Introduction Section, Section 2 discusses details of the CNN al-
gorithm for deviation prediction, the network architecture and
training data structure are explained. To collect enough data for
network training, Section 3 presents a data augmentation strat-
egy using Statistical Shape Analysis (SSA) of AM simulation
data. A case study is provided in Section 4 to validate the per-
formance of the network and the conclusion is drawn in Section
5.

2. Deviation prediction with Convolutional Neural Net-
work

CNN is a well-known deep learning algorithm that has
gained mass adoption in computer vision and natural language
processing to tackle problems such as face recognition, image
classification, human pose estimation, etc [6, 5, 10]. Following
a multi-stage architecture, CNN has proved its effectiveness in
capturing the features of the input data. A typical CNN con-
sists of an input layer, an output layer and several hidden layers
that are divided into stages with each stage comprising a com-
bination of layers of four types: the convolution layer, the non-
linearity layer, the pooling layer and the fully-connected layer.

Take a typical image classification problem as an example,
the input is a processed image with N pixels in width and height
and 3 in depth representing the RGB color channels. So the in-
put can be seen as an N × N × 3 matrix containing the color
intensity values. The output is a vector indicating which class
the image could be classified into. With appropriate design of
the network architecture, CNN can also be used to tackle re-
gression problems. The objective of using CNN in this paper is
to achieve the prediction of geometric deviations in AM consid-
ering the effect of influential factors, including process param-
eters, part size and layer height, on parts of different shapes.
Therefore, a multi-channel input has been designed as shown
in Fig. 1, with each channel represented by an N × N 2D ma-
trix. The first channel is the geometry channel conveying the
2D shape of the layer, in which elements are assigned 1s if their
locations are occupied by the layer geometry and 0s otherwise.
In the 2nd to 4th channel, a constant matrix is assigned as the
corresponding process parameter values under which the part is

manufactured. The parameters considered in this paper are layer
thickness (p1), laser scan speed (p2) and laser power(p3). Sim-
ilarly, the 5th and 6th channel each contains a constant matrix
representing the part size (p4) and layer height (h). Therefore,
the total size of input parameters sums up to N2 + 5. The output
of the network is a 3-channel deviation field corresponding to
the deviation in X,Y and Z axis.

The main structure of the network is divided into two stages,
in each stage convolution and pooling operations are conducted
to obtain a detailed feature map. The convolution layer per-
forms as a filter that convolves the input across its height and
width with small feature images, producing a 2D activation map
of the filter which tells the network to activate the filter when
it detects this specific feature at some spatial position of the in-
put. In a convolution layer, N f filters Fc ∈ Rsc×sc×d are used to
convolve with the input I ∈ Rsi×si×d, where sc is the size of the
filter and d is the depth which is consistent with the input depth.
The input of the convolution layer can either be the input image
or the output of the previous layer. By specifying two extra pa-
rameters: stride S and padding P, the feature map Mi ∈ Rsm×sm

after convolution using filter Fi is obtained as Eqn.(1), where
sm = (si − sc + 2P)/S + 1, ∗ is the convolution operator and bc

i
is the bias vector.

Mi = I ∗ Fi + bc
i , i = 1, 2, ...,N f (1)

Convolution layers are stacked together in both stages ex-
tending the number of features to 192, each followed by batch
normalization and a non-linearity layer which applies non-
linear activation functions on the neurons. In this paper the
canonical ReLU (Rectified Linear Unit) function is used to per-
form element-wise activation on the input, this function is rep-
resented as Eqn.(2) and has the form as illustrated in Fig. 2.

f (x) = max(0, x) (2)

At the end of each stage, a pooling layer is inserted to per-
form down-sampling, thus reducing the parameter count and
computational cost as well as controlling over-fitting. Common
forms of the pooling layer are max pooling and average pool-
ing, the former of which is used in this paper. Given a specified
pooling filter size sp and the striding parameter S , the pooling
layer uses a sp × sp block to scan each depth slice of the input
progressively and takes the maximum value in each scanned
block while discarding other elements.

Fully connected (FC) layers are located at the end of the
network to enable high-level reasoning by connecting all neu-
rons in the previous layer to each neuron in current layer[2].
Right before the FC layer, features in the previous convolution
or pooling layer need to be flattened to a single vector as the
FC input. Three FC layers are specified in this architecture, two
reducing the number of features and the other producing the re-
gression output of the network, all of which take the following
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Fig. 1. The CNN architecture

Fig. 2. The ReLU function

linear form, where x, y are input and output vectors, W is the
weighting vector and b f c is the bias vector.

y = Wx + b f c (3)

The output vector is further reshaped as an N × N × 3 ma-
trix as the predicted X-,Y- and Z- deviation profiles on the 2D
layer. Training of the network aims at finding optimal values of
parameters, including bc,W and b f c, by minimizing a loss func-
tion. Since we are actually dealing with a regression problem,
the half mean squared error (MSE) between the actual and pre-
dicted deviation values at all 3N2 locations of the 3 deviation
profiles is used to define the loss as Eqn.(4).

J(bc,W, b f c) =
1
2

3N2∑
i=1

(yi − ŷi(bc,W, b f c))2

3N2 (4)

Tensorflow [1] is utilized to establish the proposed network.
And the Adam optimizer is chosen for network training, which
decreases the training loss by searching in the parameter space.
The hyper-parameters, such as filter size and number, stride,
padding and pooling shape, are carefully selected to reach a
balance between computational cost and prediction accuracy.
Also, to avoid over-fitting and increase learning speed, a piece-
wise dropping mechanism is used which drops the learning rate
by 50% every 20 epochs, starting from an initial value of 0.001.

As is known, deep learning necessarily requires a large
amount of training data to ensure robust prediction. However,
the time-consuming manufacturing, measurement and simula-
tion process hardly allow the collection of sufficient data in an
academic research. Therefore, in order to obtain a high-quality
network, a data augmentation strategy is needed to generate
new data samples based on existing ones without a significant
loss of accuracy. In this context, a method based on Statistical
Shape Analysis will be proposed in the next section enabling
the quick augmentation of training data based on a small num-
ber of AM simulations.

3. Deviation data pre-processing and data augmentation
with Statistical Shape Analysis (SSA)

The growth of data-driven models for design and quality
control for AM has posed the demand for a substantial amount
of data for model training and validation, which is quite chal-
lenging in view of the costly manufacturing and measurement
processes. Therefore, AM simulation technologies are emerg-
ing aiming at providing quick and accurate prediction of the
possible outcomes of AM processes for both industrial and aca-
demic applications. A number of AM simulation packages of-
fer the functionality to predict the in-process and post-process
geometric part deviations by considering thermal and mechan-
ical effects. Moreover, the deviations of each 2D layer can be
obtained from the simulation results, which is beyond the ca-
pability of traditional measurement techniques. In this regard, a
proprietary software package named Ansys Additive R© is used
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Fig. 3. Determination of the input geometry channel

in this paper for deviation data collection. The aforementioned
process parameters are specified and a number of simulations
are run for parts of different shapes and sizes. The software re-
ceives STL files as input and outputs a voxelized part model.
The predicted deviations in X−,Y− and Z− axes are associated
with each voxel. Given the specified layer height, the layer-wise
deviation data can be conveniently retrieved from the voxel
points lying on each 2D layer.

The input and output of the CNN architecture as shown
in Fig. 1 call for a regular data structure resembling the im-
age, which means that the deviation data of parts with different
shapes and sizes needs to share a common N × N grid struc-
ture. Therefore, a mapping of the data is needed. For each 2D
layer data of a specific part, a bounding square is determined
which fully encloses the whole geometry of the layer. Then,
the square is divided into a regular grid given the grid size.
Since the deviation data are associated with each voxel point,
we should figure out a way to map the data from voxel points to
the grid points, and it is necessary to determine the input geom-
etry channel from the grid structure. A straightforward solution
is to find the boundary of the layer geometry and all the grid
points lying on or within the boundary are considered to be oc-
cupied by the geometry and are assigned 1s, while other grid
points are assigned 0s, as shown in Fig. 3. The values on the
grid points together form the 2D matrix as the geometry chan-
nel in the network input. The data mapping can be done with
interpolation techniques, here the cubic interpolation is used
which considers the continuity in the distribution of data. The
mapped grid data can be represented as another 2D matrix and
element-wise multiplication of this matrix and that of the ge-
ometry channel is done to ensure that grid points lying out of
the shape boundary are eliminated. Performing the interpola-
tion respectively for X−,Y− and Z− deviations, three deviation
fields are obtained for each simulated layer, regardless of the
layer height, as well as the size and shape of the actual part.
Such information is, however, considered at the network input
as influential factors. If we consider the voxel points lying on
the layer as a nominal 2D shape, by adding deviations on the
three axes, a 3D deviation profile of the layer is obtained. The
next step is to conduct SSA on the deviation profile with respect
to the five control parameters (p, h) for data augmentation.

Fig. 4. Data augmentation with Statistical Shape Analysis and Gaussian Process

For each part with a specific shape, a design of experiment
(DoE) is conducted to draw Mp samples of the process param-
eters p and accordingly Mp simulations are run. From the sim-
ulation result of each part, a given number of Ml deviation pro-
files are extracted with the corresponding layer height values h.
Therefore, a total number of Mt = Mp ∗ Ml deviation data are
collected together with the control parameters (p, h). These data
serve as the basis for data augmentation. SSA has been used in
our previous research [14] as a dimension reduction technique
to extract main deviation modes (principal components) from
the layer-wise deviation data and to map the original deviation
profiles into the reduced t-dimensional space as a set of scores
c = c1, c2, .., ct. Gaussian Process (GP) models ct = Gt(p, h)
are then established to represent the relationship between the
parameters (p, h) and scores c. Therefore, with the trained GP
models, a large number (M � Mt) of new deviation profiles can
be generated with new combinations of (p, h), thus the avail-
able data for CNN can be substantially augmented. Figure 4
provides an overview of the data augmentation process. Due
to the page limit, the details about SSA and GP modeling will
not be discussed in this paper. Readers who are interested in
these techniques may refer to [14] for more information. It is
also worth noting that, the generality of SSA is quite limited by
the shape. So here the SSA-GP technique is just used to aug-
ment the available deviation data for each input shape, and to
assist the CNN in the pre-processing stage. Moreover, though
the deviation data are collected from simulations, a vision can
be made that, in an industrial application where manufactured
samples are readily available, the model can be enriched.
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NO.
Part
size

(mm)

Layer
thickness

(um)

Laser
power
(W)

Scan
speed

(mm/s)
Type

1 15 85 280 2400 Training
2 18 90 190 1600 Training
3 21 40 230 1300 Training
4 24 60 160 1700 Training
5 27 35 180 2100 Training
6 30 75 200 1000 Training
7 33 50 220 1900 Training
8 36 65 270 2200 Training
9 39 30 260 1400 Training
10 42 80 290 1800 Training
11 45 70 170 1100 Training
12 48 45 250 1200 Training
13 51 95 240 1500 Training
14 54 55 210 2000 Training
15 57 100 150 2300 Training
16 20 50 195 3000 Test (Cyl)
17 21 40 230 1300 Test (Sqr)

Table 1. Parameter values determined by DoE for simulation

4. Case study

To illustrate the effectiveness of the proposed method, a case
study is provided in this section regarding AM parts of a square
shape and a cylindrical shape. For each shape, a Design of Ex-
periments (DoE) procedure is performed using the Latin Hyper-
cube Design (LHD) method to sample 15 levels of parameters
within a reasonable range, more explanations to the selection of
these parameters can be found in [15]. Based thereon, Mp = 15
simulations are run to generate the training data for SSM and
data augmentation. Two extra simulations are conducted fol-
lowing two randomly generated parameter samples to test per-
formance of the trained network on the cylindrical shape and
square shape respectively. The parameter setting of each simu-
lation can be found in Tab. 1, in which the Type column denotes
whether the data belongs to the training or test set. The part size
column indicates the size of the simulated part, standing for the
side length for square shape and the diameter for cylindrical
shape. All parts are designed with the height as 5mm.

A thermal-mechanical simulation is conducted under each
parameter setting as listed in Tab. 1, while keeping the same
setting for all other parameters, including baseplate tempera-
ture (353K), hatch spacing (100um), material (Inconel 718),
etc. The resulting deviations in X, Y and Z axes are sampled
in a layer-wise manner with a 1mm-interval in the build direc-
tion and in each layer the data are mapped into a 20×20 regular
grid, resulting in Ml = 6 layers for each part. A total number of
Mt = 15 × 6 deviation profiles are obtained and used for data
augmentation. Through SSA, the mean shape of the deviation
profiles is found together with their scores in the reduced PCA
space. The first t = 4 principle components manage to explain
98.944% of the variance in the original deviation data of the
square part, and 98.467% in that of the cylindrical part. Based
on the parameter values and scores, 4 GP models are trained re-

Fig. 5. The total loss and training RMSE in the training process

Fig. 6. Comparison between the original deviation profile and the CNN predic-
tion on cylindrical shape

spectively to capture the non-linear relationship between them.
With the trained GP models, M = 1200 more parameter com-
binations are sampled using LHD and the corresponding devia-
tion profiles are predicted.

In the next step, the data for network training are organized.
The formulation of the input geometry channel has been dis-
cussed in Section 3, while the other channels are assigned the
newly generated parameter values in data augmentation. The
output deviation fields are also obtained from the predicted de-
viation profiles. The data are split into training and validation
datasets following the 5-fold measure. We use a mini-batch
strategy, which splits the total samples into 66 separate batches,
each containing 30 pieces of data. In each iteration, the network
parameters are updated by feeding one batch. After all the sam-
ples are fed, we complete one epoch of training and the whole
training process is repeated for 64 epochs. The training progress
is illustrated in Fig. 5 showing the changes in total loss and
the RMSE of training data in each epoch. The blue dot denotes
the median value of evaluations on all iterations of an epoch. It
can be seen that, as the training process proceeds, the loss and
RMSE both reach low levels around 50 epochs and show no
significant fluctuations after that, which means the parameters
are already well learned for prediction. Therefore, we take the
network parameters at the 50th epoch (training checkpoint) for
prediction.

The performance of the trained network is validated on the
two parts (NO.16 and NO.17) held as test set. For the cylindri-
cal shape, the X-,Y-,Z- deviation profile of the top layer of test
part NO.16 is illustrated in Fig.6 as compared to the simulation
result. For the square shape, the bottom layer of test part NO.17
is illustrated in Fig.7.
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Fig. 7. Comparison between the original deviation profile and the CNN predic-
tion on square shape

Though slight differences exist for the X- and Y- deviation of
cylindrical shape and the Z- deviation of square shape, the CNN
prediction has captured the major distribution of deviations on
the test layer. The performance maintains at a high-level also
for other test parts according to our experiment, which will not
be demonstrated here due to the page limit. The trained CNN
has managed to effectively predict deviations across the two dif-
ferent shapes by considering their sizes and process parameters.
With more training data from other shapes and parameter set-
tings available, the predictive capability of the network could
be significantly enhanced.

5. Conclusion

In this paper, a new deep learning method has been devel-
oped for the geometric deviation modeling of AM processes.
With the power of data, CNN has unfolded new possibilities to
investigate the effect of manifold influential factors on the re-
sulting geometric deviations. Based on the predicted deviations,
the deformed part surface can be constructed from the nominal
STL representation by deviating the layer boundary points, thus
assisting DfAM in evaluation of geometrical quality. The point-
wise reverse compensation can also be performed to obtain a
compensated STL model so as the manufactured part surface
will be closer to the design intent.

This method has the potential to be more powerful by being
trained with more deviation data from a variety of shapes. The
incorporation of more realistic measurement data will undoubt-
edly improve the predictive performance in practical industrial
applications. This poses a need, however, for more advanced
measurement techniques such as Computed Tomography (CT)
in order to gain layer-wise data. Moreover, new process param-
eters can be taken into account by increasing the input chan-
nels and conducting more simulations under such parameters.
It’s also worth noting that, if simulation tools that goes beyond
simple FEA are available, for instance generative design, then
this work can consider more design constraints and require-
ments that could be incorporated as new parameters. Another
promising research direction is towards the Digital Twin [9]
for Additive Manufacturing with data analytics as the building

block aiming at developing high-fidelity digital models driven
by multi-domain data from the product life-cycle.
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