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Abstract

Despite the importance and frequent use of Bayesian frameworks in brain
network modeling for parameter inference and model prediction, the ad-
vanced sampling algorithms implemented in probabilistic programming lan-
guages to overcome the inference difficulties have received relatively little
attention in this context. In this technical note, we propose a probabilistic
framework, namely the Bayesian Virtual Epileptic Patient (BVEP), which
relies on the fusion of structural data of individuals to infer the spatial map of
epileptogenicity in a personalized large-scale brain model of epilepsy spread.
To invert the individualized whole-brain model employed in this study, we use
the recently developed algorithms known as No-U-Turn Sampler (NUTS) as
well as Automatic Differentiation Variational Inference (ADVI). Our results
indicate that NUTS and ADVI accurately estimate the degree of epilepto-
genicity of brain regions, therefore, the hypothetical brain areas responsible
for the seizure initiation and propagation, while the convergence diagnostics
and posterior behavior analysis validate the reliability of the estimations.
Moreover, we illustrate the efficiency of the transformed non-centered pa-
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rameters in comparison to centered form of parameterization. The Bayesian
framework used in this work proposes an appropriate patient-specific strategy
for estimating the epileptogenicity of the brain regions to improve outcome
after epilepsy surgery.

Keywords: Bayesian Inference, Personalized Brain Network Model,
Epileptic Seizures, Epileptogenicity

Abbreviations: BVEP, Bayesian virtual epileptic patient; VEP, vir-
tual epileptic patient; TVB, The Virtual Brain; EZ, epileptogenic zone; PZ,
propagation zone; HZ, healthy zone; PPL, probabilistic programming lan-
guage; MCMC, Monte Carlo Markov Chain; VI, variational inference; NUTS,
No-U-Turn Sampler; ADVI, automatic differentiation variational inference;
HMC, Hamiltonian Monte Carlo; CV, cross validation; ELBO, evidence lower
bound;

Highlights:

• We propose a novel framework to link the probabilistic programming
languages and the personalized whole-brain network modeling.

• The proposed approach captures well the seizure evolution and recruit-
ment in a virtual epileptic patient.

• The Bayesian inversion relies on efficient sampling algorithms and ap-
propriate form of parameterization that accurately infer the spatial
map of epileptogenicity across different brain regions.

• The convergence diagnostics and posterior behavior analysis validate
the reliability of the estimations.

• We point out the capability of individualized large-scale brain network
modeling in development of personalized strategies towards therapy
and intervention.

1. Introduction1

Model inversion i.e., finding a set of model parameters that yields the2

best possible fit to the observed data is a challenging task in statistical in-3

ference (Gelman et al., 2013; Aster et al., 2013; Groetsch, 1999). Bayesian4
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frameworks offer powerful and principled methods for parameter inference5

and model prediction from experimental data with a broad range of applica-6

tions (Gelman et al., 2013; Bishop, 2006). Within neuroimaging context, the7

Bayesian approaches have been widely used for inference of neuronal popula-8

tion’s intrinsic parameters and/or interactions between neuronal populations9

(effective connectivity) in a pre-specified neuronal network from neurophysi-10

ological data (Friston et al., 2003; David et al., 2006; Daunizeau et al., 2012;11

Boly et al., 2012; Friston et al., 2014a; Frassle et al., 2018). The sampling12

from the posterior distribution provides the neuroscientist with an estimation13

of parameter distributions, which make the link to the underlying physiologi-14

cal mechanisms employed in the network model and, thus, enable its scientific15

interrogation, for instance for resting state and task paradigms (David et al.,16

2006; Friston et al., 2014a), and clinical translation, for instance in epilepsy17

(Jirsa et al., 2017).18

Bayesian approaches require to calculate conditional probabilities over19

multiple parameters given observations that is typically interactable analyt-20

ically. In the field of machine learning, several approaches exist to perform21

Bayesian inference. Markov Chain Monte Carlo (MCMC; (Bishop, 2006; Gel-22

man et al., 2013)) methods allow us to approximate the expectation values23

of relevant functions by drawing samples from target probability distribu-24

tions (Brooks et al., 2011; Betancourt, 2014b). Based on simulating artificial25

dataset conditioned on the sampled parameters, several likelihood-free in-26

ference methods have been proposed to perform inference when likelihood27

computations are prohibitively expensive (Papamakarios and Murray, 2016;28

Meeds and Welling, 2014, 2015; Gutmann et al., 2016).29

It is well-known that gradient-free sampling algorithms such as Metropolis-30

Hastings (Metropolis et al., 1953; Hastings, 1970), Gibbs sampling (Geman31

and Geman, 1984; Gilks et al., 1995) and slice-sampling (Neal, 2003; Bishop,32

2006) generally fail to explore the parameter space efficiently when applied to33

large-scale inverse problems (Girolami and Calderhead, 2011; Hoffman and34

Gelman, 2014), as often encountered in the application of whole-brain imag-35

ing for clinical diagnoses. In particular, the traditional MCMC mix poorly in36

high-dimensional parameter spaces involving correlated variables (Girolami37

and Calderhead, 2011; Hoffman and Gelman, 2014; Betancourt, 2014b). In38

contrast, gradient-based algorithms such as Hamiltonian Monte Carlo (HMC;39

(Duane et al., 1987; Neal, 2010)), although computationally expensive, they40

are far superior to gradient-free sampling algorithms in terms of the num-41

ber of independent samples produced per unit computational time (Sengupta42
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et al., 2015, 2016). This class of sampling algorithms provides efficient con-43

vergence and exploration of parameter space even in very high-dimensional44

spaces that may exhibit strong correlations (Girolami and Calderhead, 2011;45

Hoffman and Gelman, 2014; Betancourt, 2014b). Nevertheless, the efficiency46

of gradient-based sampling methods such as HMC is highly sensitive to the47

user-specified algorithm parameters (Girolami and Calderhead, 2011; Hoff-48

man and Gelman, 2014). More advanced MCMC sampling algorithms such49

as No-U-Turn Sampler (NUTS; (Hoffman and Gelman, 2014)), a self-tuning50

variant of HMC (Carpenter et al., 2017) solve these issues by adaptively51

tuning the algorithm parameters. It has been shown that these algorithms52

efficiently sample from high-dimensional target distributions that allow us53

to solve complex inverse problems conditioned on massive data set as the54

observation (Gopalan and Blei, 2013; Gopalan et al., 2016; Kucukelbir et al.,55

2017).56

MCMC has the advantage of being non-parametric and asymptotically57

exact in the limit of long/infinite runs (Gelman et al., 2013). Of the other58

alternatives, Variational Inference (VI; (Jordan et al., 1999; Wainwright and59

Jordan, 2008)) turns the Bayesian inference into an optimization problem,60

which typically results in much faster computation than MCMC methods61

(Gelman et al., 2013; Kucukelbir et al., 2017). However, the classical deriva-62

tion of VI requires a major model-specific work on defining a variational63

family appropriate to the probabilistic model, computing the corresponding64

objective function, computing gradients, and running a gradient-based op-65

timization algorithm (Kucukelbir et al., 2015; Blei et al., 2017). Automatic66

Differentiation Variational Inference (ADVI; (Kucukelbir et al., 2017; Blei67

et al., 2017)) solves these problems automatically.68

Probabilistic programming languages (PPLs; (Carpenter et al., 2017; Sal-69

vatier et al., 2016; Tran et al., 2016; Bingham et al., 2019)) provide efficient70

implementation for automatic Bayesian inference on user-defined probabilis-71

tic models by featuring the next generation of MCMC sampling and VI algo-72

rithms such as NUTS and ADVI, respectively. With the help of PPLs, these73

algorithms take the advantage of automatic differentiation methods for the74

computation of derivatives in computer programs to avoid the random walk75

behavior and sensitivity to correlated parameters (Carpenter et al., 2017;76

Salvatier et al., 2016). In particular, Stan (Stan Development Team, 2018)77

and PyMC3 (Salvatier et al., 2016) are high-level statistical modeling tools78

for Bayesian inference and probabilistic machine learning, which provide the79

advanced inference algorithms such as NUTS and ADVI, enriched with exten-80
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sive and reliable diagnostics. Although PPLs allow for automatic inference,81

the performance of these algorithms can be sensitive to the form of param-82

eterization (Betancourt and Girolami, 2013; Betancourt, 2014b; Monnahan83

et al., 2017). An appropriate form of reparameterization in the probabilis-84

tic models to improve the inference efficiency of system dynamics (governed85

by a set of nonlinear stochastic differential equations) remains a challenging86

problem.87

On the other hand, due to the potential to improve medical treatment88

strategies, the personalized large-scale brain network modeling has gained89

popularity over the recent years (Jirsa et al., 2017; Bansal et al., 2018). In90

the individualized whole-brain modeling approach, the patient-specific infor-91

mation such as anatomical connectivity obtained from non-invasive imaging92

techniques is combined with the mean-field models of local neuronal activity93

to simulate the individual’s spatio-temporal brain activity at the macroscopic94

scale (Bernard and Jirsa, 2016; Proix et al., 2017). The Virtual Brain (TVB;95

(Sanz Leon et al., 2013)) is an open-access computational framework written96

in Python to reproduce and evaluate the personalized configurations of the97

brain by using individual subject data. This neuroinformatics platform inte-98

grates brain computational modeling and multimodal neuroimaging data to99

systematically simulate the individual’s spatiotemporal brain activity. How-100

ever, there is currently no specific workflow for automatic model inversion101

and data fitting validation in preparation for TVB.102

More recently, Jirsa et al. (2017) have proposed a novel approach namely103

Virtual Epileptic Patient (VEP) to brain interventions based on personalized104

brain network models derived from non-invasive structural data of individ-105

ual patients. The VEP model is a large-scale computational model of an106

individual brain that incorporates personal data such as the locations of107

seizure initiation, subject-specific brain connectivity, and MRI lesions to in-108

form patient-specific clinical monitoring and improve surgical outcomes. It109

has been previously shown that the VEP model is able to realistically mimic110

the evolution of epileptic seizures in a patient with bitemporal epilepsy (Jirsa111

et al., 2017). However, the inverse problem of such large-scale brain network112

models is a challenging task due to the intrinsic non-linear dynamics of each113

brain network node as well as the related large number of model parameters114

and the observation as commonly encountered in brain-imaging setting.115

The aforementioned findings have motivated us to establish a useful link116

between the most popular probabilistic programming tools (e.g., Stan/PyMC3)117

and the personalized brain network modeling (e.g., the VEP model), in or-118
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der to systematically predict the location of seizure initiation in a virtual119

epileptic patient. In the present note, we show how to build the Bayesian120

Virtual Epileptic Patient (BVEP) as a probabilistic framework designed to121

infer the hidden/unobserved dynamics of personalized large-scale brain model122

of epilepsy spread generated by TVB. We first describe the steps necessary123

to build the BVEP, and then we use NUTS and ADVI algorithms to infer124

the degree of epileptogenicity of the brain network regions.125

2. Materials and methods126

The body of the work is based on the personalized brain network mod-127

eling and Bayesian inference as schematically illustrated in Fig. 1. The128

workflow to build the BVEP consists of two main steps: constructing the129

VEP, a personalized brain network model of epilepsy spread (Jirsa et al.,130

2017), and then embedding the VEP model in a Bayesian framework to in-131

fer and validate the model parameters. Following the VEP formulation in132

state-space representation, the probabilistic reparameterization of the system133

dynamics is demonstrated. We show that the proposed probabilistic repa-134

rameterization in BVEP is able to efficiently invert the nonlinear state-space135

equations to infer the system dynamics. This novel approach allows us to ac-136

curately estimate the spatial map of epileptogenicity in a personalized brain137

network model of epilepsy spread by taking advantage of PPLs. In this note,138

we use TVB (see https://www.thevirtualbrain.org) for brain network139

simulations, and Stan (see https://mc-stan.org) as well as PyMC3 (see140

https://docs.pymc.io) for inverting the simulated whole-brain model.141

In what follows, we show step by step how to build the BVEP model for142

a particular patient in order to fit the constructed brain model against in-143

silico data and validate our inference. The accuracy and the reliability of the144

estimations are validated by several convergence diagnostics and posterior145

behavior analysis.146

2.1. Individual patient data147

For this study, we selected two patients: a 23 year-old female with drug-148

resistant occipital lobe epilepsy (patient 1), and a 24 year-old female with149

drug-resistant temporo-frontal lobe epilepsy (patient 2). The patients un-150

derwent standard clinical evaluation, details of which were described in a151

previous study (Proix et al., 2017). The evaluation included non-invasive152

T1-weighted imaging (MPRAGE sequence, repetition time = 1900 ms, echo153
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time = 2.19 ms, 1.0 x 1.0 x 1.0 mm, 208 slices) and diffusion MRI images154

(DTI-MR sequence, angular gradient set of 64 directions, repetition time =155

10.7 s, echo time = 95 ms, 2.0 x 2.0 x 2.0 mm, 70 slices, b-weighting of156

1000 s mm−2). The images were acquired on a Siemens Magnetom Verio 3T157

MR-scanner.158

2.2. Network anatomy159

The structural connectome was built with a reconstruction pipeline using160

generally available neuroimaging software (see Fig. S1). The current version161

of the pipeline evolved from a previously described version (Proix et al.,162

2017).163

First, the command recon-all from Freesurfer package (Fischl, 2012) in164

version v6.0.0 was used to reconstruct and parcellate the brain anatomy from165

T1-weighted images. Then, the T1-weighted images were coregistered with166

the diffusion weighted images by the linear registration tool flirt (Jenkinson167

et al., 2002) from FSL package in version 6.0 using the correlation ratio cost168

function with 12 degrees of freedom.169

The MRtrix package in version 0.3.15 was then used for the tractography.170

The fibre orientation distributions were estimated from DWI using spherical171

deconvolution (Tournier et al., 2007) by the dwi2fod tool with the response172

function estimated by the dwi2response tool using the tournier algorithm173

(Tournier et al., 2013). Next, we used the tckgen tool, employing the prob-174

abilistic tractography algorithm iFOD2 (Tournier et al., 2010) to generate175

15 millions fiber tracts. Finally, the connectome matrix was built by the176

tck2connectome tool using the Desikan-Killiany parcellation (Desikan et al.,177

2006) generated by FreeSurfer in the previous step (see Table S1 for label178

names and indices of sub-divided brain regions). The connectome was179

normalized so that the maximum value is equal to one.180

2.3. Network model181

Typically, to build a personalized brain network model, the brain regions182

are defined using a parcellation scheme and a set of mathematical equa-183

tions is used to model the regional brain activity (Sanz-Leon et al., 2015;184

Jirsa et al., 2017). Taking such a data-driven approach to incorporate the185

subject-specific brain’s anatomical information, the network edges are then186

represented by structural connectivity of the brain, which are obtained from187

non-invasive imaging data of individual patients (Jirsa et al., 2017; Bansal188
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et al., 2018). In VEP model, the dynamics of brain network nodes are gov-189

erned by Epileptor equations (Jirsa et al., 2014) that are coupled through the190

structural connectivity matrix derived from diffusion-weighted MRI (dMRI)191

techniques (Jirsa et al., 2017).192

The Epileptor is a dynamical model of seizure evolution and is able to re-193

alistically reproduce the dynamics of onset, progression and offset of seizure-194

like events (Jirsa et al., 2014; Proix et al., 2014). The Epileptor comprises five195

state variables coupling two oscillatory dynamical systems on three different196

timescales: on the fastest timescale, variables x1 and y1 account for fast dis-197

charges during the ictal seizure states. On the intermediate timescale, vari-198

ables x2 and y2 represent the slow spike-and-wave oscillations. On the slowest199

timescale, the permittivity state variable z is responsible for the transition200

between interictal and ictal states. In addition, the interictal and preictal201

spikes are generated via the term g(x1).202

Following Jirsa et al. (2014), the dynamics of full Epileptor model is203

described by:204

ẋ1 = y1 − f1(x1, x2)− z + I1

ẏ1 =
1

τ1
(1− 5x21 − y1)

ż =
1

τ0
(4(x1 − η)− z) (1)

ẋ2 = −y2 + x2 − x32 + I2 + 0.002g(x1)− 0.3(z − 3.5)

ẏ2 =
1

τ2
(−y2 + f2(x2))

where205

f1(x1, x2) =

{
x31 − 3x21 if x1 < 0

(x2 − 0.6(z − 4)2)x1 if x1 ≥ 0

f2(x2) =

{
0 if x2 < −0.25

6(x2 + 0.25) if x2 ≥ −0.25

g(x1) =

∫ t

−t0
exp−γ(t−τ) x1(τ)dt,
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with τ0 = 2857, τ1 = 1, τ2 = 10, I1 = 3.1, I2 = 0.45, and γ = 0.01. The206

degree of epileptogenicity is represented through the value of excitability207

parameter η. If η > ηc, where ηc is the critical value of epileptogenicity,208

Epileptor shows seizure activity autonomously and is referred to as epilepto-209

genic; otherwise Epileptor is in its (healthy) equilibrium state and does not210

trigger seizures autonomously.211

Following Jirsa et al. (2017), the full VEP brain model equations (N-212

coupled Epileptors) read as follows:213

˙x1,i = y1,i − f1(x1,i, x2,i)− zi + I1

˙y1,i =
1

τ1
(1− 5x21,i − y1,i)

żi =
1

τ0
(4(x1,i − ηi)− zi −K

N∑
j=1

Cij(x1,j − x1,i))

˙x2,i = −y2,i + x2,i − x32,i + I2 + 0.002g(x1,i)− 0.3(zi − 3.5)

˙y2,i =
1

τ2
(−y2,i + f2(x2,i))

(2)

where the network nodes are coupled by a linear approximation of permittiv-214

ity coupling through K
∑N

j=1Cij(x1,j − x1,i), which includes a global scaling215

factor K, and the patient’s connectome Cij.216

By applying averaging methods, Proix et al. (2014) have shown that the217

effect of second neuronal ensemble of Epileptor (i.e., the variables x2 and y2)218

is negligible by averaging on the coupled Epileptor equations. Then, under219

time scale separation (τ0 � 1), the fast variables (x1 and y1) rapidly collapse220

on the slow manifold (McIntosh and Jirsa, 2019), whose dynamics is governed221

by the slow variable z. This approach yields the 2D reduction of VEP model222

as follows:223

˙x1,i = 1− x31,i − 2x21,i − zi + I1,i

żi =
1

τ0
(4(x1,i − ηi)− zi −K

N∑
j=1

Cij(x1,j − x1,i)).

(3)

Depending on the value of excitability parameter η, the 2D Epileptor224

exhibits different stability regimes. The details regarding linear stability225
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analysis and parameter space exploration of 2D Epileptor are provided in226

Proix et al. (2014); Jirsa et al. (2017). For η < ηc, a trajectory in the227

phase plane is attracted to the single stable fixed point of the system on the228

left branch of the cubic x-nullcline. In this regime, the Epileptor is said to229

be healthy, meaning not triggering epileptic seizure without external input.230

As the value of η increases, the z-nullcline moves down and a saddle-node231

bifurcation occurs at η = ηc corresponding to a seizure onset. For η > ηc,232

the system exhibits an unstable fixed point allowing a seizure to happen (the233

Epileptor is said to be epileptogenic). Isolated nodes display a bifurcation at234

the crtical value ηc = −2.05 (Proix et al., 2014; Jirsa et al., 2017).235

In this study, we use the 2D reduction of VEP model for Bayesian in-236

ference of spatial map of epileptogenicity to reduce the computational cost237

associated with the model parameter estimation. The 2D reduction of Epilep-238

tor allows for faster inversion while enabling us to predict the envelope of fast239

discharges during the ictal seizure states (i.e., onset, propagation and offset240

of seizure patterns) (Proix et al., 2014; Jirsa et al., 2017).241

2.4. Spatial map of epileptogenicity242

The individual structural connectivity imposes strong constraints on the243

emergent spatiotemporal dynamics of the virtual brain models (Deco et al.,244

2009, 2011; Melozzi et al., 2019). Further constraints can be established by245

incorporating explicit hypotheses into the network model. In the case of246

epilepsy, clinical hypothesis on the location of epileptogenic zone or lesion247

allows refining the network pathology to better predict seizure initialization248

and propagation in individual patients.249

In the BVEP brain model, each network node can trigger seizures de-250

pending on its connectivity and the excitability value. The parameter η251

controls the tissue excitability, and its spatial distribution is thus the target252

of parameter fitting. In this study, depending on the excitability value, the253

different brain regions are classified into three main types:254

• Epileptogenic Zone (EZ): if η > ηc, the Epileptor can trigger seizures255

autonomously (brain region responsible for the origin and early orga-256

nization of the epileptic activity).257

• Propagation Zone (PZ): if ηc − ∆η < η < ηc, the Epileptor does not258

trigger seizures autonomously but they may be recruited during the259

seizure evolution since their equilibrium state is close to the critical260

value.261
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• Healthy Zone (HZ): if η < ηc − ∆η, the Epileptor does not trigger262

seizures autonomously.263

Based on the above dynamical properties, the spatial map of epilepto-264

genicity across different brain regions comprises the excitability values of EZ265

(high value of excitability), PZ (smaller excitability values) and all other re-266

gions categorized as HZ (not epileptogenic). Note however, that an interme-267

diate excitability value does not guarantee that the seizure recruits this area268

as part of the propagation zone, because the propagation is also determined269

by various other factors including connectivity and brain state dependence.270

In the BVEP brain model, the clinical hypotheses can be formulated as the271

prior knowledge on the spatial distribution of excitability parameters. In272

this study, assuming no clinical hypothesis on a particular brain area, we273

assign the same prior distribution on the excitability parameter across all274

brain regions included in the analysis.275

2.5. Probabilistic model276

The key component in constructing a probabilistic brain network model277

within a Bayesian framework is the generative model. Given a set of observa-278

tions, the generative model is a probabilistic description of the mechanisms by279

which observed data are generated through some hidden states and unknown280

parameters (Daunizeau et al., 2009, 2014). Here, the generative model will281

therefore have a mathematical formulation guided by the dynamical model282

that describes the evolution of model’s state variables, given parameters,283

over time. This specification is necessary to construct the likelihood function284

(Cooray et al., 2015; Hashemi et al., 2018). The full generative model is285

then completed by specifying prior beliefs about the possible values of the286

unknown parameters (Friston et al., 2014b).287

The BVEP brain model presented in this study is built upon two main288

steps. First, the VEP model equation that provides the basic form of the289

data generative process describing how the epileptic seizures are generated.290

Second, the hypothesis formulation on the spatial map of epileptogenicity in291

the brain as our prior knowledge. The later component informs the model us-292

ing hypotheses about the spatial distribution of excitability parameter across293

different brain regions.294

The generative model in the BVEP is formulated based on a system of295

nonlinear stochastic differential equations of the form (so-called state-space296
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representation):297 {
ẋ(t) = f(x(t),u(t),θ) +w(t), x(0) = xt0

y(t) = h(x(t)) + v(t)
(4)

where x(t) ∈ Rn is a n-dimensional vector of system’s states evolving over298

time, xt0 is the initial state vector at time t = 0, θ ∈ Rp contains all the299

unknown parameters of the VEP model, and u(t) stands for the external300

input. In addition, y(t) ∈ Rm denotes the measured data subject to the301

measurement error v(t). The process (dynamical) noise and the measure-302

ment noise denoted by w(t) ∼ N (0, σ2) and v(t) ∼ N (0, σ′2), respectively,303

are assumed to follow a Gaussian distribution with mean zero and variance304

σ2 and σ′2, respectively. The colored and non-Gaussian dynamical noise can305

be captured in the term w(t), whereas in the presence of multiplicative noise306

(i.e., the noise whose intensity depends upon the system’s state) or mul-307

tiplicative feedback (the system’s state further influences the driving noise308

intensity), an additional term appears which can lead to qualitatively differ-309

ent solutions (Pesce et al., 2013; Volpe and Wehr, 2016). Moreover, f(.) is310

a vector function that describes the dynamical properties of the system and311

h(.) represents a measurement function. In source localization problem, h(.)312

is known as the lead-field matrix (Friston et al., 2008; Hu et al., 2018, 2019).313

We note that the current work focuses on the potential brain sources of ob-314

served activity to avoid the inevitable inconsistency associated with mapping315

from source dipoles to the measurements at electrode contacts (i.e., h(.) is a316

linear function here).317

Considering the 2D reduction of VEP model (cf., Eq. (3)), then x(t) =318

(x1,1, z1, x1,2, z2, ..., x1,N , zN) ∈ Rn, with n = 2N , where N is equal to the319

number of brain regions. Accordingly, θ = (xt0,1,xt0,2, ...,xt0,N ,320

η1, η2, ..., ηN , K, σ, σ
′) ∈ Rp, where p = 3N + 3. Using the reconstruction321

pipeline to virtualize a patient as described in section 2.2, here N = 84.322

The state-space representation (cf. Eq. (4)) defining the dynamics of323

hidden states x(t) is incorporated in the BVEP model as state transition324

probabilities:325

T (x(t),x(t+ dt)) ∼ N (x(t) + dtf(x(t),u(t),θ), σ2), (5)

where T denotes the transition probability from state x(t) to x(t + dt).326

However, the above parameterization referred to as centered parameteriza-327

tion may exhibit a pathological geometry yielding biased estimations (Be-328

tancourt, 2014b; Betancourt and Girolami, 2013).329
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It has been previously shown that a careful choice of reparameterization330

increases the effective sample size and decreases the divergences, in partic-331

ular for the regions of extreme curvature (Betancourt and Girolami, 2013;332

Monnahan et al., 2017). To avoid pathological samples, and therefore, the333

biased estimations due to strong correlation between parameters in the cen-334

tered form of parameterization, we take advantage of location-scale transfor-335

mation (Betancourt and Girolami, 2013) to invert the nonlinear state-space336

equations, which allows us to decorrelate the parameters representing state337

variables at successive time steps.338

A non-centered reparameterization of the above distribution reads as fol-339

lows:340

T (x∗(t),x∗(t+ dt)) ∼ N (0, 1),

x(t+ dt) = f(x(t),u(t),θ) + dtdx+ σx∗(t+ dt).
(6)

In section 3, we show that using the non-centered form of parameteri-341

zation to infer the system dynamics dramatically improves the performance342

of sampling by avoiding biased estimations due to the strong correlation be-343

tween parameter.344

2.6. Inference/Prediction345

A generative model is characterized by the joint probability distribution346

of the model parameters and the observation P (Y , ϑ) where Y denotes the347

observed variables, and ϑ includes the system’s hidden variables and the348

model parameters (Bishop, 2006; Daunizeau et al., 2009). Bayesian tech-349

niques infer the distribution of unknown parameters of the underlying data350

generating process, given only observed responses and prior beliefs about the351

underlying generative process (Gelman et al., 2013; Cooray et al., 2016). By352

product rule, the generative model can be defined in terms of likelihood and353

prior on the model parameters, whose product yields the joint density:354

P (Y , ϑ) = P (Y | ϑ)P (ϑ), (7)

where prior distribution P (ϑ) includes our prior beliefs about the hidden355

variables and potential parameter values, while the conditional likelihood356

term P (Y | ϑ) represents the probability of obtaining the observation, with357

a given set of parameter values. In Bayesian inference, we seek the posterior358

density P (ϑ | Y), which is the conditional distribution of model parameters359

given the observation (Bishop, 2006; David et al., 2006). Bayes’s Theorem360
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expresses this posterior density in terms of likelihood and prior as follows:361

P (ϑ | Y) =
P (Y | ϑ)P (ϑ)

P (Y)
, (8)

where the denominator P(Y) represents the probability of the data and it is362

known as evidence or marginal likelihood (in practice amounts to simply a363

normalization term (Gelman et al., 2013)).364

To sample from posterior density P (ϑ | Y), the performance of HMC is365

highly sensitive to the step size and the number of steps in leapfrog inte-366

grator for updating the position and momentum variables in Hamiltonian367

dynamic simulation (Hoffman and Gelman, 2014). If the number of steps in368

the leapfrog integrator is chosen too small, then HMC exhibits an undesirable369

random walk behaviour similar to Metropolis-Hastings algorithm, and thus370

algorithm poorly explores the parameter space. If the number of leapfrog371

steps is chosen too large, the associated Hamiltonian trajectories may loop372

back to a neighbourhood of the initial state, and the algorithm wastes com-373

putation efforts (Hoffman and Gelman, 2014; Betancourt et al., 2014). NUTS374

extends HMC with adaptive tuning of both the step size and the number of375

steps in leapfrog integration to sample efficiently from posterior distributions376

(Hoffman and Gelman, 2014; Betancourt, 2013; Betancourt et al., 2014). In377

an alternative approach, ADVI posits a family of densities, automatically378

computes the gradients, and then finds the closest member (measured by379

Kullback-Leibler divergence) to the target distribution (Kucukelbir et al.,380

2017; Blei et al., 2017). In this study, we use NUTS, a self-tuning variant381

of HMC, as well as ADVI to approximate the posterior distribution of the382

model parameters (cf., Eq. (3)).383

The prior on excitability parameter for all brain regions included in the384

analysis was assumed as a normal distribution with a mean of -2.5 and a385

standard deviation of 1.0, i.e., N (−2.5, 1.0). Moreover, we placed a weakly386

informative prior on the system initial conditions and the global coupling387

parameter K, as a normal distribution centered at the ground-truth with388

standard deviation of 1.0 (see Tables S2 and S3). The prior on the hyperpa-389

rameters was considered as a generic weakly informative prior N (0, 1.0).390

After fitting a Bayesian model, it is often necessary to measure the predic-391

tive accuracy of the inferred model (Gelman et al., 2014). The information392

criteria and leave-one-out cross-validation (LOO; (Vehtari et al., 2017b)) are393

two rigorous approaches to assess the model’s ability in prediction of new394

data. Taking the existing simulation draws from log-likelihood evaluated at395
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the posterior of the parameter values, widely applicable information crite-396

rion (WAIC; (Watanabe, 2010)) and Pareto-smoothed importance sampling397

(PSIS; (Vehtari et al., 2017a)) LOO allow for efficiently estimating predictive398

accuracy of a fitted Bayesian model within a negligible computational time399

relative to the cost of model fitting (Vehtari et al., 2016).400

2.7. Inference diagnostics401

After running a MCMC sampling algorithm, it is necessary to carry out402

some statistical analysis in order to evaluate the convergence of MCMC sam-403

ples (Cowles and Carlin, 1996). One simple way to assess the performance404

of MCMC algorithms based on posterior samples is to visualize how well the405

chain is mixing (i.e., MCMC sampler explores all the modes in the parameter406

space efficiently). This can be monitored in different ways including traceplot407

(evolution of parameter estimates from MCMC draws over the iterations),408

pair plots (to identify collinearity between variables), and autocorrelation409

plot (to measure the degree of correlation between draws of MCMC sam-410

ples). A more quantitative way to assess the MCMC convergence to the411

stationary distribution is to estimate the potential scale reduction factor R̂412

(Gelman and Rubin, 1992; Brooks and Gelman, 1998), and effective sam-413

ple size Neff (Gelman et al., 2013) based on the samples of posterior model414

probabilities (see Appendix for definitions). The R̂ diagnostic provides esti-415

mate of how much variance could be reduced by running chains longer. Each416

MCMC estimation has R̂ statistic associated with it, which is essentially the417

ratio of between-chain variance to within-chain variance (Gelman and Ru-418

bin, 1992; Brooks and Gelman, 1998). If R̂ is approximately less than 1.1,419

the MCMC convergence has been achieved (approaching to 1.0 in the case420

of infinite samples); otherwise, the chains need to be run longer (Gelman421

et al., 2013). Moreover, the Neff statistic gives the number of independent422

samples represented in the chain. The larger the effective sample size, higher423

the precision of MCMC estimates. Note that these are necessary but not424

sufficient conditions for convergence of MCMC samples.425

In addition to the general MCMC diagnostics mentioned above, the NUTS-426

specific diagnostics can be used to monitor the convergence of samples; the427

number of divergent leapfrog transitions (due to highly varying posterior428

curvature), the step size used by NUTS in its Hamiltonian simulation (if the429

step size is too small, the sampler becomes inefficient, whereas if the step430

size is too large, the Hamiltonian simulation diverges), and the depth of tree431

used by NUTS, which is related to the number of leapfrog steps taken during432

15



the Hamiltonian simulation Gelman et al. (2013); Stan Development Team433

(2018).434

2.8. Evaluate posterior fit435

Using synthetic data for fitting allows us to validate the inference as we436

know the ground-truth of the parameters being inferred. Therefore, we can437

use standard error metrics to measure the similarity between the inferred438

parameters and those used for data generation. The metrics we used to439

validate our inference are confusion matrix, posterior shrinkage, and posterior440

z-score.441

Confusion matrix is a metric to evaluate the accuracy of a classification442

(Fawcett, 2006; Powers and Ailab, 2011). The element qi,j is equal to the443

number of observations known to be in class i but predicted to be in class444

j, with i, j ∈ {1, 2, ...Q}, where Q is the total number of classes (Pedregosa445

et al., 2011). In the BVEP model, we defined three groups namely HZ, PZ,446

and EZ to classify brain regions, thus Q = 3.447

Moreover, in order to quantify the accuracy of the inference, we plot the448

posterior z-scores (denoted by z) against the posterior shrinkage (denoted by449

s), which are defined as (Betancourt, 2014a):450

z = | θ̄ − θ
∗

σpost
|, (9)

451

s = 1−
σ2
post

σ2
prior

, (10)

where θ̄ and θ∗ are the estimated-mean and the ground-truth, respectively,452

whereas σ2
prior, and σ2

post indicate the variance (uncertainty) of the prior453

and the posterior, respectively. The posterior z-score quantifies how much454

the posterior distribution encompasses the ground-truth, while the posterior455

shrinkage quantifies how much the posterior distribution contracts from the456

initial prior distribution (Betancourt, 2014a).457

2.9. Synthetic data sets and model inversion458

In order to validate the inference using BVEP, we take advantage of459

simulation capabilities of The Virtual Brain (TVB; (Sanz Leon et al., 2013))460

for generating synthetic data sets. TVB is an open-source neuroinformatics461
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tool written in Python to simulate large-scale brain network models based on462

individual subject data. This platform has been extensively used to simulate463

common neuroimaging signals including functional MRI (fMRI), EEG, SEEG464

and MEG with a wide range of clinical applications from Alzheimer disease465

(Zimmermann et al., 2018), chronic stroke (Falcon et al., 2016) to human466

focal epilepsy (Jirsa et al., 2017).467

In this study, we used TVB to reconstruct the personalized brain network468

model. In order to validate the inference on spatial epileptogenicity, we469

simulated epileptic seizures for two patients: one simulation with the seizure470

spread to all brain nodes specified as PZ (patient 1), and another with the471

seizure spread to some of the brain nodes specified as PZ (patient 2). These472

data sets were generated using two different structural connectivity matrices473

and distinct spatial map of epileptogenicity.474

The seizure activity of patient 1 was simulated by setting two regions as475

EZ, and three regions as PZ, where EZidx ∈ {7, 35}, and PZidx ∈ {6, 12, 28},476

with the excitability values ηez = −1.6, and ηpz = −2.4, respectively. All the477

other brain nodes were fixed as not epileptogenic i.e., HZ with ηhz = −3.6478

(see Table S2).479

To simulate the seizure activity of patient 2, we selected two brain re-480

gions as EZ, and five regions as PZ, at the nodes EZidx ∈ {7, 24}, and481

PZidx ∈ {10, 23, 27, 28, 35}, respectively. For the regions selected as EZ,482

the excitability value was set to ηez = −1.5. The excitability of PZ was set483

as ηpz = −2.6, and all the other regions were defined as HZ with ηhz = −3.4484

(see Table S3).485

In both synthetic data sets, to simulate the VEP model as a system486

of stochastic differential equations, we used an Euler-Maruyama integration487

scheme with an integration step of 0.04. The additive white Gaussian noise488

was introduced in the state variable x(t) = (x1,i(t), y1,i(t), zi(t), x2,i(t), y2,i(t))489

with zero mean and variance (0.01, 0.01, 0.0, 0.0015, 0.0015). The initial con-490

ditions were selected in the interval (−2.0, 5.0) for each state variable.491

Finally, to invert the BVEP for the simulated data sets, we used two pop-492

ular open-source PPL tools for flexible probabilistic inference: Stan (Stan De-493

velopment Team, 2018), and PyMC3 (Salvatier et al., 2016). Stan language494

can be run in different interfaces, whereas PyMC3 provides several MCMC495

algorithms for model specification directly in native Python code. By spec-496

ifying the model density functions in these tools, the gradients of functions497

are computed through automatic differentiation (Baydin et al., 2018; Margos-498

sian, 2019), a powerful technique for algorithmic computation of derivatives,499

17



to efficiently approximate the log-posterior density by NUTS and ADVI. The500

computation of independent MCMC chains can also be performed in parallel501

on separate processors. In this study, we used Stan command line interface,502

whereas all the codes for simulations and posterior-based analysis were im-503

plemented in Python. The model simulation and parameter estimation were504

performed on a Linux machine with 3.0 GHz Intel Xeon processor and 32505

GB of memory.506
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Fig. 1: Schematic illustration of workflow in the BVEP brain model. The approach
to build the BVEP comprises two main steps: constructing the VEP model, and then
embedding VEP in a PPL tool to infer and validate the model parameters. To build
the VEP model, we take the following steps: First, the patient undergoes non-invasive
brain imaging (MRI, DTI). Based on these images, the brain network anatomy including
brain parcellation and the patient’s connectome are provided from the reconstruction
pipeline. Then, a neural population model is selected for each brain region to define
the network model. In VEP, the Epileptor model is defined on each network node that
are connected through structural connectivity derived from diffusion tractography. Put
together, TVB simulations allow to mimic the empirical neuroimaging signals. Then,
model fitting is performed using NUTS/ADVI algorithms within a PPL tool (in this note,
the brain source activity as the observation, and the VEP model as the generative model
translated in Stan/PyMC3). Finally, cross validation can be performed by WAIC/LOO
from the existing samples to assess the model’s ability in new data prediction, thus, in
order to refine the network pathology.
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3. Results507

The result of workflow in the BVEP model to estimate the spatial map508

of epileptogenicity across different brain regions for patient 1 is illustrated in509

Fig. 2. Parcellation of the reconstructed brain and the patient’s brain net-510

work are shown in Fig. 2A and B, respectively. Following Desikan-Killiany511

parcellation used in the reconstruction pipeline, the patient’s brain is divided512

into 68 cortical regions and 16 subcortical structures. Fig. 2C illustrates the513

structural connectivity matrix derived from diffusion tractography of the pa-514

tient. Following the virtualization of the patient’s brain, we used TVB to515

simulate the reconstructed VEP brain network model. The simulated time516

series of fast activity variable in full VEP brain model are illustrated in Fig.517

2D. The different brain node types namely HZ, PZ, and EZ are encoded518

in green, yellow and red, respectively. When the Epileptors are in isolation519

(i.e., K = 0; no network coupling), the seizures are triggered only in the520

regions defined as EZ , whereas no seizure propagation can be observed in521

other regions (see Fig. S2A and D). However, by coupling the Epileptors522

through the structural connectivity matrix of the patient (see Fig. 2C), the523

spatial recruitment pattern can be observed in the candidate brain regions524

defined as PZ (see Fig. 2D). In contrast to patient 2 (see Fig. S2F) where525

only one of the PZ is recruited, here, due to the strong coupling connections526

to regions specified as PZ as well as the high excitability value of these nodes,527

the seizure propagates to all other candidate brain regions specified as PZ528

(nodes number 6, 12, and 28). Average of fast activity variable inferred by529

inverting reduced VEP model is illustrated by the dashed line in Fig. 2D. It530

can be seen that there is a remarkable similarity between the simulated and531

the predicted seizures regarding the seizure initiation, propagation and ter-532

mination. Note that the simulation illustrates the activity of fast variable in533

full VEP brain model (i.e., x1,i(t) in Eq. (2)), whereas the inferred envelope534

of time series demonstrates the trajectories from inversion of reduced VEP535

model (cf. Eq. (3)). The estimated densities of the excitability parameters536

ηi for different brain node types are shown in Fig. 2E. From this figure, we537

observe that the true value of excitability parameter (dashed vertical line) is538

under the support of the estimated posterior density across different brain539

regions.540
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D E

HZ

PZ

EZ

Fig. 2: The result of workflow in the BVEP model to estimate the spatial map of epilep-
togenicity across different brain regions for patient 1. (A) Parcellation of reconstructed
brain of the patient. (B) Brain network of the patient consisting of 84 regions (green: HZ,
yellow: PZ, red: EZ). Thickness of the lines indicates the strength of the connections. For
illustration purposes, only connections with weight above 10% of the maximum weight
are shown. (C) Structural connectivity matrix. (D) Exemplary simulation of full VEP
model at the source-level brain activity versus the predicted envelope (dashed line). (E)
The estimated densities of the excitability parameters ηi for different brain node types.
The vertical dashed lines indicate the true values.
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The accuracy of estimated spatial map of epileptogenicity across different541

brain regions for patient 1 by BVEP implementation in Stan is presented in542

Fig. 3. (see Fig. S3 for a similar result obtained from BVEP implementation543

in PyMC3). Fig. 3A compares observed and inferred source activity for544

three brain node types specified as HZ, PZ, and EZ (nodes number 1, 6, 7,545

respectively). Simulated data consists of 120s of activity of fast variable in546

full VEP brain model (i.e., x1,i(t) in Eq. (2)) sampled at 1000 Hz, which547

is down-sampled by a factor of 10 to reduce the computational cost of the548

Bayesian inversion. The observed data is shown by dash-dotted line, whereas549

the shaded area illustrates the range between the 5th and 95th percentiles550

of the posterior predictive distribution. The activity of selected brain nodes551

in HZ, PZ, and EZ is shown in green, yellow and red, respectively. We552

observe that the predicted time series based on the samples from the posterior553

predictive distribution are in very good agreement with the simulations. Fig.554

3B shows the violin plot of the estimated density of the excitability parameter555

for all 84 brain regions included in the analysis. The filled black circles display556

true parameter values that were used to generate the simulated data. It can557

be seen that the ground-truth of excitability parameter for all brain areas is558

under the support of the estimated posterior distribution. As displayed in559

Fig. 3C, the distribution of posterior z-scores and posterior shrinkages for560

all the inferred excitabilities substantiates reliability of the model inversion.561

Note that the concentration towards large shrinkages indicates that all the562

posteriors in the inversion are well-identified, while the concentration towards563

small z-scores indicates that the true values are accurately encompassed in564

the posteriors. Therefore, the distribution on the bottom right of the plot565

implies an ideal Bayesian inversion. To further confirm the accuracy of the566

estimates in spatial excitabilities, the confusion matrix computed based on567

the inferred ηi for i ∈ {1, 2, ..., 84} is illustrated in Fig. 3D. The diagonal568

values in confusion matrix indicate that the pre-defined class for all the brain569

nodes labeled as HZ, PZ, and EZ are accurately predicted (accuracy=1.0,570

misclassification=0.0).571

In order to investigate whether the BVEP is a platform-independent572

framework, we also used PyMC3 to estimate the spatial map of epilepto-573

genicity across different brain regions. For both patients analyzed in this574

study, we obtained the same accuracy by inversion of Eq. 4 in Stan and575

PyMC3. See Figs. S4-S6 for the results related to patient 2. These results576

indicate that the BVEP inversion in Stan and PyMC3 leads to similar estima-577

tion of spatial map of epileptogenicity across brain regions in both analyzed578
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patients.579

Furthermore, the NUTS-specific diagnostics were monitored to check whether580

the Markov chain has converged (see Fig. S7). The diagnostics plot shows581

that there are no divergent transitions in HMC indicating that the posterior582

density was explored efficiently. Also, none of the NUTS iterations reached583

maximum tree-depth (its value to run NUTS was specified 10.0 here) indi-584

cating that the optimal number of leapfrog steps needed for the Hamiltonian585

simulation was sufficiently lower than the maximum. Together, these di-586

agnostics validate that the samples by NUTS has converged to the target587

distribution.588
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Fig. 3: Accuracy of the estimated spatial map of epileptogenicity across different brain
regions using NUTS algorithm for patient 1. (A) Exemplary of observed data (dash-dotted
lines) versus the prediction for three brain node types defined as HZ (green), PZ (yellow),
and EZ (red). The shaded area depicts the ranges between the 5th and 95th percentiles
of the posterior predictive distribution. (B) Violin plots of the estimated densities of the
ηi for 84 brain regions. The true values are displayed by the filled black circles. (C)
The distribution of posterior z-scores versus posterior shrinkages implies an ideal Bayesian
inversion. (D) The confusion matrix of the estimated spatial map of epileptogenicity. The
pre-defined class for all the brain nodes labeled as HZ, PZ, and EZ are accurately predicted
(accuracy=1.0, misclass=0.0).
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To illustrate the mechanisms underlying seizure initiation and propaga-589

tion within the BVEP model, the phase-plane topology of the simulation (top590

row) versus the prediction (bottom row) characterizing the dynamics of the591

different brain node types in the BVEP model is presented in Fig. 4. In the592

plotted phase-planes, the x- and z-nullclines are colored in blue, where the593

intersection of the nullclines identifies the fixed point of the system. From594

left to right, the columns correspond to the brain nodes specified as HZ, PZ,595

and EZ, respectively. Full circle and empty circle indicate the stable and596

unstable fixed points, respectively. From Fig. 4A and D, it can be observed597

that a trajectory of an HZ (node number 1) is attracted to the stable fixed598

point of the system (on the left branch of cubic x-nullcline) meaning not599

triggering epileptic seizure. For a PZ (node number 6), due to the coupling600

strength and the value of excitability which is close to the critical value of601

epileptogenicity, the z-nullcline moves down, causing a bifurcation thereby602

allowing the seizure to propagate here (see Fig. 4B and E). For the EZ603

(node number 7), the system exhibits an unstable fixed point due to the604

high value of excitability. In this regime, Epileptor possesses a limit cycle605

and the seizure triggers autonomously (see Fig. 4C and F). Notice that606

the topology of simulated and predicted phase-plane trajectories show very607

good agreement, except the amplitude of state variable zi, from which the608

estimation indicates the result of a larger parameter recovery. Note that only609

the activity of fast variable x1,i is the target of fitting as the observed data.610
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Fig. 4: Comparison between the simulated (top row) and the predicted (bottom row)
phase-plane for different brain node types in the BVEP model. From left to right, the
columns correspond to the brain nodes specified as HZ, PZ, and EZ, respectively. A
trajectory for these brain regions is shown in green, yellow and red, respectively. In
each phase-plane, depending on the excitability parameter, the intersection of x- and z-
nullclines (colored in blue) determines the fixed point of the system. Full circle and empty
circle indicate the stable and unstable fixed points, respectively.
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To compare the BVEP inversion by NUTS and ADVI schemes, Fig. 5611

displays the histogram of MCMC samples and the kernel density estimates612

of the posteriors generated from NUTS (left panel) versus those obtained613

by ADVI (right panel). From this figure, we observe that NUTS and ADVI614

perform similarly in their estimates of the posterior, except that the mean-615

field ADVI slightly underestimates the variances compared to the estimations616

by NUTS algorithm. However, taking both approaches, the true values of617

excitabilities (dashed vertical lines) are under the support of the posterior618

densities indicating that the parameter recovery was successful. The samples619

corresponding to the brain nodes specified as HZ, PZ, and EZ are illustrated620

in green, yellow and red, respectively. Note that the prior for all 84 brain621

regions included in the analysis was assumed as a normal distribution cen-622

tered at -2.5 with standard deviation of 1.0 (i.e., N (−2.5, 1.0) as shown in623

blue). To invert the BVEP model by NUTS algorithm, we used 200 number624

of sampling iterations and 200 warmup with the expected acceptance prob-625

ability of 0.95, whereas to run ADVI, the maximum number of iterations626

and the convergence tolerance were set to 50000 and 0.001, respectively. In627

terms of computational time, for these algorithm configurations, sampling by628

NUTS took 23993.5 seconds whereas the running time of ADVI was 5392.62629

seconds.630
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Fig. 5: The estimated spatial map of epileptogenicity by NUTS algorithm in comparison
to ADVI. Exemplary histogram and the kernel density estimates of the samples obtained
by NUTS are illustrated in panel (A) versus the approximation by mean-field variant of
ADVI shown in panel (B). For all the brain nodes included in the analysis, the prior
(shown in blue) was assumed as N (−2.5, 1.0). The dashed vertical lines indicate the true
values.
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Once the model parameters have been estimated, it is necessary to as-631

sess the convergence of MCMC samples. To verify the reliability of the632

inferred estimates, we monitored the potential scale reduction factor R̂ as it633

is the most reliable quantitative metric for MCMC convergence. In addition,634

we have plotted the posterior samples from the joint posterior probability635

distribution to show the efficiency of the transformed non-centered param-636

eterization in comparison to the centered form of parameterization. Fig. 6637

top row represents the posterior samples from the joint posterior probability638

distribution between the hyper-parameters σ and σ′, which are the standard639

deviation of the process (dynamical) noise and the measured noise, respec-640

tively (cf., Eq. (4)). In this figure, the left and middle columns show the641

result of sampling by NUTS with non-centered and centered form of param-642

eterization, respectively. For the sake of comparison with NUTS, the last643

column illustrates the result from mean-field variant of ADVI. The dots in644

each scatterplot represent 200 samples drawn from the joint posterior prob-645

ability distribution. In Fig. 6A and B, it can be clearly seen that there is646

no correlation between the posterior samples drawn from non-centered pa-647

rameterization, whereas the samples from the centered form show a high648

collinearity between hyper-parameters. Such a high collinearity leads to in-649

efficient exploration of posterior which can be quantifiably observed in de-650

creased numbers of effective samples and increased R̂ values. The values of651

R̂ for all of hidden states and parameters estimated by non-centered form652

are below 1.05 (see Fig. 6D), whereas more than 82 percent estimations653

by centered form has R̂ value above 1.1 (see Fig. 6E). This indicates that654

the Markov chains converged for non-centered but not for centered form of655

parameterization. We report that the ratio of effective number of samples656

to the number of iteration (Neff/Niter) returned by centered form of NUTS657

is less than 0.001 for all the estimated parameters. This indicates the poor658

sampling from centered form of parameterization as it generates a very small659

number of independent samples per Markov chain.660

Moreover, scatterplot of samples drawn from joint posterior probabil-661

ity distribution between the hyper-parameters σ and σ′ estimated by the662

mean-field ADVI is illustrated in Fig. 6C. Since by definition, the mean-663

field variant of ADVI ignores the cross correlation between parameters, the664

samples drawn using mean-field ADVI show no correlation between hyper-665

parameters. Lastly, in order to check the convergence of ADVI, evidence666

lower bound (ELBO), the variational objective function, is plotted versus667

the number of iterations (see Fig. 6F). While the algorithm appears to668
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have converged in 10000 iterations, the algorithm runs for another few thou-669

sand iterations to guarantee the convergence until the change in ELBO drops670

below the tolerance of 0.001.671
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Fig. 6: NUTS and ADVI convergence diagnostics. (A) The samples generated by NUTS
from joint posterior probability distribution between the hyperparameter pair (σ, σ′).
Here, the non-centered form of parameterization yields independent samples from the
posterior distribution. (B) The centered form of sampling leads to high correlation between
hyper-parameters indicating that the sampler was not efficiently exploring the posterior
distribution. (C) The samples from approximate joint posterior probability distribution
using the mean-field variant of ADVI. (D) Shows the R̂ values for the non-centered form
of sampling, which are lower than 1.05 for all estimated hidden states and parameters
implying that the MCMC has converged. (E) The high values of R̂ returned by the
centered form of sampling indicate that the chain has not converged. (F) The variational
objective function (ELBO) versus the number of ADVI iterations.
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4. Discussion672

This technical note presents a probabilistic framework namely the Bayesian673

Virtual Epileptic Patient (BVEP) to infer the spatial map of epileptogenic-674

ity for developing a personalized large-scale brain model of epilepsy spread675

(cf. Fig. 1). The workflow to build the BVEP brain model consists of two676

main steps: in the first step, we constructed the VEP i.e., the personalized677

large-scale brain network model of epilepsy spread. In the VEP model, the678

dynamics of brain nodes are governed by the neural population model of679

epilepsy namely Epileptor, which is a generic model to realistically repro-680

duce the onset, progression and offset of seizure patterns across species and681

brain regions (Jirsa et al., 2014). The Epileptors are coupled through the682

patient’s connectome to combine the mean-field model of abnormal neuronal683

activity with the subject-specific brain’s anatomical information derived from684

non-invasive diffusion neuroimaging techniques (MRI, DTI). Together with685

patient’s data, the VEP model was then furnished with the spatial map of686

epileptogenicity across different brain regions. In the second step, we em-687

bedded the VEP as the generative model in PPL tools (Stan/PyMC3) to688

infer and validate the spatial map of epileptogenicity across different brain689

regions. Using the PPLs along with high-performance computing to run690

several MCMC chains in parallel enables systematic and efficient parameter691

inference to fit and validate the BVEP model against the patient’s data.692

To demonstrate the potential functionality of the BVEP in prediction of693

seizure initiation and propagation, we simulated simple and complex seizure694

spread using different spatial maps of epileptogenicity (cf. Fig. S2). We695

have used these synthetic data for fitting, since given the ground-truth of696

model parameters, we can use the standard error metrics such as confusion697

matrix, posterior shrinkages and posterior z-scores to validate the accuracy of698

the estimations, thus to evaluate the performance of the proposed approach.699

Our results demonstrated that in both synthetic data sets, by inverting the700

large-scale brain network model with the help of PPLs (Stan/PyMC3), we701

can achieve a remarkable similarity between the simulated and the predicted702

seizure activity regarding the initiation, propagation and termination. Al-703

though, the simulation was generated by the full VEP model comprising704

five state variables at each brain node, the 2D reduced variant of the model705

was still able to successfully predict the key data features such as onset,706

propagation and offset of seizure patterns, while considerably alleviating the707

computational time of the Bayesian inference. This 2D reduction is limited to708
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modeling the average of fast discharges during the ictal seizure states (Proix709

et al., 2014), which as we showed (see Figs. 3, and S5) is a sufficient feature710

for correctly estimating the spatial map of epileptogenicity. Our results indi-711

cated that the BVEP model is able to accurately estimate the spatial map of712

epileptogenicity across different brain regions (cf. Figs. 3, and S5). The true713

value of excitability for all brain nodes included in analysis was under the714

support of estimated posterior densities with 100% classification accuracy715

based on the confusion matrix. In addition, the concentration of distribu-716

tion toward small z-scores along with concentration towards large posterior717

shrinkages (i.e., the bottom right corner in Fig. 3C) confirmed the reliability718

of model inversion. Note that relying on the accuracy obtained by confusion719

matrix may be inconclusive, since the accuracy of estimation return by this720

metric depends only on the mean value of estimated posterior densities. For721

instance, consider inferences where the posterior modes are nearly identical to722

the ground-truth, however there is a large uncertainty over the estimations.723

In such cases, confusion matrix may result in a high accuracy performance,724

whereas plotting the posterior z-scores versus the posterior shrinkages is par-725

ticularly useful for identifying the malfunctioning in the inference such as726

overfitting, or a poorly-chosen prior that biases the estimations (Betancourt,727

2014a).728

Understanding brain dynamics in epilepsy is critical for developing ther-729

apeutic approaches towards brain interventions to improve the surgical out-730

come. Using theory of nonlinear dynamic systems, the complete taxonomy731

of epileptic seizures with a thorough description of bifurcations that give732

rise to onset, offset and seizure evolution characteristics has been extensively733

investigated elsewhere (Jirsa et al., 2014). In parameter space description734

of Epileptor, the seizure onset and offset are described by saddle-node and735

homoclinic bifurcations, respectively (Proix et al., 2014; El Houssaini et al.,736

2015). The emergent dynamic effects in the BVEP model crucially depend on737

the interplay between network node model (Epileptor), patient specific struc-738

tural connectivity (from dMRI), and spatial maps of epileptogenicity (EZ,739

PZ, HZ). According to the dynamical properties of Epileptor model (Jirsa740

et al., 2014; Proix et al., 2014), we classified the brain regions into three main741

types: EZ (exhibiting unstable fixed point corresponding to the brain area742

responsible for the seizure initiation), PZ (close to saddle-node bifurcation743

corresponding to the candidate brain area responsible for the seizure propa-744

gation), and HZ (exhibiting stable fixed point corresponding to healthy brain745

area). This approach allows us to define the spatial map of epileptogenicity746
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based on the excitability parameter value, which is the target of fitting.747

It is important to note that an excitability value close to the critical748

value of epileptogenicity does not guarantee that the seizure originating from749

pathological brain areas (i.e., responsible for the seizure onset specified as750

EZ) propagates to such brain regions defined as PZ. By a detailed patient751

evaluation, it has been reported that the individual structural connectivity752

is essential for predicting seizure spatial propagation (Petkov et al., 2014;753

Taylor et al., 2018; Proix et al., 2017, 2018). However, it has been recently754

shown that purely structural information is not sufficient to predict the prop-755

agation and eventual stopping of the seizures (Olmi et al., 2019). Rather, the756

abnormal activity in the recruited regions is a complex network effect which757

depends on the interplay between multiple factors including the brain re-758

gion’s epileptogenicity (node dynamics) (Bartolomei et al., 2008; Goodfellow759

et al., 2016; Lambert et al., 2018), the individual structural connectivity (net-760

work structure) (Jirsa et al., 2017; Proix et al., 2017, 2018), and brain state761

dependence (network dynamics) (Spencer, 2002; Terry et al., 2012; Kramer762

and Cash, 2012; van Diessen et al., 2013; Burns et al., 2014). Furthermore,763

there are nonlinearities and multiple propagation patterns that can be ob-764

served for the same excitability parameter sets due to the coupled nonlinear765

system dynamics (cf., Fig. S2). In this work, the seizure recruitment is char-766

acterized by complex spatio-temporal dynamics of large-scale brain network767

i.e., seizure originates from a local network and recruits candidate brain re-768

gions strongly coupled to the pathological areas by perturbing their stable769

dynamics (if K=0, then there is no seizure recruitment). Among the candi-770

date brain regions for seizure propagation, due to stronger connection to the771

pathological areas defined as EZ, the node PZidx = {28} can be recruited by772

a weak global coupling (see Fig. S2). Rather, a stronger coupling is required773

for seizure recruitment to all other candidate brain areas. This is in agree-774

ment with experimental observations that seizures tend to have a common775

spatial origin in the same patient (Proix et al., 2017, 2018). According to776

this knowledge, we placed a weakly informative prior on the global coupling777

parameter centered at the ground-truth. Overestimation of global coupling778

parameter leads to miss-classification of PZ as HZ (see Figs. 2E and 3B),779

whereas an underestimation of coupling may yield to miss-classification of780

PZ as EZ (see Figs. S4E and S5B). However, the stability analysis of the781

network dynamics indicates that the seizure propagation can be controlled782

by an optimal intervention on the structural connectivity matrix (Olmi et al.,783

2019; An et al., 2019) implying that the patient-specific network connectivity784
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is predictive for seizure propagation pattern. Therefore, the seizure propa-785

gation may not be easily controlled by a simple dissection of the individual786

nodes (Stam, 2014; Goodfellow et al., 2016; Taylor et al., 2018), as in the787

surgical treatment of epilepsy, it has been reported that the resection does788

not always lead to post-surgery seizure freedom in the brain (Tonini et al.,789

2004; De Tisi et al., 2011; Mohammed et al., 2012; Taylor et al., 2018).790

In this study, the analysis of phase-plane trajectories of the observed sys-791

tem versus the prediction was carried out across different brain regions in792

order to gain a better understanding of the mechanisms underlying seizure793

initiation and propagation within the proposed approach (cf. Fig. 4). For794

different brain node types (e.g., EZ, PZ, and HZ), the dynamics of seizure795

initiation and recruitment in the phase-plane was captured well by the pre-796

diction. From inference perspective, we observed good correspondence to the797

phase portraits of the observed system including equilibria (the intersection798

of the nullclines), the stability or instability of the equilibria, and the flow799

of trajectories. These results validate our Bayesian inversion procedure in800

order to understand the spatio-temporal evolution of seizure activity, paving801

the way for further studies on possible seizure prevention approaches.802

In this technical note, we have used both NUTS and ADVI schemes to803

infer the spatial map of epileptogenicity in a personalized whole-brain model804

of epilepsy spread. The results from both inference schemes led to similar805

estimation of spatial map of epileptogenicity across brain regions, except that806

the ADVI slightly underestimate the variances compared to the estimations807

by NUTS algorithm (cf. Fig. 5). The similarity between the inversions us-808

ing the two schemes indicates that the variational approximation offers an809

appropriate alternative to NUTS sampling in BVEP model inversion. Our810

results demonstrated that there is a clear reduction in computational cost in811

performing the inference by ADVI compared to NUTS (4-5 times faster for812

the used algorithm configurations), which may be important when applying813

BVEP approach to large data sets of patient cohort. While it is generally814

known that ADVI is more computationally appealing than NUTS, however, it815

can be challenging to discover algorithmic problems with this approximation816

(Yao et al., 2018). The convergence of ADVI can be assessed by monitor-817

ing the running average of ELBO changes, whereas NUTS is furnished with818

several general and specific diagnostics to assess whether the Markov chain819

has converged. In addition, ADVI may get stuck in local minima during gra-820

dient descent optimization and its mean-field variant is unable to cover all821

the modes of the multi-modal posterior densities (MacKay, 2003; Blei et al.,822
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2017; Yao et al., 2018).823

Lastly, we investigated the efficiency of transformed non-centered param-824

eterization. In agreement with previous studies showing that NUTS is sen-825

sitive to the parameterization (Betancourt and Girolami, 2013; Monnahan826

et al., 2017), our results indicated that the non-centered form of param-827

eterization to invert the nonlinear state-space equations yields an efficient828

parameter-space exploration, whereas the centered form of sampling demon-829

strates an inefficient exploration due to the high collinearity between model830

parameters (see Fig. 6A and D versus Fig. 6B and E). In addition, based831

on the convergence diagnostics such as R̂, we demonstrated that the samples832

generated by NUTS converged faster in the non-centered parameterization833

compared to the centered form of parameterization.834

In this technical note, we proposed a novel approach to build personalized835

in-silico brain network models based on Bayesian inference within PPL tools836

such as Stan and PyMC3. Although several PPL libraries have been devel-837

oped for Bayesian inference, only a few of them are built around efficient838

sampling algorithms such as NUTS that avoids the random walk behavior839

and and sensitivity to correlated parameters. Both Stan and PyMC3 pro-840

vide NUTS and ADVI with automatic differentiation to efficiently compute841

gradients without requiring user intervention. Stan is a generic and flexible842

software package that has interfaces for common data science languages, also843

providing extensive diagnostics for MCMC convergence. PyMC3 provides844

several MCMC algorithms by model specification directly in native Python845

code. Our implementation in both Stan and PyMC3 result in similar estima-846

tion of spatial map of epileptogenicity across brain regions (cf. Figs. S5 and847

S6) indicating that BVEP is a platform-independent approach. However, we848

required a larger number of warm-up iterations in PyMC3 to arrive at the849

same posterior convergence achieved by our implementation in Stan. This850

is due to the differences in implementation of NUTS in Stan and PyMC3.851

Comparison of the implementations in Stan, PyMC3 and other alternative852

PPL packages is beyond the scope of this note.853

To our best knowledge, this study is the first personalized large-scale854

brain network modeling approach for inferring the spatial map of epilepto-855

genicity (properties of nodes) based on patient-specific whole-brain anatomi-856

cal information (i.e., network structure derived from dMRI). Dynamic Causal857

Modelling (DCM; (Friston et al., 2003)) is a well-established framework for858

analyzing neuroimaging modalities (such as fMRI, MEG, and EEG) by neu-859

ral mass models where inferences can be made about the coupling among860
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brain regions (effective connectivity) to infer how the changes in neuronal861

activity of brain regions are caused by activity in the other regions through862

the modulation in the latent coupling (Friston et al., 2003; David et al.,863

2006; Moran et al., 2007; Boly et al., 2012; Kiebel et al., 2009; Friston et al.,864

2014b; Frassle et al., 2018). Using DCM, focal seizure activity in electrocor-865

ticography (ECoG) data was recently studied to estimate the key synaptic866

parameters or coupling connections using observed signals in a human sub-867

ject (Papadopoulou et al., 2015). In another study, Bayesian belief updating868

scheme for DCM has been used to estimate the synaptic drivers of cortical869

dynamics during a seizure from EEG/ECoG recordings with a little com-870

putational expense (Cooray et al., 2016). Although DCM can be used to871

model and track the changes in excitatory–inhibitory balance at seizure on-872

set/offset, these studies are based on single neural mass model (i.e., small873

number of cortical sources are modelled), and the non-linear ordinary differ-874

ential equation representing the neural mass model is approximated by its875

linearization, with which only the seizure onset or offset can be modelled876

but not both. In this note, the Bayesian Virtual Epileptic Patient (BVEP)877

model can characterize whole-brain spatio-temporal nonlinear dynamics of878

seizure propagation. This approach allows describing the onset and offset of879

ictal states as well as the alternation between normal and ictal periods. The880

BVEP approach relies on the patient-specific structural data rather formulat-881

ing the inverse problem purely in terms of unknown model parameters used882

in DCM (Papadopoulou et al., 2015; Cooray et al., 2016). It is also worth883

mentioning that we infer the dynamics of system with coupled fast and slow884

time-scales (cf., Eq. (3)), therefore, the variations in slow variable depend on885

the hidden states of fast activity while it is assumed that only the activity of886

fast variable is observed. In this study, the time-scale separation in Epilep-887

tor model enabled us to capture reliably full evolutions of complex dynamics,888

ranging from pre-ictal to onset, ictal evolution and offset (Jirsa et al., 2014),889

rather using time-varying parameters (Lopez-Cuevas et al., 2015). Future890

extensions to the current work could examine explicitly the non-stationary891

dynamics of networks in order to investigate conditions for mechanism of892

seizure initiation whether the seizure onset is more likely to occur through893

a deterministic parameter changes as in a bifurcation (Breakspear et al.,894

2005; Jirsa et al., 2014) or it is a jump phenomenon due to the noise-driven895

transition between bistable attractors (Kramer et al., 2012; Jedynak et al.,896

2017; Karoly et al., 2018). The Bayesian inversion in the current work is897

based on the auto-tuning algorithms such as NUTS and ADVI accomplished898
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with fast automatic differentiation for the calculation of gradients. This al-899

lows us to efficiently sample from complex and high-dimensional posterior900

distributions with correlated parameters compared to the traditional sam-901

pling algorithms. The inferences in the presented framework is also enriched902

with several MCMC convergence diagnostics to assess the reliability of the903

estimations.904

Various noninvasive and invasive methods have been used to improve pre-905

surgical evaluation in identification of the EZ, and consequently to increases906

surgery success rates. Employing the BVEP model in clinical therapies and907

brain interventions will require quantification of the model outcomes in fit-908

ting empirical secondary functional signals of patients such as EEG, MEG,909

SEEG, and fMRI signals. In this framework, it is straightforward to incor-910

porate further knowledge such as MRI lesions and clinical hypothesis on EZ911

from pre-surgical evaluation. Since the BVEP model can be considered as912

a generic approach towards large-scale brain modeling, it offers promising913

avenue for inference from clinically used non-invasive imaging signals (EEG,914

MEG, fMRI), and invasive measurements such as SEEG signals. Our pre-915

liminary results indicate that the proposed approach in this study is able to916

successfully fit against the patient’s empirical SEEG data (not shown). Note917

that in the case of empirical SEEG recording, the source localization is an918

ill-posed problem due to the sparsity of lead-field matrix, which can affect919

the accuracy of the estimates. In principle, it is possible that the surgical920

strategies can be systematically tested using the BVEP model, however, the921

real clinical application remains to be investigated and validated in future922

work.923

In conclusion, we established a link between the probabilistic modeling924

and personalized brain network modeling in order to systematically predict925

the location of seizure initiation in a virtual epileptic patient. We demon-926

strated step by step, how the proposed framework allows one to infer the927

spatial map of epileptogenicity based on large-scale brain network models928

that are derived from noninvasive structural data of individual patients. The929

approach rests on advanced efficient sampling algorithms that provide accu-930

rate and reliable estimates validated by the posterior behavior analysis and931

convergence diagnostics. In summary, with the help of PPLs, the use of per-932

sonalized brain network models offers a proper guidance for development of933

comprehensive clinical hypothesis testing and novel surgical intervention.934
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