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We discuss the influence of a helicity imbalance on the phase diagram of dense QCD at finite
temperature. We argue that the helical chemical potential is a thermodynamically relevant quantity
in theories with the mass gap generation. Using the linear sigma model coupled to quarks, we
show that the presence of the helical density substantially affects the phase diagram of dense quark
matter. A moderate helical density makes the chiral phase transition softer while shifting the critical
endpoint towards lower temperatures and higher baryon chemical potentials. As the helical density
increases, the segment of the first-order transition disappears, and the chiral transition becomes a
soft crossover. At even higher helical chemical potentials, the first-order transition reappears again
at the zero-density finite-temperature transition and extends into the interior of the phase diagram.
This evolution of the chiral transition reflects the existence of a thermodynamic duality between
helical and vector (baryonic) chemical potentials. We also show that the presence of the helicity
imbalance of quark matter increases the curvature of the chiral pseudocritical line in QCD.

PACS numbers: 12.38.Aw, 25.75.Nq, 12.38.Mh

I. INTRODUCTION

Unusual properties of quark-gluon plasma attract in-
tensive attention of the scientific community. Nowadays,
this ultrahot state of matter is routinely created in rela-
tivistic heavy-ion collisions [1–3] thus making it possible
to probe experimentally its thermodynamics, phase di-
agram, equation of state, as well as various transport
phenomena [4–6]. Recently, the ultra-peripheral colli-
sions opened the door to the investigation of the highly-
rotating plasma seen experimentally via the quarks’ spin
degrees of freedom [7, 8].

The spin degree of freedom of an ultrarelativistic quark
can be quantified via its helicity h = s · p/|p|, which is
the projection of the quark’s spin s onto the quark’s mo-
mentum p. The definition of helicity h applies in exactly
the same way both to quarks and to anti-quarks. One
distinguishes the right- and left-handed quarks with, re-
spectively, positive and negative values of the helicity [9].

The notion of helicity is usually used as an intermedi-
ate step to describe the physical sense of a very similar
quantity, called chirality. For a Dirac fermion, the chi-
rality is even under the charge conjugation (C) transfor-
mation, while the helicity is odd. For example, a quark
with a right-handed helicity has a right-handed chiral-
ity while an anti-quark with the very same right-handed
helicity has an opposite, left-handed chirality. The chi-
rality is determined as an eigenvalue of the fifth gamma
matrix γ5.

In the context of QCD, the transformations generated
by the matrix γ5 are usually associated with the “ax-
ial” U(1)A subgroup of a larger group of global QCD
symmetries (the latter group carries the very name “chi-
ral”). Therefore below we will use mostly the term “axial
symmetry” simultaneously referring to the “chirality” of

quarks.

The importance of the axial symmetry is determined
by its significant influence on the properties of QCD, in
particular, to the topological structure of the QCD vac-
uum. The axial symmetry, which is respected by the
massless Dirac Hamiltonian, is broken at the quantum
level via an axial anomaly. This feature leaves an im-
print on the particularities of the meson spectrum [10]
and generates anomalous transport effects in the quark-
gluon plasma (QGP) created in relativistic heavy-ion col-
lisions [11, 12]. The axial density of quarks modifies the
thermodynamic properties of the plasma and its phase
diagram [13–18].

While the axial properties of QCD are discussed in
great details, the helical quantum numbers have not been
studied with a due attention. Despite the chirality and
helicity being very similar to each other, they, neverthe-
less, possess quite different features. For example, at
a classical level, the axial charge is conserved only for
massless fermions, while the helical charge is conserved
for any value of the fermion mass. The axial charge is
determined with the help of a local Lorentz-invariant op-
erator, while the definition of the helical charge relies on
the local frame (the latter feature, however, is not impor-
tant for theories at finite density and/or temperature).

One could also expect the existence of similarities be-
tween the axial and helical quantum numbers. On the
quantum level, the helical degrees of freedom – similarly
to their axial counterparts [12, 21] – may lead to new
nondissipative transport phenomena, the helical vorti-
cal effects, that emerge in a helically-imbalanced rotating
fermionic system [22]. Both chirality [19] and helicity [20]
may have the equilibration times close to the relaxation
time of the spin degrees of freedom [29].

In our paper, we discuss the influence of a global helical
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charge density on thermodynamics of strong interactions.
We assume that the helical charge, similarly to the axial
charge, may be generated due to thermal fluctuations
of a non-equilibrium environment at the early stages of
heavy ion collisions. To address the thermalized phase,
we use the effective approach based on the linear sigma
model coupled to quarks (LSMq) which also serves as an
effective low-energy model of QCD [23].

As we discuss at the end of the paper, the net helic-
ity is expected to be a reasonably good quantum number
to characterize the thermal evolution of the quark-gluon
plasma until the hadronization time. Indeed, it is well-
known that the helicity of massless quarks is conserved in
perturbative QCD interactions due to the vector nature
of the coupling between quarks and gluons (see, for exam-
ple, the discussions in Refs. [20, 29, 31]). This statement
is applied, in particular, to the high-temperature phase
of QCD where the light quark masses are small compared
to their thermal energy.

The structure of our paper is as follows. In Section II,
we discuss differences and similarities between the ther-
modynamics of vector, axial, and helical charges and
corresponding chemical potentials. Surprisingly, we find
that the helical density is closer to the vector density
rather than to its axial counterpart. We recall, after
Ref. [27], how the presence of mass for free fermions
makes the axial chemical potential thermodynamically
inconsistent. We demonstrate that the helical chemical
potential does not possess this property. We describe
the linear sigma model coupled to quarks (LSMq) in Sec-
tion III. We use this model to discuss, in Section IV C,
the thermodynamics of the dense QCD matter in the
presence of the helical chemical potential. We calculate
the phase diagram of the model and study the evolution
of the chiral transition as the helical chemical potential
increases. The last section is devoted to our conclusions.

II. CHIRALITY AND HELICITY IN
THERMODYNAMICS OF FREE FERMIONS

Before going into the details of QCD thermodynamics,
let us discuss first the role of chirality and helicity in the
thermodynamic properties of free Dirac fermions.

A. Chirality vs. Helicity for Dirac fermions

Consider free massive Dirac fermions with the La-
grangian:

L = ψ
(
i/∂ +m

)
ψ , (1)

where we use the slashed notation /∂ = γµ∂µ expressed
via the Dirac γµ matrices (µ = 0, . . . , 3), and ψ̄ = ψ†γ0.
We will also use the fifth gamma matrix, γ5 = iγ0γ1γ2γ3.

The axial charge (chirality) χ = ±1 of a fermion state
ψ is defined according to an eigenvalue χ of the γ5 matrix,

γ5ψ = χψ. One distinguishes the right-handed (R) and
left-handed (L) chiral eigenstates, respectively:

γ5ψR = +ψR, γ5ψL = −ψL. (2)

As we mentioned in the Introduction, the chirality χ of
a fermion state is closely related to the helicity λ of the
same state. Classically, the helicity is determined by the
projection of the spin s on the direction of motion of the
fermion given by its momentum p. At the quantum level,
the helicity λ is an eigenvalue of the helicity operator:

h =
s · p
p
≡ γ5γ0

2

γ · p
|p|

, (3)

where p = −i∂ is the momentum operator, p = |p| is its
absolute value, and si = 1

2ε0ijkΣjk is the spin operator
which is constructed from the covariant antisymmetric
tensor Σµν = i

4 [γµ, γν ].
Since the fermion is a spin 1/2 particle, the helicity

operator (3) takes two values, ±1/2. It is convenient to
rescale, by the factor of two, both the helicity operator
h = 2h and the corresponding helicity eigenvalue κ with
hψ = κψ. The rescaled helicity operator h has the conve-
nient eigenvalues ±1. One distinguishes the right-handed
(↑) and the left-handed (↓) helicity eigenstates:

hψ↑ = +ψ↑, hψ↓ = −ψ↓. (4)

At the level of the classical Dirac equation, it can be
easily seen that the helicity is a conserved quantity, as
follows. Consider the Dirac equation, (i/∂ −m)ψ, in the
following form:

i∂tψ = Hψ, H = −iγ0γ ·∇ +mγ0, (5)

where H is the Hamiltonian of the system. In order to
be conserved, the helicity should satisfy

hi∂tψ = i∂t(hψ), (6)

or equivalently, [h, H] = 0. This latter equality is readily
checked by noting that:

hH =γ5γ0

(
−i γ ·∇

|p|

)(
−iγ0γ ·∇ +mγ0

)
=γ5γ0

(
iγ0γ ·∇−mγ0

)(
−i γ ·∇

|p|

)
=Hh. (7)

The chirality and helicity are different quantities. For
a single particle, these quantum numbers are firmly re-
lated to each other: The chirality of a particle is equal
to its helicity (for example, a right-chiral particle has a
right-handed helicity) while the chirality of an antiparti-
cle is opposite to its helicity (for instance, a right-chiral
antiparticle has a left-handed helicity). However, the
total helicity of an ensemble of particles cannot be de-
termined only by its total vector charge and total axial
charge. Therefore the helicity, given its conservation for
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free massive fermions, may serve – in addition to a vector
(baryonic) charge – as a useful quantity to characterize
the thermodynamic ensembles of fermions.

We would like to stress that it is important for us
to consider the theory with massive fermions in view of
its further applicability to QCD. Although the mass gap
generation emerges at the purely gluon sector of QCD,
this phenomenon is accompanied by the chiral symmetry
breaking at the quark sector which gives masses to quarks
via a dynamical mechanism [32]. In the next section,
we discuss thermodynamics of free massive fermions for
a number of chemical potentials. First, we consider the
well-known case of the vector (related to baryonic) chem-
ical potential. Then we show, following Ref. [27], that the
presence of non-zero fermionic mass is absolutely incon-
sistent with the presence of a finite axial chemical poten-
tial starting at the level of zero-point fluctuations. Fi-
nally, we discuss the helical chemical potential and show
its consistency with the mass gap generation.

B. Thermodynamics of free fermions with vector,
axial, and helical chemical potentials

1. General formalism

A free fermion with the mass m in the presence of
the vector (µV ), axial (µA), and helical (µH) chemical
potentials can be described by the following effective La-
grangian [33]:

L = ψ
(
i/∂ + µV γ

0 + µAγ
0γ5 + µHγ

0h−m
)
ψ . (8)

It is convenient to rewrite the corresponding Dirac
equation,(

i/∂ + µV γ
0 + µAγ

0γ5 + µHγ
0h−m

)
ψ = 0, (9)

in terms of the plane waves:

ψ(x) = χp e
−ipµxµ , (10)

where x = (t,x) and pµ = (p0,p) and the momentum-
dependent spinor χp. We use the flat metric with the
(+,−,−,−) signature. In the momentum space, the
Dirac equation (9) reduces to the set of linear equations:

M(p)χp = 0, (11)

determined by the following matrix:

M(p) = /p+ µV γ
0 + µAγ

0γ5 + µHγ
0h−m. (12)

A consistent solution of Eq. (9) requires the determinant
of the matrix (12) to vanish. This condition leads to a
polynomial equation:

detM(p) = 0, (13)

which has four roots in terms of the zeroth component of

the momentum p0 = p
(s)
0,κ(p):

detM(p) =
∏

κ=±1

∏
s=±

[
p0 − p(s)

0,κ(p)
]
. (14)

The roots p0 are labeled by the helicity κ = ±1, deter-
mined via Eq. (4), and the kind s = ±1 of the solution
for particle (s = +) and anti-particle (s = −) energy
branches. The solutions of Eq. (14) depend on the spatial
momentum p, the mass m, and the full set of chemical
potentials, (µV , µA, µH), being given by

p
(s)
0,κ(p) = −µV − κµH + s

√
m2 + (|p| − κµA)2. (15)

Although we call the variety of these solutions as the

“energy branches”, the quantity p
(s)
0,κ(p) does not have

the literal sense of energy. For example, the condition

p
(s)
0,κ(p) = 0 defines, depending on the existence of the

real-valued solution, the position of the Fermi surface
for particle (s = +1) or anti-particle (s = −1) states of
fermions carrying the helicity κ.

It is convenient to compute the free energy of the Dirac
system in the Euclidean spacetime after performing the
Wick rotation, p0 → ip4 → i$n:

Ω = −T
∑
n∈Z

∫
d3p

(2π)3
ln det

M(p)

T

∣∣∣∣
p0=i$n

(16)

where $n = πT (2n+ 1) is the fermionic Matsubara fre-
quency at temperature T labeled by the index n ∈ Z
[33].

The free energy (16) may be rewritten using Eq. (14):

Ω = −T
∑

κ=±1

∑
s=±

∑
n∈Z

∫
d3p

(2π)3
ln
$n + isp

(s)
0,κ(p)

T
, (17)

where the additional multiplier s takes into account the
correct contour of integration along the momentum p0.
After the Wick rotation, the integration becomes a sum
over the Matsubara frequencies $n in the Euclidean rep-
resentation of the free energy (17).

We take into account the identity

ln
$n + ip0

T
= i

∫ p0/T

0

dθ

π(2n+ 1) + iθ
+ Cn, (18)

and neglect the inessential constant Cn = lnπ(2n + 1)
in the following. The summation over n in Eq. (17) can
be performed with the help of Eq. (18) and the following
relation: ∑

n∈Z

1

$n + ip0
=

i

T

[
nT (p0)− 1

2

]
(19)

where

nT (ω) =
1

eω/T + 1
(20)

is the Fermi-Dirac distribution. The integral over the
variable θ may be taken using the identity:∫ x

0

dθ

eθ + 1
= − ln

(
1 + e−x

)
+ ln 2 . (21)

Below we will again neglect an inessential constant ln 2.
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Finally, we get the following expression for the free
energy:

Ω = ΩZP + ΩT , (22a)

ΩZP = −1

2

∑
κ=±1

∑
s=±

∫
d3p

(2π)3
sp

(s)
0,κ(p), (22b)

ΩT = −
∑

κ=±1

∑
s=±

∫
d3p

(2π)3
T ln

(
1 + e−sp

(s)
0,κ(p)/T

)
.(22c)

This expression is the most convenient representation of
the free energy ΩT as it contains all four branches of the
energy dispersion. The zero-point term ΩZP is usually
associated with the vacuum contribution while the term
ΩT represents the thermal and matter contributions to
the free energy.

The densities of all three charges which can be obtained
via the differentiation of the free energy (22) with respect
to the corresponding chemical potential:

n` = − 1

Vol

∂Ω

∂µ`
, ` = V,A,H. (23)

These densities correspond to the vacuum expectation
values of the zero components, n` =

〈
J0
`

〉
, of the vector,

axial, and helical currents, respectively,

JµV = ψγµψ, JµA = ψγµγ5ψ, JµH = ψγµhψ. (24)

These currents form a “triad” of classically conserved
U(1) quantities for massless (m = 0) Dirac fermions.
In this article, however, we will be interested in prop-
erties of quarks with a dynamically generated mass. One
can check that the vector and helical charges are still
classically conserved as the classical solutions of massive
fermions (8) satisfy the equations ∂µJ

µ
V = ∂µJ

µ
H = 0

identically. We will see that the fact that the axial charge
is not conserved for massive fermions, ∂µJ

µ
A 6= 0, will pro-

foundly affect the thermodynamics of fermions with the
axial chemical potential.

Below we discuss the effects of each chemical potential
on the thermodynamics of the system. In order to get
a clear picture, we consider a single nonzero chemical
potential and require that the other two vanish.

2. Vector chemical potential (µV 6= 0, µA = µH = 0)

First we consider the well-known case with a finite vec-
tor density. The Dirac Lagrangian with the vector chem-
ical potential µV ,

LV = ψ̄
(
i/∂ + µV γ

0 −m
)
ψ, (25)

describes particles, for which the temporal p0 and spa-
tial components p of the four-momentum are related, via
Eq. (13), as follows:

p
(s)
0,κ(p) = −µV + s

√
p2 +m2 . (26)

The vector chemical potential µV shifts the particle (s =
+1) and anti-particle (s = −1) energy branches by the

same value of energy µV which does not depend neither
on particle type s nor on the helicity quantum number κ.
We find that each of the levels (26) is double-degenerate
with respect to helicity κ.

Using the dispersion relations (26), the free energy (22)
can be represented as the sum

ΩV (T, µV ) = ΩVvac + ΩVT (T, µV ) . (27)

The total free energy contains the divergent vacuum part

ΩVvac ≡ ΩVZP = −2

∫
d3p

(2π)3
ωp(m), (28)

and the finite thermodynamic contribution:

ΩVT = −2T
∑
s=±1

∫
d3p

(2π)3
ln
(

1 + e−
ωp−sµV

T

)
, (29)

where

ωp =
√
p2 +m2, (30)

is the one-particle energy. The vacuum part (28) does
not contribute to the thermodynamics of the system as
it depends neither on temperature T nor on the chemical
potential µV .

The density of the vector (“electric”) charge is then
given by the thermodynamic part (29) with the help of
Eq. (23) with ` = V :

nV = 2

∫
d3p

(2π)3

(
1

e
ωp−µV

T + 1
− 1

e
ωp+µV

T + 1

)
. (31)

The vacuum part (28) does not contribute to the density.
At small mass, the explicit integration in Eq. (31) gives

[24]:

nV (T, µV ) =
µV T

2

3
+
µ3
V

3π2
− µVm

2

2π2
+O(m4). (32)

3. Axial chemical potential (µA 6= 0, µV = µH = 0)

The Dirac particles at the axial chemical potential µA
is described by the Lagrangian:

LA = ψ̄
(
i/∂ + µAγ

0γ5 −m
)
ψ. (33)

For simplicity of our analysis, we keep the vector and
helical chemical potentials vanishing, µV = µH = 0.

Repeating all the steps of the previous section, we find
that in the present case, the energy dispersions, con-
strained by the relation (13), are as follows:

p
(s)
0,κ(p) = s

√
(|p| − κµA)2 +m2. (34)

These states are characterized by the parti-
cle/antiparticle number s = ±1 and the helicity
κ = ±1.

In a sharp contrast with Dirac fermions at a nonzero
vector charge density, the would-be vacuum term



5

ΩAZP (22b) of the µA 6= 0 fermions depends explicitly on

the axial chemical potential µA. Indeed, when p
(s)
0,κ(p) is

given by Eq. (34), ΩAZP contains the truly vacuum part
ΩAvac, which is equal to ΩVvac given in Eq. (28), as well
as a “density” part that depends on the axial chemical
potential, ΩAdens:

ΩAZP = ΩAvac + ΩAdens. (35)

Thus we divide the free energy (22) into the following
three terms:

ΩA(T, µA) = ΩAvac + ΩAdens(µA) + ΩAT (T, µA) . (36)

The finite-density part in Eq. (36):

ΩAdens(µA) = −
∑

κ=±1

∫
d3p

(2π)3
(37)

·
(√

(|p| − κµA)2 +m2 −
√
p2 +m2

)
,

also comes from the “vacuum fluctuation” term ΩZP,
which gets this unconventional (and, as we show below,
somewhat artificial) contribution.

The thermal contribution to the free energy is given
by the following finite expression:

ΩAT = −2T
∑

κ=±1

∫
d3p

(2π)3
ln

(
1 + e−

√
(|p|−κµA)2+m2

T

)
. (38)

Its form is somewhat unusual due to the fact that the
dispersion relation in Eq. (38) is different from the con-
ventional one-particle dispersion relation (30).

The appearance of the finite-density part (38) has the
self-contradictory “vacuum” origin. This term deter-
mines the axial density (23) of Dirac fermions at van-
ishing temperature:

nA(µA)

∣∣∣∣
T=0

= −∂ΩAdens(µA)

∂µA

=
∑

κ=±1

∫
d3p

(2π)3

µA − κ|p|√
(µA − κ|p|)2 +m2

, (39)

The axial density (39) for massless fermions (m = 0)
has a conventional, non-divergent expression:

nA(µA)

∣∣∣∣
T=0
m=0

= 2

∫
d3p

(2π)3
Θ(µA − p) =

µ3
A

3π2
, (40)

where Θ(x) is the Heaviside step function.
It’s remarkable to notice that the cutoff in Eq. (40) at

the Fermi-momentum p = µA appears not in the ther-
modynamic part (38) – which is always zero for T = 0
and µA 6= 0 – but it comes naturally in the “vacuum”
contribution.

At finite temperature, the contribution nA;T =
−∂ΩAT /∂µA from ΩAT to the axial charge density is

nA;T =
1

π2

∑
κ=±1

∫ ∞
0

dp
p2(κp− µA)√

(κp− µA)2 +m2

×
{

exp

[
1

T

√
(κp− µA)2 +m2

]
+ 1

}−1

. (41)

Adding now the vanishing temperature contribution

nA(µA)

∣∣∣∣
T=0

, coming from ΩAdens, we obtain

nA(T ) = − 1

2π2

∑
κ=±1

∫ ∞
0

dp
p2(κp− µA)√

(κp− µA)2 +m2

× tanh

[
1

2T

√
(κp− µA)2 +m2

]
. (42)

At vanishing mass, the above expression simplifies to

nA(T )

∣∣∣∣
m=0

=− 1

2π2

∑
κ=±1

∫ ∞
0

dp p2 tanh
κp− µA

2T

=
1

π2

∑
κ=±1

∫ ∞
0

dp p2 κ
e(p−κµA)/T + 1

=
µAT

2

3
+
µ3
A

3π2
. (43)

For massive fermions, however, the interpretation of
the axial density, generated by the unexpected “vacuum”
contribution (39), becomes less clear [27]. For exam-
ple, consider the axial density at high chemical poten-
tial (µA � m) for massive fermions. At high momenta,
|p| � µA, the expression under the integral (39) vanishes
as fast as 2m2µA/|p|3 which is not, however, enough to
make the whole integral convergent. In fact, the axial
density diverges logarithmically in the ultraviolet region:

nA(µA)

∣∣∣∣
T=0
m�|µA|

=
µ3
A

3π2
+
m2µA
π2

ln
ΛUV

m
+ . . . , (44)

where the ellipsis indicate non-divergent terms of the or-
der of O(µA) and ΛUV indicates the ultraviolet cutoff.

The logarithmic divergence of the axial density (44)
appears as a result of the lack of axial symmetry for
massive Dirac fermions [27]. The axial density QA is not
a conserved quantity if the Dirac fermions are massive.
Indeed, the chemical potential cannot be introduced self-
consistently for a non-conserved charge. Therefore, the
presence of both µA 6= 0 and m 6= 0 cannot be set in a
physically self-consistent manner.

The physical situation becomes even more subtle in the
case of theories where the mass is generated dynamically,
as it happens, for example, in interacting field theories
such as QCD. In this case, the axial chemical potential
may lead to an additional renormalization which is dis-
cussed in details in Ref. [27]. Basically, the infinite zero-
point energy cannot be removed by the usual subtraction
procedure as it contains both the vacuum part and the
contribution coming from matter (35).

4. Helical chemical potential (µH 6= 0, µV = µA = 0)

Finally, we consider the helical chemical potential
which is the central topic of our paper. In the theory of
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free massive fermions, the helical potential µH appears
in the Lagrangian as follows:

L = ψ
(
i/∂ + µHγ

0h−m
)
ψ . (45)

We keep the vector and axial chemical potentials equal
to zero, µV = µA = 0.

The energy dispersion condition (13) for the La-
grangian (45) give us the following four energy branches:

p
(s)
0,κ(p) = s

√
p2 +m2 − κµH . (46)

Thus, the helical chemical potential µH shifts the particle
(s = +1) and anti-particle (s = −1) branches with the
energy which has the standard form (30). The sign of
the shift now depends explicitly on the helicity κ of the
branch, as one could expect from a quantity which is
invoked to distinguish the helicity.

Surprisingly, the effects of nonzero vector (26) and he-
lical (46) chemical potentials on the energy branches are
quite similar to each other in the sense that both poten-
tials shift the spectra without modifying the functional
dependence of the energy on momentum. Both vector
and helical potentials differ significantly from the axial
chemical potential, which alters the very form of the en-
ergy levels (34).

The free energy in the presence of the helical chemical
potential contains two terms:

ΩH(T, µA) = ΩHZP + ΩHT (T, µA) . (47)

The zero-point fluctuations lead to the conventional vac-
uum term (28) ΩHZP = ΩHvac = ΩVvac, which is independent
of temperature and chemical potential. The thermody-
namic part of the free energy is

ΩHT (µH) = −T
∑
s=±1

∑
κ=±1

∫
d3p

(2π)3

· ln
(

1 + e−
ωp−sκµH

T

)
. (48)

Remarkably, the dependence of the free energy (48)
on the helical chemical potential µH mimics exactly the
one (29) of the vector chemical potential µV :

ΩH(µH) = ΩV (µV )

∣∣∣∣
µV→µH

. (49)

Of course, the relation (49) does not mean that the effects
of the helical and vector potentials on the Dirac fermions
are identical to each other: it is the parametric depen-
dence of the free energy which is the same in both cases.
In order to demonstrate this fact, we will consider, in the
next subsection, the free energy of Dirac fermions in the
presence of both these chemical potentials. Meanwhile,
we give the explicit expression for the helical density [24]:

nH(T, µH) =
µHT

2

3
+
µ3
H

3π2
− µHm

2

2π2
+O(m4). (50)

5. Duality of helical and vector chemical potentials

Now we consider the thermodynamics of Dirac
fermions in the presence of both vector and helical den-
sities. This physical environment is described by the La-
grangian:

L = ψ
(
i/∂ + µV γ

0 + µHγ
0h−m

)
ψ , (51)

which gives the following Dirac equation:(
i/∂ + µV γ

0 + µHγ
0h−m

)
ψ = 0. (52)

The spectrum is described by the four energy branches:

p
(s)
0,κ(p) = s

√
p2 +m2 − µV − κµH , (53)

which are immediate generalizations of the vector (26)
and helical (46) energy solutions.

The vacuum contribution to the free energy may tra-
ditionally be neglected below as it depends neither on
temperature nor on chemical potentials. The thermody-
namic contribution is as follows:

ΩV HT (µV , µH) = −T
∑
s=±1

∑
κ=±1

∫
d3p

(2π)3

× ln
(

1 + e−
ωp−s(µV +κµH )

T

)
, (54)

The form of the thermodynamic potential (54) demon-
strates the independence of the physical effects of vector
and helical chemical potentials. The potentials appear to
enter the partition function symmetrically, exhibiting the
symmetry of thermodynamic function ΩT ≡ ΩV HT under
the flip of the chemical potentials(

µV
µH

)
→
(
µH
µV

)
(55)

namely:

ΩT (µV , µH) = ΩT (µH , µV ). (56)

The free energy (54) depends on the absolute values and
not on the signs of the chemical potentials µV and µH .
Thus, the thermodynamics of the theory is also invariant
under the sign flips µV → ±µV and µH → ±µH . In the
small mass limit, nV and nH are given by:

nV =
µV T

2

3
+
µ3
V + 3µV µ

2
H

3π2
− µVm

2

2π2
+O(m4),

nH =
µHT

2

3
+
µ3
H + 3µHµ

2
V

3π2
− µHm

2

2π2
+O(m4). (57)

We conclude this section by stressing that the presence
of vector and helical chemical potentials and the appro-
priate densities is, expectedly, consistent with the ther-
modynamics of the massive Dirac fermions. A nonzero
axial density is not consistent with the fermion’s mass.
Despite its rather exotic definition, the helical chemical
potential shares many features with its vector counter-
part.
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III. LINEAR SIGMA MODEL WITH QUARKS

In order to explore the chiral properties of QCD in the
presence of the helical vector potential, we use the lin-
ear sigma model coupled to quarks (LSMq) [23]. This
low-energy effective model of QCD contains two types
of fields: the doublet of the light quarks ψ(x) = (u, d)T

and the light pseudoscalars (σ, ~π) which include the pseu-
doscalar field σ and the isotriplet of the pseudoscalar pi-
ons ~π = (π1, π2, π3). Each of the light quarks is a triplet
in the color space. Since the theory does not contain the
gluon (color gauge) fields, the color degeneracy of the
quark fields will only lead to the factor Nf = 3 in the
fermionic contribution to the free energy of the system.

The LSMq Lagrangian has two terms:

L = Lq(ψ̄, ψ, σ, ~π, L) + Lσ(σ, ~π) , (58)

The quark part of the Lagrangian (58),

Lq = ψ
[
i/∂ − g(σ + iγ5~τ · ~π)

]
ψ , (59)

includes the kinetic term and the interaction between the
quark field ψ, and the chiral fields σ and ~π. We do not
consider the bare (current) quark mass which is too small
to be important for our considerations below.

The dynamics of the pseudoscalar pions is described
by the second term in the Lagrangian (58):

Lσ(σ, ~π) =
1

2

(
∂µσ∂

µσ + ∂µπ
0∂µπ0

)
+ ∂µπ

+∂µπ
−

−V (σ, ~π) , (60)

where we have introduced the fields of the charged and
neutral mesons, respectively:

π± =
1√
2

(
π1 ± iπ2

)
, π0 = π3 . (61)

The potential V in the pionic Lagrangian (60) contains
two terms:

V (σ, ~π) =
λ

4

(
σ2 + ~π2 − v2

)2 − hσ . (62)

The first term describes the spontaneous breaking of the
chiral symmetry. It leads to a nonzero expectation value
of the pseudoscalar field 〈σ〉 6= 0 and, in general, could
also give rise to the emergence of the condensate of pseu-
doscalar pions 〈~π〉. However, the second term in the
same potential (62) breaks explicitly the symmetry be-
tween the components of the pseudoscalar mesons (σ, ~π)
and preferentially maximizes the pseudoscalar conden-
sate 〈σ〉. In addition, this term energetically disfavors
the pion condensate: 〈~π〉 = 0. As a result, the quarks ac-
quire the dynamical mass M = g〈σ〉 via the scalar-quark
interaction term of the quark Lagrangian (59).

In our paper, we work in a mean field (MF) approxima-
tion thus neglecting quantum fluctuations of the scalar
fields σ and ~π. The Lagrangian (58) reduces to

LMF = ψ
(
i/∂ − gσ

)
ψ − V (σ) , (63)

where we take the advantage of the mean-field approxi-
mation to simplify the notations for the potential (62),

V (σ) ≡ V (σ,~0), and for the mean field σ ≡ 〈σ〉. In the
mean-field theory (63), the integral over the Dirac fields
is taken exactly.

Following Ref. [25], we adopt the following phenomeno-
logical parameters of the model:

g = 3.3, λ = 20, v = 87.7 MeV,

h = (114.3 MeV)3. (64)

With these parameters, the vacuum expectation value of
the pseudoscalar field is fixed to the pion decay constant,
〈σ〉 = fπ = 92.2 MeV, the dynamical quark mass

M = g〈σ〉 , (65)

gives us the expected one-third of the mass of a nu-
cleon, M = 290 MeV, while the tree-level pion mass

mπ =

√
λ(〈σ〉2 − v2) = 134 MeV falls in the range of

physical pion masses.

IV. PHASE STRUCTURE

A. Thermodynamics of the sigma model

We start our investigation of the effects of finite helical
density with the phase diagram at vanishing temperature
T = 0 and then continue to explore the effects of finite he-
lical density on dense quark matter at finite temperature.
We consider the dense matter in the plane of the baryonic
(µB) and helical (µH) chemical potentials. The helical
chemical potential has been defined earlier, for example,
in Eq. (51). The baryonic chemical potential is taken ac-
cording to the standard prescription: µB = NcµV , where
the vector chemical potential is equal to the quark chemi-
cal potential µV ≡ µq and Nc = 3 is the number of colors
(three colored quarks constitute one colorless nucleon).

The fermionic part of the LSMq Lagrangian in the
mean-field approximation (63) is captured by the free-
field Lagrangian (51). The full thermodynamic potential
of the model contains the pure pion contribution, given
by the potential V (σ) and fermionic part, respectively:

Ω (σ;µV , µH) = V (σ) + Ωq(σ;µV , µH). (66)

The fermionic free energy is the sum

Ωq(σ;µV , µH) = Ωvac(σ) + ΩT (σ;µV , µH), (67)

of the zero-point (vacuum) part,

Ωvac(σ) = −12

∫
d3p

(2π)3
ωp(σ) (68)

and the thermodynamic contribution

ΩT (σ;µV , µH) = −6T
∑
s=±1

∑
κ=±1

∫
d3p

(2π)3
(69)

· ln
(

1 + exp

{
−ωp(σ)− s(µV + κµH)

T

})
.
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The energy dispersion of the fermions depends on the
value of the σ condensate:

ωp(σ) =
√
p2 + g2σ2. (70)

Notice that both matter and temperature influence,
via the thermodynamic part (69), the value of the con-
densate σ. The latter quantity determines the fermionic
spectrum (70), which, in turn, appears in the vacuum
part of the free energy (68). Thus, the matter and tem-
perature effects may modify the value of the vacuum en-
ergy in an indirect way.1 This dependence, taken sep-
arately, does not pose a problem. However, the vac-
uum energy needs a regularization with a fixed ultravio-
let cutoff, which inevitably enters the effective potential
and makes the condensate dependent on the ultraviolet
energy scale. As the condensate enters various dimen-
sional physical quantities, the mentioned arbitrariness of
the ultraviolet cutoff undervalues the predictive power of
the model. Therefore, the ultraviolet-divergent vacuum
energy is customarily ignored in thermodynamic stud-
ies [25, 26] which is justified by the infrared nature of the
effective model. We too will ignore the vacuum energy
in our approach.

Taking Eq. (69) by parts, we get the more convenient
expression for the thermal part of the free energy:

ΩT (σ;µV , µH) = − 1

π2

∑
s=±1

∑
κ=±1

∫ ∞
0

p4dp

ωp(σ)
(71)

×
(

exp

{
ωp(σ)− s(µV + κµH)

T

}
+ 1

)−1

.

The ground state of the model is given by the con-
densate σ which is defined via the minimization of the
thermodynamic energy:

Ω (σ;µV , µH) = V (σ) + ΩT (σ;µV , µH). (72)

The minimization can generally be carried out numeri-
cally. Once the value of σ is known, it allows us to find
the dynamical mass (65) and determine the phase of the
theory.

We finish this section by providing the expressions for
the vector and helical densities which may be obtained
from Eq. (67) with the help of Eq. (23):

nV =
3

π2

∑
s=±1

∑
κ=±1

s

∫ ∞
0

p2dp

×
(

exp

{
ωp(σ)− s(µV + κµH)

T

}
+ 1

)−1

,(73)

nH =
3

π2

∑
s=±1

∑
κ=±1

κ
∫ ∞

0

p2dp

×
(

exp

{
ωp(σ)− s(µV + κµH)

T

}
+ 1

)−1

.(74)

1 Notice that the chirally (axially) imbalanced matter with µA
modified the vacuum energy in a direct way [27] thus leading to
an explicit divergence (44).

B. Dense matter at zero temperature

In the zero-temperature limit, T → 0, the free en-
ergy (69) reduces to a simpler form:

ΩT (σ;µV , µH) = − 1

π2

∑
s=±1

∑
κ=±1

∫ ∞
0

p4dp

ωp(σ)
(75)

×θ
[
s(µV + κµH)− ωp(σ)

]
The integral in Eq. (75) can be performed analytically
with the help of the identity

q∫
0

p4dp

εp
=

1

8

[
qεq(2q

2 − 3m2) + 3m4 arctan
q

εq

]
, (76)

where we denoted εp =
√
p2 +m2. Equations (75) and

(76) simplify the numerical calculations.
In Fig. 1 we show the behavior of the order parameter

σ as the function of the baryonic chemical potential µB
at various values of the helical chemical potential µH .
At zero helical density, µH = 0, the model resides in
the chirally broken phase at low baryon densities with
µV < µc with

F :

 µV

µH

T

 =

 µc

0

0

 '
 314 MeV

0

0

 , (77)

where µc ' 314 MeV denotes the critical value of the
(vector) chemical potential in LSMq. The letter “F” in
Eq. (77) marks the point at the T = 0 phase diagram in
the (µV , µH) plane, Fig. 3, which will be discussed later.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

�B�3�V , GeV

�
f�

00.1
0.2

0.25

0.3
0.4

𝜇  , GeVH

T = 0

FIG. 1. The chiral order parameter σ (in units of the pion
decay constant in vacuum, fπ) as a function of the baryonic
chemical potential µB ≡ 3µV at various values of the helical
chemical potential µH at zero temperature.

As the helical density increases, the position of the
chiral phase transition shifts towards smaller values of
the baryon chemical potential µB . At the same time,
the presence of the helical density softens the transition.
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Both these effects are seen in Fig. 1 at the helical chemical
potential µH = 100 MeV.

A further increase of the helical chemical potential
moves the transition to even smaller values of the baryon
chemical potential and leads to the disappearance of the
first order phase transition which is replaced by a smooth
crossover. These features are seen at µH = 200 MeV.

At higher helical densities, the transition start to
strengthen and turns again to a first order phase transi-
tion (examples are at µH = 250 MeV and µH = 300 MeV
in Fig. 1). Finally, as µH is increased, the transition
point reaches the lowest possible value at µV = 0 and
the first-order phase transition disappears altogether. In
agreement with the mentioned duality between the vec-
tor and helical sectors of the theory, the critical helical
potential is tightly related to its vector (baryonic) coun-
terpart (77):

G :

 µV

µH

T

 =

 0

µc

0

 '
 0

314 MeV

0

 , (78)

where µc is given in Eq. (77). At a larger helical den-
sity, µH > µH,c, the system resides in the chirally re-
stored phase. The point “G” introduced in Eq. (78) is
also highlighted in Fig. 3.

It is instructive to discuss the behavior of the densities
of the vector charge2 (73) and the helical charge (74),
shown in Fig. (2).

At small helical potentials µH � µc, the first-order
chiral phase transition is characterized by a large increase
of the baryon density and a small (vanishing at µH = 0)
change in the helical density.

At moderate values of the helical chemical potential,
µH ∼ µc/2, the chiral crossover transition appears. It
is characterized by a smooth change in both vector and
helical densities.

The picture reverses at high values of the helical chem-
ical potential, µH ∼ µc, where the chiral transition dis-
appears and the helical density prevails over the baryonic
(vector) density.

The phase diagram in the plane of chemical potentials
(µV , µH) is shown in Fig. (3). There are two separate
segments of the first-order phase transitions.

The baryonic segment of the first-order transition be-
gins at the point “F” at the zero-helical-density axis (77)
and ends at the endpoint “C” with the parameters:

C :

 µV

µH

T

 '
 242 MeV

125 MeV

0

 '
 0.77µc

0.40µc

0

 . (79)

This segment separates the chirally broken phase (the
green region) from the chirally restored region “B” where

2 Due to the relation of the baryon and vector (quark) chemical
potentials, µB = 3µV = 3µq , the baryon density nB is propor-
tional to the vector (quark) charge density, nB = nV /3 = nq/3.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

�B�3�V , GeV

n V1
/3
,G
eV

0

𝜇  , GeVH

T = 0

0.050.10.150.2
0.25

0.3
0.35

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

�B�3�V , GeV

n H1
/3
,G
eV

0

𝜇  , GeVH

T = 0

0.050.10.150.20.25
0.3

0.35

FIG. 2. The density of (top) the vector charge nV and (bot-
tom) the helical charge nV = 3nB as the function of the
baryonic chemical potential µB ≡ µV /3 at various values of
the helical chemical potential µH at zero temperature.

the vector (baryonic) density dominates over the helical
charge density.

The helical segment begins at the point “G” at the
zero-baryon-density axis (78) and ends at the endpoint
“D”:

D :

 µV

µH

T

 '
 125 MeV

242 MeV

0

 '
 0.40µc

0.77µc

0

 . (80)

The G-D segment separates the chirally broken phase
(the green region) from the chirally restored region “H”
where the helical charge density dominates over the bary-
onic density.

The pair of the points “F” and “G” as well as the pair
of the endpoints “C” and “D” are related to each other
by the vector-helical duality (55).

At the endpoints “C” and “D” a second-order phase
transition takes place. These endpoints are connected to
each other by a smooth crossover (the dashed thin line
“C-D”).

The phase diagram in Fig. (2) is insensitive to the signs
of the chemical potentials, being invariant under the sep-
arate flips µV → −µV and µH → −µH .
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T = 0Helical matter

Baryonic m
atter

Chirally symmetric phase

Chirally broken phase
B

H

D

C

F

G

FIG. 3. The phase diagram in the (µV -µH) plane at zero
temperature (µV ≡ µq). The thick lines mark the first-order
phase transitions between the chirally broken phase (at low
µV and µH) and predominately baryonic (blue) and predom-
inately helical (red) regions. The positions of the points “F”
and “G” are given in Eqs. (77) and (78), respectively. The
filled circles “C” and “D” are the endpoints with the second-
order phase transitions [Eqs. (79) and (80)]. The dashed line
“C-D” shows the position of a smooth crossover which con-
nects the endpoints.

C. Finite-temperature phase diagram

The presence of the helical density leads to a substan-
tial modification of the finite-temperature phase diagram
of QCD. In Fig. 4, we show the position of the chiral
phase transition in the µV − T plane at a dense grid of
values of the helical chemical potential µH . The temper-
ature is plotted in units of the pseudocritical temperature
Tc,0 of the chiral crossover in LSMq at zero density:

Tc,0 ' 144.5 MeV (in LSMq at µB = µH = 0). (81)

This point is shown by the triangle “P” in Fig. 4.
Notice that the exact position of the crossover tran-

sition – which is not associated with a thermodynamic
singularity – depends on the quantity which is used to
reveal the crossover. We determine the position of the
crossover as a sub-manifold of the parameter space at
which the slope of the condensate – in the µV − T plane
at fixed µH – reaches its maximum. Due to imprecise
notion of the position of the crossover, it is customary to
call the temperature of the crossover as the “pseudocrit-
ical” rather than critical temperature.

The value of the critical temperature (81) in LSMq

is slightly (less than 10%) lower than the value of the
critical temperature TQCD

c = 156.5(1.5) MeV of the chi-
ral phase transition determined via the inflection point

of the light-quark chiral condensate in the first-principle
simulations of lattice QCD with real quark masses [28].

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

�V=�B/3, GeV

T
Tc

𝜇  , GeVH

0.3

0.25

0.23 0.22

0.19
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0.16
0.15
0.14

0.13
0.12
0.11

0.10
0.09
0.08
0.07
0.05

0.24

0.20
0.21

0.28
0.26

E

0.0

B
C

D

A

F

H

P

L

K

G
H

self-duality

FIG. 4. The phase diagram in the (µV -T ) plane at various
helical chemical potentials µH (the values of µH in units of
GeV are marked at each line). The thick lines mark the first-
order phase transitions between the chirally broken phase (the
region closer to the origin) and the chirally restored phase
(the outer region). The dashed lines show the position of
the smooth crossovers. The endpoints of the first-order phase
transitions, denoted by the filled circles, are the second-order
phase transitions. The segments of the lines of the first-order
phase transitions form two “islands”, with mostly baryonic
(blue) and mostly helical (red) chirally-restored phases. The
self-duality line µV = µH is shown in the pink color. The
meaning of all marked points is discussed in the text.

At a vanishing helical chemical potential, µH = 0,
we recover the standard chiral transition which is plot-
ted at the outer violet line in Fig. 4. At small val-
ues of the chemical potential µV , the chiral transition
is a smooth thermodynamic crossover (the dashed line),
which reaches the zero-density axis at the point “P” with
T = Tc,0 and µV = µH = 0.

As the µV ≡ µB/3 chemical potential increases, the
crossover turns into the 1st order phase transition (the
solid line) passing via the 2nd order endpoint “E” (the
filled circle). This endpoint is located at:

E :

 µV

µH

T

 '
 190 MeV

0

104 MeV

 '
 0.61µc

0

0.72Tc,0

 .(82)

At higher baryon densities, the first-order transition line
segment hits the T = 0 axis at the point “F”, given in
Eq. (77). At even higher µV , the model resides in the
chirally restored phase.

Figure 4 demonstrates that the presence of a non-zero
helical density changes the chiral phase transition sub-
stantially. Let us consider what happens with the chiral
phase transition as the helical density increases.

First, as the helical chemical potential µH raises, the
line of the chiral transition gradually shrinks towards the
origin (µV , T ) = (0, 0). In other words, both the criti-
cal temperature Tc at a fixed chemical potential µB and
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the critical chemical potential µB at fixed temperature
T are monotonically decreasing functions of the helical
chemical potential µH .

Second, the presence of a moderate helical density
makes the chiral phase transition weaker: the line of
the first order phase transition shrinks, in favor of the
smooth crossover. As µH is increased from 0 up to
µH = 125 MeV, the high-temperature endpoint E de-
scends towards smaller temperatures and larger values of
µV .

When the helical chemical potential reaches the value
µH = 125 MeV, the lower end of the 1st order line reaches
the endpoint “C” of the T = 0 phase diagram with µV =
242 MeV. The position of this endpoint, given explicitly
in Eq. (79), is shown in Fig. 3.

As soon as the helical potential becomes larger than
µH = 125 MeV, the chiral phase transition develops the
second endpoint, now at the low-temperature end of the
1st order line. The rest of the transition line is occupied
by the smooth crossover all the way down to the T = 0
axis. The structure of the chiral transition line with two
endpoints is clearly seen in Fig. 4 for values of µH be-
tween µH(E) = 125 MeV and µH(L) = 142 MeV, where
the point “L” is described below.

Further increasing µH causes both the higher- and
the lower-temperature endpoints to approach each other.
This effect is seen at the line with the fixed value of the
chiral helical potential µH = 140 MeV. At a higher, crit-
ical value of µH , the first-order segment shrinks to zero
and the chiral transition turns into a smooth crossover.
The 1st order phase transition disappears at the point
“L” with the parameters

L :

 µV

µH

T

 '
 208 MeV

142 MeV

46 MeV

 '
 0.66µc

0.45µc

0.32Tc,0

 .(83)

which is shown in Fig. 4 as a bright green dot.
After the system goes beyond the point “L”, the chiral

phase transition keeps the crossover type for a while until
the helical chemical reaches the value µH ' 208 MeV.
The first-order phase transition reappears at the point
“K” of the phase diagram:

K :

 µV

µH

T

 '
 142 MeV

208 MeV

46 MeV

 '
 0.45µc

0.66µc

0.32Tc,0

 .(84)

It’s easy to see that the points L and K are related to
each other via vector-helical duality (55).

In the narrow range of values of the helical chiral po-
tential,

0.45µc ' 142 MeV . µH . 208 MeV ' 0.66µc, (85)

the whole line of the chiral transition is of the crossover
type. The crossover region of the phase diagram is cut
in two parts by the self-duality line, µV = µH , shown in
the pink color in Fig. 4.

As µH increases beyond the point K (µH ' 208 MeV),
the first-order phase transition reappears. Contrary to
the low-helicity case, now the first order chiral segment
is located at higher temperatures, while the crossover
transition is now realized at the colder part of the phase
diagram.

The line of the first order phase transition reaches the
zero-baryon density µV = 0 at the point

A :

 µV

µH

T

 '
 0

190 MeV

104 MeV

 '
 0

0.61µc

0.72Tc,0

 ,(86)

which is exactly dual to the endpoint “E”, Eq. (82), of
the usual standard finite density transition.

When the helical potential reaches the value µH '
242 MeV ' 0.77µc, the crossover shrinks to zero and the
whole chiral phase transition becomes of the first order.
The chiral transition intersects with the T = 0 axis at
point D with parameters shown in Eq. (80). This point
is also shown in the T = 0 phase diagram of Fig. 3.

After passing point D, the crossover region disappears
completely and the transition line becomes the first–order
phase transition. The temperature and the vector chem-
ical potential decreases monotonically as µH increases.
The chiral transition disappears altogether when the chi-
ral helical potential reaches the value µH = µc with µc
given in Eq. (77). This position marks the point G,
Eq. (78), shown in Figs. 3 and 4.

Qualitatively, the phase diagram in the µV − T plane,
Fig. 4, has three distinct regions, including the strait
of the crossover transition at intermediate values of the
helical potential (85) which separates the high-µV island
of the baryonic-rich first-order transitions and the low-
µV island of the helical-rich first-order transitions (cf.
Fig. 3). The crossover strait is cut in two pieces by the
self-duality line, µV = µH .

The evolution of the structure of the chiral transition
in the µV − T plane as the helical chemical potential is
increased is shown in Fig. 5. The top row highlights the
position on the µH/µc axis of the points C, L, A, and
D introduced in Fig. 4. The bottom row shows quali-
tatively the phase diagram in the µV − T plane via 11
representative configurations at or around these points.

D. Curvature of the chiral transition

One of the most important characteristics of the chiral
transition is the curvature κ of the transition temperature
at small values of the baryon chemical potential µB ≡
3µV :

Tc(µB , µH)

Tc,0
=
Tc(µH)

Tc,0
− κ(µH)

(
µB
Tc,0

)2

+ . . . , (87)

where Tc(µH) ≡ Tc(µB = 0, µH) is the (pseudo)critical
temperature of the chiral transition at zero baryonic den-
sity, and Tc,0 ≡ Tc(µB = 0, µH = 0) is the position of
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FIG. 5. The evolution of the structure of the chiral transition in QCD as µH (given in units of µc ' 314 MeV) is increased.
The points C, L, A, and D correspond to the ones given in Fig. 4.

the crossover when both chemical potentials vanish (81).
Due to the vector-helical duality (55), the dependence of
the (pseudo)critical temperature Tc(µH) ≡ Tc(0, µH) on
helical chemical potential µH at µV = 0 is the same as
the dependence Tc(µV ) ≡ Tc(3µV , 0) on µV at µH = 0,
given by the outer transition line in Fig. 4.

The series in Eq. (87) is valid provided the baryon po-
tential is much smaller than the chiral transition temper-
ature at zero density (81), µB � Tc,0. The linear term is
absent due to the C-symmetry of the theory at the bary-
onic neutrality point, µB = 0. The dots in the series (87)
represent higher-order terms in µB/Tc,0.

It turns out that the first two terms in Eq. (87) may in-
deed describe very well the curvature of the chiral transi-
tion lines, shown in Fig. 4, at any helical chemical poten-
tial µH . The effect of the helical density on the curvature
κ of the chiral transition is shown in Fig. 6.
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FIG. 6. Curvature κ of the chiral transition (87) as the func-
tion of the helical chemical potential µH at zero baryon den-
sity µB = µV = 0. As the helical density rises, the crossover
(the blue dots) changes into the 1st order phase transition
(the orange squares). The position of the 2nd order endpoint
(point “A” in Fig. 4) is shown by the vertical magenta line.
The green curve represents the best fit (88).

The curvature of the phase transition is a slowly ris-
ing function of the helical chemical potential µH . After
the helical density passes the critical 2nd-order endpoint

“A”, Eq. (86), the crossover turns into a first order phase
transition with the rising, as a function of µH , curvature.
The evolution of the curvature slope suggests the pres-
ence of a singularity at the point “G”, Eq. (78), where
the curvature becomes infinite.

Both crossover and 1st order regions may be success-
fully described by the same fitting function in the whole
region of µH :

κfit(µH) = κ0

(
1 + α

µH
µH,c − µH

)
. (88)

The fitting parameters are the value of the curvature at
the vanishing helical density, κ0 ≡ κ(µH = 0), the criti-
cal value of the helical chemical potential, µH,c, and the
coefficient α which controls the slope of Eq. (88).

The best fit, shown in Fig. 6 by the green line, gives
the following values for the µH = 0 curvature and the
critical value of the helical chemical potential:

κ0 = 0.0158(3), µH,c = 0.314(1) (89)

For the slope, we get α = 0.46(2) ≈ 1/2.
The value of the curvature (89) at zero helical density,

predicted by LSMq, is well-compatible with the QCD re-
sult κQCD = 0.0132(18) of the pseudocritical line of the
chiral transition obtained with the help of first-principle
lattice simulations [30].

An increasing helical density leads to the rise of the
curvature κ. The curvature becomes infinite at the criti-
cal value µH,c of the helical chemical potential (89) which
expectedly coincides with the point “G” within the er-
rors (78).

A few words on the validity of our results are in order.
As the LSMq is an effective low-energy (infrared) model
of QCD, at large values of massive parameters (for ex-
ample, at high chemical potentials) the model may give
somewhat inaccurate results. Therefore, as a standard
word of caution, our quantitative predictions should be
considered with certain care.

In addition, following the traditional approach, we
characterized the vacuum of the theory with a single pa-
rameter: the pseudoscalar condensate σ. This single con-
densate can indeed describe the vacuum at low baryon
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densities both in the chirally broken phase and around
the chiral transition. Due to the vector-helical duality,
the single pseudoscalar condensate may be used in the
similar range of values of the helical chemical potential
µH (at low helical densities). However, the presence of
large helical and baryonic chemical potentials – for ex-
ample, around the crossover transition – may lead to the
formation of new types of condensates which may not be
reduced to the single parameter σ.

V. DISCUSSION AND CONCLUSION

A. Thermodynamic relevance of helicity

In our paper we discussed the influence of the presence
of a finite helical density on the phase diagram of QCD
at finite temperature and finite baryon density.

For quarks, a difference between the helicity and chi-
rality appears at the level of their transformations un-
der the charge conjugation operation (C).3 The right-
(left-)handed helicity corresponds to a positive (negative)
value of the projection of the quark’s spin on its momen-
tum. The chirality of the quark is given by its helicity
times the sign of the particle’s charge: the chirality of a
particle is equal to its helicity (for example, a right-chiral
particle has a right-handed helicity) while the chirality of
an antiparticle is opposite to its helicity (for instance, a
right-chiral antiparticle has a left-handed helicity).

Physically, the notions of helicity and chirality are very
close to each other as they differ only by an application
of the vector charge operator, QV . However, the he-
licity can be defined for free massive quarks while the
chirality cannot. Indeed, the helicity operator h, given
in Eq. (3), commutes with the Hamiltonian of a massive
free fermion (7) while the axial operator, given by the γ5

matrix, does not.
Mathematically, the axial charge density is determined

via the local operator γ5, while the helical density in-
volves a more complicated expression (3). Moreover, the
definition of the axial charge is a Lorentz invariant while
the helical density depends on the choice of the local
reference frame. The latter property, however, is not
important for systems at finite density and temperature
(as the one considered in this paper), where the Lorentz
symmetry is explicitly broken by the presence of matter.

We argue that the helical density is a thermodynam-
ically relevant quantity in theories with the mass gap
generation such as QCD. For example, both the helical
charge and the helical chemical potential µH are well-
defined quantities in a thermodynamic ensemble of free
massive fermions. On the contrary, the axial symmetry is
inconsistent with the massive quarks: the axial chemical

3 The term “axiality”, which would be a more appropriate term
than “chirality”, is not adopted in the current QCD literature.

potential µA modifies the energy spectrum of the mas-
sive fermions and leads to a µA-dependent divergence of
zero-point fluctuations [27]. The latter property casts a
shadow on the very definition of the vacuum of the theory
at nonzero µA: the zero-point fluctuations are associated
with the vacuum and should, therefore, be independent
of the presence of matter given by a nonvanishing chem-
ical potential.

It is worth discussing the relevance of the effects of
a finite helical density to quark-gluon plasma created in
relativistic heavy-ion collisions. The helicity fluctuations
are likely to emerge in the initial stages of heavy-ion col-
lisions in an off-equilibrium regime. While the quarks
may be created with a net helicity, the magnitude of
the helical charge remains yet to be estimated. Nev-
ertheless, the global helicity number is expected to be
approximately conserved in the high-temperature phase
before the hadronization stage is reached. Indeed, it is
well-known that the helicity of massless quarks is con-
served in perturbative QCD interactions due to the vec-
tor coupling to gluons (see, for example, the discussions
in Refs. [20, 29, 31]). For an ultra-relativistic quark
with a mass small compared to its energy, the perturba-
tive helicity-flip cross-section is proportional to the quark
mass squared.

Nonperturbative interactions and U(1) symmetry
breaking may increase the helicity flip rate [20] (see also
Ref. [19] where the chirality-flip rate in the QGP was ad-
dressed in an effective approach). Therefore it is reason-
able to expect that the helicity is good conserved quan-
tity in the chirally-symmetric phase of QCD where the
masses of the light quarks are small compared to their
thermal energies.

In our paper, we restrict ourselves to the simplest case
of two light quarks u and d. It is worth noticing that the
helicity flip should occur in interactions with a massive
quarks and can become relevant for the thermalization of
the spin of a massive s-quark with a (rotating, for exam-
ple) environment. The thermalization can occur – via a
mechanism involving breaking of an axial U(1) symme-
try – shortly before the QGP reaches the hadronization
stage [20]. For the realistic parameters of the quark-
gluon plasma (QGP), the quark’s helicity and its spin
equilibrate at the same rate [29]. Therefore, the spin of
an s-quark may pick up the direction of the local vorticity
of the rotating quark-gluon plasma during its evolution
after a heavy-ion collision, thus leaving an experimentally
observed imprint on polarization of Λ hyperons.

Summarizing, it is generally expected that the quarks
are kinetically thermalized within a short time of the or-
der of 0.5 fm/c after the collision. The next 5 − 10 fm/c
until hadronization, the fireball evolution is described by
an approximately thermalized QGP [5]. The thermal-
ized light quarks carry the conserved net helicity which
should, as we show in our article, affect the QCD phase
diagram and thus may influence the evolution of QGP.
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B. Effects of net helicity on QGP thermodynamics

After establishing the consistency of the helical density
with the mass gap generation, we studied the influence
of the helical chemical potential on the chiral properties
of QCD. To this end, we used the linear sigma model
coupled to quarks. We demonstrated that the presence
of the helical density affects the phase diagram of dense
quark matter in a rather complicated way, both at zero
(Fig. 3) and finite (Fig. 4) temperature. We used for
the analysis the vector chemical potential µV which is
equivalent to the quark chemical potential µq and three
times smaller than the baryon chemical potential, µB :
µV ≡ µB/3 ≡ µq.

The evolution of the structure of the chiral transition
in dense QCD as a function of the helical chemical po-
tential is summarized in Fig. 5. Here we summarize the
main effects of the helical chemical potential on the chiral
transition:

1. A moderate helical density makes the chiral phase
transition softer while shifting the critical endpoint
towards lower temperatures and higher baryon
chemical potentials.

2. In a certain narrow range of the helical chemical
potential µH , the chiral phase transition acquires
an additional 2nd order endpoint.

3. At intermediate helical density, the segment of the
first-order transition disappears and the chiral tran-
sition becomes a soft crossover at any temperature
or baryonic density.

4. At even higher helical chemical potentials, the first-
order transition reappears: the finite-T phase tran-
sition at zero baryon density (µB = 0) becomes of
first order, which turns into crossover at a nonzero
µV .

5. Finally, the chiral transition turns into a 1st order
transition at any temperature and baryonic den-
sity, before disappearing altogether when the he-

lical chemical potential reaches the critical value,
µH = µc.

We have also demonstrated the existence of a thermo-
dynamic duality between the helical and vector (bary-
onic) chemical potentials (55): the fermionic free energy
is invariant under a permutation of the vector and helical
chemical potentials (56). This duality should (softly) be
broken by the electromagnetic interactions that were not
considered in this article.

In relativistic heavy-ion collisions, the quark-gluon
plasma is created in a low-density regime characterized
by small values of the baryon chemical potential. The
region of a low baryon chemical potential is well accessi-
ble in the first-principle simulations of lattice QCD. At
small baryonic densities, the chiral transition is a smooth
crossover with the pseudocritical temperature diminish-
ing quadratically as a function of the baryonic chemical
potential (87).

In the limit of vanishing global helicity, µH = 0, our
result for the curvature of the pseudocritical tempera-
ture (89) agrees reasonably well with the results of the
lattice simulations [30]. The presence of a nonvanish-
ing density of helical quark charges enhances the curva-
ture of the (pseudo)critical line of the chiral transition
at low baryon density, Fig. 6. The curvature diverges as
the helical chemical potential reaches the critical point,
µH = µc ' 314 MeV.
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