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THE FIRST MOMENT OF PRIMES IN ARITHMETIC PROGRESSIONS: BEYOND THE SIEGEL-WALFISZ RANGE

We investigate the first moment of primes in progressions q≤x/N (q,a)=1 ψ(x; q, a) -x ϕ(q) as x, N → ∞. We show unconditionally that, when a = 1, there is a significant bias towards negative values, uniformly for N ≤ e c √ log x . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a ∈ Z\{0} we prove estimates that take into account the potential existence (or inexistence) of Landau-Siegel zeros.

Introduction

The distribution of primes in arithmetic progressions is a widely studied topic, in part due to its links with binary additive problems involving primes, see e.g. [START_REF] Iwaniec | Analytic number theory[END_REF]Chapter 19] and [START_REF] Ju | The dispersion method in binary additive problems[END_REF]. For all n ∈ N we let Λ denote the von Mangoldt function, and for a modulus q ∈ N and a residue class a (mod q) we define ψ(x; q, a) := n≤x n≡a (mod q) Λ(n).

In the work [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF], the second author showed the existence, for certain residue classes a, of an unexpected bias in the distribution of primes in large arithmetic progressions, on average over q. An important ingredient in this result is the dispersion estimates of Fouvry [START_REF] Fouvry | Sur le problème des diviseurs de Titchmarsh[END_REF] and Bombieri-Friedlander-Iwaniec [START_REF] Bombieri | Primes in arithmetic progressions to large moduli[END_REF]; these involve an error term which restricts the range of validity of [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF]Theorem 1.1]. Recently, this error term was refined by the first author in [START_REF] Drappeau | Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method[END_REF], taking into account the influence of potential Landau-Siegel zeros. This new estimate allows for an extension of the range of validity of [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF]Theorem 1.1], which is the object of the present paper. In particular, we quantify and study the influence of possible Landau-Siegel zeros, and we show that, in the case a = 1, a bias subsists unconditionally in a large range. Here is our main result.

Theorem 1.1.

There exists an absolute constant δ > 0 such that for any fixed ε > 0 and in the range 1 ≤ N ≤ e δ √ log x , we have the upper bound with an implicit constant depending effectively on ε, and where

(1.1) N x q≤x/N ψ(x; q, 1) - x ϕ(q) ≤ - log N 2 -C 0 + O ε (N -
C 0 := 1 2 log 2π + γ + p log p p(p -1) + 1 .
In other words, there is typically a negative bias towards the class a = 1 in the distribution of primes in arithmetic progressions modulo q. One could ask whether Theorem 1.1 could be turned into an asymptotic estimate. To do so we would need to rule out the existence of Landau-Siegel zeros, because if they do exist, then we find in Theorem 1.3 below that the left hand side of (1.1) is actually much more negative.

In order to explain our more general result, we will need to introduce some notations and make a precise definition of Landau-Siegel zeros. We begin by recalling [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF]Theorem 1.1]. For N ≥ 1 and a ∈ Z \ {0} we define

M 1 (x, N ; a) = q≤x/N (q,a)=1 ψ * (x; q, a) - x ϕ(q)
,

where 1 ψ * (x; q, a) = 1≤n≤x n≡a mod q n =a Λ(n).
With these notations, [5, Theorem 1.1] states2 that for N ≤ (log x) O (1) (1.2)

M 1 (x, N ; a) φ(|a|) |a| x N = µ(a, N ) + O a,ε,B N -171 448 +ε with (1.3) µ(a, N ) :=        -1 2 log N -C 0 if a = ±1 -1 2 log p if a = ±p e 0 otherwise.
We recall the following classical theorem of Page.

Theorem 1.2 ([9, Theorems 5.26 and 5.28]). There is an absolute constant b > 0 such that for all Q, T ≥ 2, the following holds true. The function s → q≤Q χ (mod q) L(s, χ) has at most one zero s = β satisfying Re(s) > 1-b/ log(QT ) and Im(s) ≤ T . If it exists, the zero β is real and it is the zero of a unique function L(s, χ) for some primitive real character χ.

Given x ≥ 2, we will say that the character χ (mod q) is x-exceptional if the above conditions are met with Q = T = e √ log x . There is at most one such character. By the analytic properties of Dirichlet L-functions, if exceptional zeros exist, their effect can often be quantified in a precise way, and are expected to lead to secondary terms in asymptotic formulas. For instance, it is known [START_REF] Montgomery | Multiplicative number theory I : Classical theory[END_REF]Corollary 11.17] that if the x-exceptional character exists, then there is a distortion in the distribution of primes in the sense that

ψ(x; q, a) = x ϕ(q) -χ(a)1 q|q x β βϕ(q) + O(xe -c √ log x ) (1.4) = x ϕ(q) (1 -η x,a 1 q|q ) + O(xe -c √ log x ) (1.5) with (1.6) η x,a := χ(a) βx 1-β ∈ (-1, 1).
We are now ready to state our more general result. As we will see, the secondary term in (1.4) can potentially yield a large contribution to M 1 (x, N ; a) for N considerably larger than q. For this reason, it is relevant to consider instead the expression

(1.7) M Z 1 (x, N ; a) = q≤x/N (q,a)=1 ψ * (x; q, a) -(1 -1 q|q η x,a ) x ϕ(q) ,
where, by convention, the term involving η x,a is only to be taken into account when the xexceptional character exists.

Our results show that, in the case of the hypothetical two-term approximation (1.7), there is a new bias term, which results from the contribution of the possible x-exceptional character. (i) If there is no x-exceptional character, then

(1.8) M 1 (x, N ; a) φ(|a|) |a| x N = µ(a, N ) + O a,ε N -171 448 +ε .
(ii) If the x-exceptional character χ (mod q) exists, then with C a,q and D a,q as in (2.4) and (2.5) below,

(1.9)

M Z 1 (x, N ; a) ϕ(|a|) |a| x N = µ(a, N ) + N η x,a r≤N (r,a)=1 q|r 1 -( r N ) β ϕ(r) -C a,q log N q + D a,q - 1 β + O a,ε N -171 448 +ε .
(iii) If the x-exceptional character exists and N ≥ q, then the previous formula admits the approximation

(1.10) M Z 1 (x, N ; a) ϕ(|a|) |a| x N = (1-η x,a )µ(a, N )+η x,a μχ (a)+O a,ε N ε (N/q) -171 448 +(log N ) 2 1 -β x (1-β)/2 ,
where μχ (a) = 1 2 1 a=±1 (log q -p|q log p p ).

In (1.9), we have that C a,q a 1/φ(q) and D a,q a 1, hence the secondary term involving η x,a is O a,ε (N (log N )q -1+ε ). Since by Siegel's theorem we have the bound q A (log x) A for any fixed A > 0, we recover [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF]Theorem 1.1].

Finally we remark that if the x-exceptional character exists and N ≥ q, the associated "secondary bias", that is the difference between the main terms on the right hand side of (1.10) and µ(a, M ), contributes an additional quantity -η x,a (µ(a, N ) -μχ (a)).

The bound q A (log x) A does not exclude the possibility that (1 -β) log x = o(1) in the context of (1.10). Should this happen, we would have that η x,a = χ(a)+o [START_REF] Bombieri | Primes in arithmetic progressions to large moduli[END_REF]. If moreover a = 1 and N ≤ qO(1) , then the main term of (1.10) would becomes asymptotically (1+o(1))μ χ(a), and would not depend on N anymore. In this situation, the additional bias coming from the exceptional character would annihilate the N -dependance of the overall bias.

Remark. The influence of possible Landau-Siegel zeros on the second moment has been investigated by Liu in [START_REF] Liu | Barban-Davenport-Halberstam average sum and exceptional zero of L-functions[END_REF]. As for the first moment, it is closely related to the Titchmarsh divisor problem of estimating, as x → ∞, the quantity 1<n≤x Λ(n)τ (n -1).

After initial works of Titchmarsh [START_REF] Titchmarsh | A divisor problem[END_REF] and Linnik [START_REF] Ju | The dispersion method in binary additive problems[END_REF], Fouvry [START_REF] Fouvry | Sur le problème des diviseurs de Titchmarsh[END_REF] and Bombieri, Friedlaner and Iwaniec [START_REF] Bombieri | Primes in arithmetic progressions to large moduli[END_REF] were able to show a full asymptotic expansion, with an error term O(x/(log x) A ). In the recent work [START_REF] Drappeau | Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method[END_REF], the first author refined this estimate taking into account the influence of possible Landau-Siegel zero, with an error term O(e -c √ log x ).

Proof of Theorem 1.3

2.1. The Bombieri-Vinogradov range. We begin with the following lemma, which follows from the large sieve and the Vinogradov bilinear sums method. Given a Dirichlet character χ mod q, we let

ψ(x, χ) := n≤x χ(n)Λ(n). Lemma 2.1. For 2 ≤ R ≤ Q ≤ √ x, we have the bound q≤Q 1 ϕ(q) χ (mod q) R<cond(χ)≤Q max y≤x |ψ(y, χ)| (log x) O(1) R -1 x + Q √ x + x 5 6 .
Proof. This follows from the third display equation of page 164 of [START_REF] Davenport | Multiplicative number theory[END_REF] with Q 1 = R, after reintegrating imprimitive characters as in [3, page 163].

We deduce the following version of the Bombieri-Vinogradov theorem, with the contribution of exceptional zeros removed. Lemma 2.2. Fix a ∈ Z \ {0}. There exists δ > 0 such that for all x, Q ≥ 1 we have the bound 1) , where η x,a was defined in (1.6).

q≤Q max y≤x max (a,q)=1 ψ(y; q, a) -(1 -η x,a 1 q|q ) y ϕ(q) xe -δ √ log x + Q √ x(log x) O(

Initial transformations, divisor switching.

From now on, we let δ > 0 be a positive parameter that will be chosen later, we fix x ≥ 1 and define χ as the possible x-exceptional character, of conductor q and associated zero β, and recall the notation (1.3). In order to isolate the contribution of the potential Landau-Siegel zero, we define

E(x; q, a) := ψ * (x; q, a) -(1 -η x,a 1 q|q ) x ϕ(q) .
If the x-exceptional character does not exist, then every term involving η x,a can be deleted.

With this notation we have the decomposition

M Z 1 (x, N ; a) = q≤x 1 2 +δ (q,a)=1 E(x; q, a) + x 1 2 +δ <q≤x (q,a)=1 ψ * (x; q, a) - x/N <q≤x (q,a)=1 ψ * (x; q, a) -x x 1 2 +δ <q≤x/N (q,a)=1 1 ϕ(q) + η x,a x x 1 2 +δ <q≤x/N (q,a)=1 q|q 1 ϕ(q) = T 1 + T 2 -T 3 -T 4 -T 5 , (2.1)
say. We discard the first term by using the dispersion estimate [4, Theorem 6.2], which yields that there exists an absolte constant δ > 0 such that in the range |a| ≤ x δ , (2.2)

T 1 = q≤x 1 2 +δ (q,a)=1 E(x; q, a) xe -δ √ log x .
We end this section by applying divisor switching to the sums T 2 and T 3 .

Lemma 2.3. Fix a ∈ Z \ {0} and define T 2 and T 3 as in (2.1). There exists an absolute constant δ > 0 such that in the range N ≤ x

1 2 -δ , |a|N ≤ xe -2δ
√ log x we have the estimate

T 2 -T 3 = x r≤x 1 2 -δ (r,a)=1 1 -( r x 1/2-δ ) ϕ(r) -η x,a x r≤x 1 2 -δ (r,a)=1 q|r 1 -( r x 1/2-δ ) β ϕ(r) -x r≤N (r,a)=1 1 -( r N ) ϕ(r) + η x,a x r≤N (r,a)=1 q|r 1 -( r N ) β ϕ(r) + O(xe -δ √ log x ).
Proof. We rewrite the condition n ≡ a mod q as n = a + qr for r ∈ Z. Summing over r and keeping in mind that |a|N < x, for large enough values of x we obtain the formula

T 3 = 1≤r<N -aN/x (r,a)=1 ψ * (x; r, a) -ψ * (a + rx N ; r, a) .
Recalling that N ≤ x 1 2 -δ , we may apply the Bombieri-Vinogradov theorem in the form of Lemma 2.2. We obtain the estimate (2.3)

T 3 = x r≤N (r,a)=1 1 -( r N ) ϕ(r) -η x,a x r≤N (r,a)=1 q|r 1 -( r N ) β ϕ(r) + O(xe -δ √ log x ).
Replacing N by x 1 2 -δ , we obtain a similar estimate for T 2 , and the result follows.

2.3. Sums of multiplicative functions. In the following sections, we collect the main terms obtained in the previous section and show that they cancel, to some extent, with T 4 and T 5 . We start with the following estimate for the mean value of 1/ϕ(q), which we borrow from [6, Lemma 5.2] with the main terms identified in [8, Lemme 6].

Lemma 2.4. Fix ε > 0. For a ∈ Z \ {0} and q 0 ∈ N such that (a, q 0 ) = 1 and q 0 ≤ Q, we have the estimate

q≤Q (q,a)=1 q 0 |q 1 ϕ(q) = C a,q 0 log Q q 0 + D a,q 0 + O a,ε (q ε 0 Q -1+ε ),
where

(2.4) C a,q 0 := φ(a) aϕ(q 0 ) p aq 0 1 + 1 p(p -1) , (2.5) D a,q 0 := p|a log p p - p aq 0 log p p 2 -p + 1 + γ 0 .
Here, γ 0 is the Euler-Mascheroni constant.

We now estimate the main terms in Lemma 2.3. For N ∈ N, a ∈ Z \ {0} and q 0 ∈ N we define

J γ (x, N ; q 0 , a) := r≤N (r,a)=1 q 0 |r 1 -( r N ) γ ϕ(r) + q≤x/N (q,a)=1 q 0 |q 1 ϕ(q) .
Lemma 2.5. Fix δ > 0 small enough and a ∈ Z \ {0}. For γ ∈ [ 3 4 , 1], (q 0 , a) = 1 and in the range 1 ≤ N ≤ x 1-δ , 1 ≤ q 0 ≤ x δ , we have the estimate (2.6)

J γ (x, N ; q 0 , a) = Jγ (x; q 0 , a) + γf q 0 ,a;N (1) -f q 0 ,a;N (γ) 1 -γ + O a,ε N x -1+ε + q 171 448 +ε 0 N -1-171 448 +ε ,
where the implied constant does not depend on γ, the value of the second main term at γ = 1 is defined by taking a limit, and Jγ (x; q 0 , a) := C a,q 0 log x q 2 0 + 2D a,q 0 -1 γ ;

(2.7)

f q 0 ,a;N (γ) := (q 0 /N ) γ ϕ(q 0 ) Z(-γ)G q 0 ,a (-γ)ζ(1 -γ)ζ(2 -γ)(1 -γ),
where

Z(s) := p 1 + 1 p s+2 (p -1) - 1 p 2s+3 (p -1)
;

G q 0 ,a (s) := p|aq 0 1 + 1 p s+1 (p -1) -1 p|a 1 - 1 p s+1 .
Proof. Assume that γ < 1. We will obtain error terms that are uniform in γ; this will allow us to take a limit and the result with γ = 1 will follow. We split Mellin inversion and a straightforward calculation gives the identity

J γ (x, N ; q 0 , a) = 1 2πi ˆ(2) 1 q s 0 ϕ(q 0 ) Z(s)G q 0 ,a (s)ζ(s + 1)ζ(s + 2) γN s s + γ + x N s ds s .
Taking Taylor series shows that for R ∈ R ≥1 ,

γR s s + γ + x R s = 2 + s log x - 1 γ + O x,γ,R (|s| 2 )
in a neighborhood of 0. We first shift the contour to the left until (-1 2 ). The residue at s = 0 contributes exactly J(x; q 0 , a). We handle the contribution of the term (x/N ) s similarly as in [7, Lemma 5.12]: a trivial estimation using a truncated Perron's formula shows that it is O a,ε ((x/N ) -1/2+ε ), while shifting back the contour to 2+iR (picking up a residue at s = 0) and applying Mellin inversion, we get

1 2πi ˆ(-1 2 ) 1 q s 0 ϕ(q 0 ) Z(s)G q 0 ,a (s)ζ(s + 1)ζ(s + 2) x N s ds s = q≤x/N (q,a)=1 q 0 |q 1 ϕ(q) -K 1 log x q 0 N -K 2
for some constants K 1 , K 2 depending on q 0 and a. Applying Lemma 2.4, we identify K 1 = C a,q 0 and K 2 = D a,q 0 , and we deduce that the above is O a,ε ((x/N ) -1+ε ). We deduce that

J γ (x, N ; q 0 , a) = J(x; q 0 , a) + O a,ε N x 1-ε + 1 2πi ˆ(- 1 
2 )

1 q s 0 ϕ(q 0 ) Z(s)G q 0 ,a (s)ζ(s + 1)ζ(s + 2) γN s s + γ ds s .
Shifting the remaining integral further to the line (-1-ε), we pick up two residues, at s = -1 and at s = -γ. This gives rise to the second term in (2.6). As for the shifted integral, we apply Bourgain's subconvexity estimate for ζ(s) [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]. Note that G q 0 ,a (s)

p|aq 0 1 + 1 p Re(s)+2 p|a 1 + 1 p Re(s)+1 .
As in [START_REF] Fiorilli | Residue classes containing an unexpected number of primes[END_REF]Lemma 5.9], we shift the contour to the line Re(s) = -1 -1/(2 + 4θ), where θ = 13/81 is Bourgain's subconvexity exponent. The shifted integral is a,ε q 1/(2+4θ)+ε 0

N -1-1/(2+4θ)+ε .
The desired estimate follows.

In the next two sections, we will prove approximations for the term (2.8) D γ (q 0 , a; N ) := γf q 0 ,a;N (1) -f q 0 ,a;N (γ) 1 -γ appearing in (2.6).

2.4. The main term for γ = 1. The limit of D γ (q 0 , a; N ) as γ → 1 has a simple expression in terms of derivatives of f q,a,N , namely D 1 (q 0 , a; N ) = f q 0 ,a,N (1) -f q 0 ,a,N [START_REF] Bombieri | Primes in arithmetic progressions to large moduli[END_REF].

Recall that f q 0 ,a,N is given by the Euler product (2.7). A direct computation yields that for q ∈ N, a ∈ Z \ {0} and N ∈ R ≥1 ,

f q,a,N (1) =    0 if a = ±1; -1 2N if a = ±1, f q,a,N (1) =        0 if ω(a) ≥ 2; 1 2N (1 -1 ) log if a = ± ν (ν ∈ N, prime); -1 2N log( q N ) -2C 0 + 1 -p|q log p p if a = ±1.
From these observations, we deduce the following.

Lemma 2.6. We have the exact formula

D 1 (q, a; N ) =        0 if ω(a) ≥ 2; 1 2N (1 -1 ) log if a = ± ν (ν ∈ N, prime); 1 2N log( N q ) + 2C 0 + p|q log p p if a = ±1.
2.5. The main term for γ < 1. Now that we have estimated the main term in Lemma 2.5 for γ = 1, we will do so for γ < 1. Under this restriction, we write

D γ (q 0 , a; N ) -D 1 (q 0 , a; N ) = 1 γ -1 ˆ1 γ ˆ1 δ f q 0 ,a,N (δ )dδ dδ.
By a direct estimation of the Euler product we see that in the range 3

4 ≤ γ ≤ δ ≤ 1, |f q 0 ,a,N (δ )| a q δ 0 |G q 0 ,a (-δ )| φ(q 0 ) (log q 0 N ) 2 N -γ (log q 0 N ) 2 N -γ .
Therefore, when 3 4 ≤ γ ≤ 1, we obtain (2.9)

D γ (q 0 , a; N ) = D 1 (q 0 , a; N ) + O a ((log q 0 N ) 2 (1 -γ)N -γ ).
Along with Lemma 2.6, the above yields the following approximation.

Lemma 2.7. Define R(x, N ) := (1 -β)(log qN ) 2 N β x 1-β .
For (a, q) = 1, ν ∈ N and prime, we have that

D 1 (1, a; N ) -η x,a D β (q, a; N ) =        O a (R(x, N )) if ω(a) ≥ 2; (1 -η χ,a ) 1 2N (1 -1 ) log + O a (R(x, N )) if a = ± ν ; (1 -η x,a ) 1 2N {log N + 2C 0 } + η x,a 1 2N {log q -p|q log p p } + O a (R(x, N )) if a = ±1.
2.6. Cancellation of main terms and proof of Theorem 1.3. In this section we combine the main terms in T 2 , T 3 , T 4 and T 5 and prove our main theorem.

Proof of Theorem 1.3. Recalling (2.1), we have by (2.2) and Lemmas 2.3 and 2.5 that for some small enough δ > 0,

M Z 1 (x, N ; a) = T 1 + T 2 -T 3 -T 4 + T 5 = x J 1 (x, x 1 2 -δ , 1, a) -J 1 (x, N, 1, a) -η x,a x J β (x, x 1 2 -δ , q, a) -J β (x, N, q, a) + O(xe -δ √ log x ) = -xD 1 (1, a; N ) -η x,a x Jβ (x, q, a) -J β (x, N, q, a) + O a,ε (xN -1-171 448 +ε ).
Here, we used the bound D 1 (q, a, N ) a N -1 (log qN ) along with (2.9). If the x-exceptional character does not exist, then this yields (1.8).

Next, assume that the x-exceptional character does exist, and that N q. Then by definition and since q ≤ e √ log x , Jβ (x, q, a) -J β (x, N, q, a) = C a,q log x q2 + 2D a,q -1 β -r≤N q|r (a,r)=1

1 -(r/N ) β ϕ(r) -q≤x/N q|q (q,a)=1 1 ϕ(q) = C a,q log N q + D a,q -1 β -r≤N q|r (a,r)=1

1 -(r/N ) β ϕ(r)

+ O(x -1 5 ),
where the sum over q was evaluated using Lemma 2.4. Since N ≤ e δ √ log x , this yields (1.9). Assume now that the x-exceptional character exists and that N ≥ q. We use Lemma 2.5 to write Jβ (x; q, a) -J β (x, N ; q, a) = -D β (q, a; N ) + O a,ε (N -1+ε (q/N ) 171 448 ).

Therefore, M Z 1 (x, N ; a) = -x D 1 (1, a; N ) -η x,a D β (q, a; N ) + O a,ε (N -1+ε (q/N ) 171 448 ) .

Our claimed formula (1.10) then follows from Lemma 2.7.

Unconditional bias.

In this last section we prove our unconditional result.

Proof of Theorem 1.1. If the x-character does not exists, then the claimed bound follows from (1.8). We can therefore assume that it does exists. Note that M 1 (x, N ; 1)

x/N = M Z 1 (x, N ; 1)

x/N -N η x,1 q≤x/N q|q 1 ϕ(q) = M Z 1 (x, N ; 1)

x/N -N η x,1 C 1,q log x N q + D 1,q + O(x -1 5 ).

Using our estimate (1.9), and noting that the r-sum is O(log( qN )/ϕ(q)), we obtain that M 1 (x, N ; 1)

x/N = µ(1, N ) + O ε (N -171 448 +ε ) -η x,1 N C 1,q log x q2 + O(log(2 + N/q)) .

Since q, N ≤ e δ √ log x and η x,1 > 0, the last term here contributes a negative quantity for large enough x, and we obtain the claimed inequality.
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 13 Fix an integer a ∈ Z \ {0} and a small enough positive absolute constant δ, and let x ≥ 2 and 2 ≤ N ≤ e δ √ log x .

Note that we have excluded the first term because it has a significant contribution which is trivial to estimate.

The improved exponent is deduced by applying Bourgain's work[START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF].