N

N

LPV Framework for Non-Linear Dynamic Control of
Soft Robots using Finite Element Model
Maxime Thieffry, Alexandre Kruszewski, Thierry-Marie Guerra, Christian

Duriez

» To cite this version:

Maxime Thieffry, Alexandre Kruszewski, Thierry-Marie Guerra, Christian Duriez. LPV Framework
for Non-Linear Dynamic Control of Soft Robots using Finite Element Model. TFAC 2020 - 21rst IFAC
World Congress, Jul 2020, Berlin, Germany. hal-02567575

HAL Id: hal-02567575
https://hal.science/hal-02567575
Submitted on 7 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02567575
https://hal.archives-ouvertes.fr

LPV framework for Non-Linear Dynamic
Control of Soft Robots using Finite
Element Model

Maxime Thieffry * Alexandre Kruszewski

*kokok

Thierry-Marie Guerra** Christian Duriez ***

* Sorbonne University, CNRS, ISIR UMR 7222, Paris, France
** Polytechnic University Hauts-de-France, CNRS, UMR 8201 -
LAMIH F-59313 Valenciennes, France
*** Defrost team, Inria, University of Lille, Centrale Lille, CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille -
UMR 9189, France

Abstract: This work presents a methodology to control soft robots using a reduced order
nonlinear finite element model. The Linear Parameter-Varying (LPV) framework is used both
to model the robot along a prescribed trajectory and to design its control law. Model reduction
algorithms along with radial basis functions network are used to identify the nonlinear behavior
of the robot. Finally, the method is validated through simulation experiments.
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1. INTRODUCTION

The desire to design robots to interact with humans and/or
in confined space in contact with the environment pushed
the robotics community to invent new paradigms, among
which is soft robotics. Biology provides a major inspiration
in the design of soft robots: the elephant trunk, octopus
arm or snake body lead to the design of the first soft robots
(Majidi, 2014; Kim et al., 2013). By soft robots, we mean
robots made of deformable materials whose motion are
obtained by deformation and where no joints are presents
in the structure. Soft robots have an theoretical infinite
number of degrees of freedom. Developing a mathematical
model suitable to describe the dynamics of such systems
is a challenging task as it must be at the same time
computationally affordable and sufficiently accurate.

Different methods have been proposed to solve this chal-
lenge, like constant curvature (Webster and Jones, 2010).
This method eases the modeling of soft structure due to
geometrical assumptions that restrict the design of the
robots to beam-like structures. It has been successfully
applied to many continuum robots with different actuation
systems such as cables or pneumatic chambers (Marchese
et al., 2014). Initially developed for kinematics studies,
this method has been extended to dynamics modeling and
used in closed-loop control experiments in (Katzschmann
et al., 2019b).

In addition, Cosserat theory provides a geometrically exact
method to model soft robots, taking into account large

* This research was conducted with support of ANR (Project
ANR-17-ERC2-0029), the European Union through the European
Regional Development Fund (ERDF), the French Ministry of Higher
Education and Research, the National Center for Scientific Research
(CNRS), and the Hauts-de-France Region.

deformations and displacements and handling material
nonlinearities (Trivedi et al., 2008). As for the constant
curvature method, it is intended for beam-like robots.

Numerical methods have been proposed to model soft
robots without limitations on the geometry. The Finite
Element Method (FEM) consists in discretizing the struc-
ture into a finite number of small elements, the underly-
ing equations coming from continuum mechanics are then
solved for each of these elements. A modeling and simula-
tion software dedicated to soft robots is implemented upon
the open-source framework SOFA along with a plugin for
the specific needs of soft robots (Coevoet et al., 2017).
This modeling method can handle most of the geometries,
provided that a CAD file for the structure exists.

To design feedback controllers for soft robot, depending if
one is interested in controlling the kinematics or dynamics
of the structure, it can lead to different controller designs.
Many different methods exist to tune a closed-loop con-
troller, depending on the modeling strategy, the targeted
application or an optimization criterion. If some results
have shown significant results for kinematics control, few
methods exist for dynamic control (see (Thuruthel et al.,
2018)).

Kinematics controllers may not be sufficient to perform
high speed tasks (such as jumping) or high speed obsta-
cle avoidance. Recently, different authors have proposed
new methods to control the dynamic behavior of soft
robots. A dynamic controller based on constant curvature
model is presented in (Falkenhahn et al., 2015) where the
model is used to generate a feed-forward action coupled
with a PID controller. Also based on piece-wise constant
curvature model, authors of (Della Santina et al., 2018)
present a dynamic controller that enables dynamic trajec-



tory tracking for a continuous soft robot while handling
interactions with the environment. Combining Cosserat
and Lagrange dynamic models with Ritz-Galerkin meth-
ods, (Sadati et al., 2018) presents a real-time model of
continuum manipulators that enables nonlinear impedance
and configuration control. In addition, model predictive
control has been used recently to perform trajectory fol-
lowing tasks (Bruder et al., 2019). Authors use Koopman
operator and system identification methods to construct a
discrete-time linear model based on which a linear model
predictive controller is designed.

2. CONTRIBUTIONS

This paper aims at extending our previous work by con-
sidering the non-linear model of the robot for the control
design. In (Thieffry et al., 2019), we have presented a
control strategy based on a finite element model of soft
robot dynamics. and it has been validated on experimental
platform in (Katzschmann et al., 2019a). However, the
control law was designed using a linear time invariant
(LTT) model, this is a known limitation of this work as it
constrains the guaranteed domain of the controller. This
papers presents a methodology to build reduced order
linear parameter varying (LPV) models of soft robots
based on a finite element model. A linear controller is then
designed for this LPV model.

3. FINITE ELEMENT MODEL
3.1 Linear large-scale model

To overcome the difficulty of providing realistic analytical
models of soft robots, we rely on numerical methods to
solve the equations coming from continuum mechanics.
The finite element method is commonly used in compu-
tational mechanics and is implemented within the SOFA
framework (Coevoet et al., 2017) to obtain real-time per-
formances. This modeling method consists of discretizing
the deformable solid into small elements. The equations
are then solved for each of these elements and assembled
to obtain the behavior of the hole structure of the solid.

Let us start with the formulation given by the second law
of Newton that models the dynamic behavior of a body
as:

M(q) = P(q) — F(q,q) + H" (g)A (1)
where ¢ € R™ is the vector of generalized degrees of
freedom, M(q) R"® — R™ "™ is the inertia matrix,
F(q,q) R™ x R™ — R" represents the internal forces
applied to the structure and P(q) R™ — R™ gathers
known external forces. Finally, matrix H(q) R™ —
R™ ™ is the matrix containing the actuation directions
while A € R™ is the vector of actuators forces.

Let go € R™ be a stable equilibrium point. It is induced by
the gravity field P(qo) and the actuation input Ag. As qo
is an equilibrium point, it holds:

0=P —F(qo,0) +H(g,)\o 2)

The internal force vector F is a nonlinear function of
the positions and the velocities. We apply a Taylor series

expansion to F and make the following first order approx-
imation around this configuration ¢y and it holds:
OF(q,v) OF(q,v)
F =F(q,0) — ——= g — ————= 0
(¢,v) = F(q,0) 2 | 915, v
ZJ_:(I(;) v=0

(3)

We define the stiffness matrix K and the damping matrix
D as:

K:R" xR" - R K(g,0) = LF;"’”)

I (4)
D:R" xR - R™™ D(qg,0) = LFéq’”)

v

Let us define the vector of velocity v € R™, v = ¢, the
state £ € R2™ of the robot is then defined as:

-

In the following, we assume that the external forces P(q),
the mass matrix M(q), the stiffness K(g, v), the damping
D(g,v) and the actuation direction H(g) are constant

around qo:
P =P(q) = P(q)
H = H(q) = H(q)
M = M(q) = M(qo) (6)
K= K(q/() = K(q07 0)
D = D(g,v) = D(go,0)

Finally, we define the displacement vector d as
d=q—qo (7)

From (1) and (3), the equation of motion around this
equilibrium point gy writes:
M =P — F(q,0) — Kd — Dv+H" ) (8)

Computing (8)-(2) yields to the following equation, mod-
eling the motion around an equilibrium point gq:

Mo = —Kd —Dv+HT (A - \o) (9)

Under this assumption and defining a new input u = A —
Ao, we obtain a linear model of the behaviour of the robot
described by the following equation:

Mo = —Kd — Dv+HTu (10)
Considering the state vector x = (v d)T and provided that
the matrix M is regular, equation (10) can be written as
a Linear Time Invariant (LTI) model:

5 -M'D - M 'K - M 'H” "
I 0 0 (11)

y=Cx
where [ is the identity matrix of dimension n and the

matrix C' is a sparse matrix defining the end-effector
coordinates.

3.2 Reduced Order Model

In equation (1), the vector ¢ is the displacement of each
nodes of the mesh in the three dimensions of space x, y
and z. The more precise the model is, the more variables
there are in the model. For soft robotics applications, the



mesh of the robot is often made of thousands of variables,
that makes system (11) a model of large dimensions. To
overcome the dimensionality issue arising when studying
these systems, model order reduction is used in this work.
Consider a nonlinear model:

i) = [t u®) , z€RY 1 (12)
projection-based model order reduction consists of decom-

posing the full-order state x into two parts, a low-order
state x,, € R” and a neglected state 7 € R®™" such that:

o . z, =Wl
z = V,.x, + Vrzy with {l‘f _ W;Ta: (13)

The problem is thus to find two projectors V,. € R"*" and
W, € R™*" to compute a x, with » < n such that:

xT:WTTm ;o rx Ve, (14)
In other words, the approximation method consists of
finding the matrix V,. and W, such that:

i’r(t) - Wff(‘/rxr(t)a u(t)) ~0 (15)
This provides an approximation of the large-scale system:
i (t) = WE (Vo (t),u(t) , . eR", r < n (16)

Singular Value Decomposition (SVD) based methods and
Krylov (moment-matching) based methods are commonly
used in the literature (Benner et al., 2017). Proper Or-
thogonal Decomposition (POD) is a SVD-based method
that is directly usable for non-linear large-scale systems,
that makes is suitable for our application.

The underlying idea behind POD algorithm is to collect
samples of the state of the studied system and find
a reduced basis that approximates these samples. This
method is well suited for applications where simulation
is available, as it is easy to get a collection of samples of
states. The SOFA framework used to model soft robots
includes algorithms to perform model reduction using
POD (Goury and Duriez, 2018).

Let ¥ : & = f(x(t),u(t)) be a nonlinear system and let S
be a collection of s snapshots.

S = (x(t1) z(t2) ...

Computing a SVD of this matrix, we get V, the left
singular matrix of S :

vyl =9

z(tn)) € R

(17)

Let us define V. as the " first columns of V', we have the
following approximation:

S=veQl =v,2.00 + A (18)
where X, contains the r-first singular values of S and A
represents the model order reduction errors.

Then, the projectors V,. and W,. are simply obtained as:

V=W, =V, (19)
so that it holds:
. =Wle; v~ Vux, (20)
In addition, projectors are orthogonal and it holds:
WTV, =1, and WIV, =0 (21)

Applying POD to the linear model (11), the reduced order
model writes:

{ir =WLAV,z, + W' Bu= A,z, + Byu

22
Yr = W;«TCZET = Crxr ( )

4. ILLUSTRATIONS
4.1 Trunk-like robot

This experimental platform is a trunk-like robot presented
in figure 1 with a schematic view in figure 2. It is made
entirely of silicone, it is 18 centimeters long and the
thickness at its base and its tip are respectively 2.5 and 1
centimeters. The structure is driven by 4 cables - actuated
by 4 servomotors whose entry are the cable length - that
permit to work in the 3 dimensions of space. The output
of the system is the position of the tip (red point in figure
1) in the three dimensions of space x, y and z.

Fig. 1. Soft robot used for experimental validation, fully
made of silicone. Top: front view of the robot. Bottom:
side view. Red = end-effector, location of the sensor.

|® @]

&

Fig. 2. Design of the robot: slice view (left) and side view
(right).
The robot is actuated with 4 cables in red.

A comparison of different FEM mesh with different ac-
curacy is given in figure 3. A mesh with 210 nodes is
not accurate enough to represent the geometry faithfully.
Conversely, a mesh with 6012 nodes does not give more
accurate results compared to a medium size mesh of 1557
elements. This medium size mesh is a good compromise
and will be used in this work.

Ny
;j&

BB Sicpren

Fig. 3. Comparison of different FEM mesh of the Trunk-
like robot with different accuracy.
Top: FEM mesh with 210 nodes, Middle: FEM mesh
with 1557 nodes, Bottom: mesh with 6012 nodes.



With 1557 nodes in the mesh, the dimensions of the
state vector in system (11) is also 1557 x 3 x 2 = 9342
state variables (3 directions of space for displacement and
velocity). The output is the position of the end-effector
(red-point of figure 1) in the three directions of space.

A linear controller has been designed in Thieffry et al.
(2018) where results show how to control the dynamics of
the robot in simulation experiments. Simulation and real-
world experiment shows the effectiveness of the approach.
The algorithm proposed in previous work is able to control
the dynamic behavior of the soft robots. However, as
the model was linear, the workspace where the algorithm
has been validated was limited to a region around the
equilibrium point. In addition, when the target position
is outside of the region of validity of the linearization
assumption, the results are unpredictable and can lead to
undesired behavior, as shown in figure 4.

on s o ®
s
}

®
o
N
RS
N
e
>

)
T

o
N
ol
N
@
S

Displacement (cm)

|
%

2 3 4 5 ;
Time (seconds)

o

Fig. 4. Unsuccessful attempt to reach a more target distant
from the linearization point. From top to bottom:
displacement of end-effector along x, y and z axis in
red with the desired value in black.

This limitation may have several explanations but it is
probably due to the fact that the target position is
outside the validity range of the linearization. Next section
presents tracks to model this kind of soft robots using LPV
models.

5. LPV MODEL OF SOFT ROBOTS
5.1 Basic Concepts of LPV models

Linear Parameter varying (LPV) systems have gained pop-
ularity during the 1990s, benefiting from the extension of
Hoo optimal control. Many nonlinear systems can be writ-
ten as quasi-LPV systems, which has two advantages: the
first one is to avoid writing a nonlinear model that requires
precise knowledge of the process studied. The second one
is to take advantage of all the techniques developed for LTI
systems. Polytopic systems are a common way of modeling
LPV systems (Apkarian and Tuan, 2000) and are of the

form:
Alp(t) B(p®)] _ = . [4: B;
[Ow)) D(p(t))} - ;Pz(” [ci DJ (23)

The birth of LPV systems comes from gain scheduling
techniques, where the idea is to linearize nonlinear systems
around different operating points yielding to a collection of
local LTT models. Then, interpolation functions link each

Fig. 5. Trajectory along which the model is linearized.

local subsystems. These interpolation functions are called
scheduling function and describe the change of operating
point. The scheduling signal is referred to as p. Therefore,
the resulting controller are dependent on the varying signal
p, thus resulting in parameter varying systems.

5.2 Multiple linearizations along a trajectory

To extend the guaranteed domain of the control algo-
rithms, a solution is to design a controller valid for the
nonlinear system (1), i.e. without assumption about area
of validity. With z = (v, ¢)”, this model writes:

&= A(x)x + B(x)u (24)
This defines a non-linear large-scale state-space system.
While it is already challenging to design a controller for
nonlinear systems, the complexity of the problem increases
with the dimensions of the system.

Let us consider a fixed number K of equilibrium point
Zep, k €{1,...,K} along the trajectory defined in figure
5. These equilibrium points are induced by the gravity field
and a collection of inputs wu., , such that:

0= A(@e,)Te, + Bl@e, e, (25)
Around each of the equilibrium point x.,, let us define
2k = T — Te,, and ugp = u — ue, to write the collection of
linear systems:
Zp = Agzr + Brug, k€ {1,...,K} (26)
The POD reduction algorithm is well suited for nonlinear
systems. The snapshots are captured so that the entire
workspace of the robot is modeled, in other words all the
subsystems (A, By) are included in the snapshot space.
The reduction provides the projection matrices V, and W,
that are valid for all of the subsystems. For the entire
workspace of the robot, the projection writes:
T, =Wex; v~ V., (27)
The key-point of using the POD algorithm, is that all
subsystems (Ayg, Bi) share the same projectors, yielding
to a collection of low order linear systems:

’éTk = A’I"k Z’l"k + B’I"kui
and with k € {1,... ,N}.

(28)

where z,, =z, — 2,

ek
5.8 Approximation of the collection of linear systems

Let us study the evolution of the coefficient of the reduced
order system matrix A, of the cable-driven soft robot (see
figure 1). The reduction is done using POD algorithm and
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Fig. 6. From left to right, top to bottom : evolution of
coefficient ai1, a4, a21 and asgs of matrix A, along
the trajectory, from equation (29).

the reduced order system is of dimension 6. The matrix
A, also writes:

allk a12k ale
Ar, = | ag, 426, (29)
61y, 465, A664,

The coefficient of the matrix A, are saved at 23 different
locations (i.e. K = 23) along the trajectory depicted in
figure 5. The evolution of some of the matrix coefficients
is shown in figure 6. One interesting track is to use a
sparse approximation technique to reconstruct all of the
coefficients from matrices A, and B, with a minimum of
variables. According to the nice properties of radial basis
functions, such as sparse universal approximation, these
first trials are focused on these functions.

A radial basis function is a real-valued function f whose
value depends only on the distance from the origin, so
that f(xz) = f(||z||); or alternatively on the distance from
a given point ¢, so that f(z,¢) = f(||x — ¢||). This point
c is then called a center. Gaussian function of the form
f(x) =e™* are commonly used.

A radial basis network is created to approximate a function
defined by a set of data points, in our case the coeffi-
cients (entries) of each matrices coming from the linearized
systems along the trajectory. A radial basis network is a
network with two layers, a hidden layer of radial basis neu-
rons and an output layer of linear neurons. The MATLAB
functin newrb is used to create the radial basis functions
network.

The inputs of the network are the coefficient of the systems
matrices (4,,,B,,) for each subsystems, the networks
output is the function that approximates those coefficient
that writes:

Ai(¢) = e~ Cillo=eiD® e (1, N} (30)
where N is the number of functions A used to approximate

the matrix coefficients. In addition, b; are the bias values,
¢ are the input weight values and ¢; are the centers values.

5.4 Construction of LPV model

From this approximated function, we get the following

system:
N

T, = Z Xi(Ap,z + Bry)u

i=1

(31)

However, due to the construction of the radial basis
function network, only A > 0 holds and there is no reason
for the functions to share the convex sum property, i.e.

N
YA # L
Nevertheless, the sector nonlinearity approach is a system-

atic way to derive a polytopic model (Tanaka and Wang,
2004). Values of \; are bounded and it holds A; € [m,m] €

[0,1], i € {1,..., N}, one can also write \; = wim +wim,
where: 5 )
m— \; , ; —m
0= Lot =2 = 32
NTE-m T " T mem (32)

and the function w! satisfy the convex sum property: wf +
w! =1 and w! > 0. Let us define functions h; (Bernal and
Guerra, 2010):

N

- J
Pitiytiax2t. i x2n-1 = H Wi,
Jj=1

(33)

We finally end with a polytopic model (34), based on which
the design of a controller is detailed in next section.

2./\/'
ir =Y hi(Ayz, + B u) (34)
i=1
vyhere
A tigsot tiyxanN—1 = A1(@i, ) Ar, 4+ A (0in ) Ary
= (AN (¢i,)Ar,)
j=1..N
(35)

with ¢g = min(¢) and ¢; = max(¢).
6. CONTROL DESIGN
6.1 Theory

The simplest control design is a linear state feedback
controller

u=—Lx, (36)
corresponding to the closed-loop system:
oN
ir = hi(A,, =B, L)z, (37)
i=1

The closed-loop LPV polytopic system (37) is quadrati-
cally stable if and only if there exists a matrix P = PT > 0
such that:

(Am - B”L)TP—FP(A” - Bﬁ) <0
hold for all i = 1,...,2V see (Boyd et al., 1994).

(38)

Condition (38) corresponds to a set of N LMI constraints
that, depending on the number of vertices of the polytope,
can sometimes lead to a huge number of constraints to
solve. As the number of parameters N growths, so does
the complexity of the condition to satisfy. It can also be
time and memory consuming as the number of LMIs to
solve is 2.

7. APPLICATION TO STUDIED SOFT ROBOT
7.1 Approzimation using RBF

The evolution of the coefficients along the trajectory
studied in this work is done using the RBF network that
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Fig. 7. Comparison of matrix coefficients a11, a14, as; and
ags along the trajectory (red dots) and the outputs of
the radial basis network for these coefficients (blues
lines).

provides 4 functions A, i.e. A/ = 4. The mean square error
(MSE) between the network input (matrix coefficients
along the trajectory) and the network output for the
studied soft robot is MSE = 0.39 given that the maximum
values for a coefficient along the trajectory is 7.85. This
represents a maximum error of 4.97%. A comparison of the
matrix coefficients a1, a14, as; and ass and the output of
the radial basis network for these coefficients is shown in
figure 7.

7.2 Validation of control laws in simulation

Simulation experiments are conducted on the trunk like
robot to validate the linear control law designed in equa-
tion (36). Two different experiments are done, the first
one aims at driving the position around its rest position,
where a linear model is valid. The robots starts at its rest
shape (figure 5 a) and converges to a slightly deformed
position (figure 5 b). Results are shown in figure 8 shows
the comparison between open and closed-loop behavior.

Then, a second experiment aims at driving the robot from
its rest shape to a highly deformed position, where a linear
model is not able to capture the dynamic behavior. The
robots starts at its rest shape (figure 5 a) and converges to
a highly deformed position (figure 5 c). Results are shown
on figure 9. Compared to results of previous works shown
in figure 4, figure 9 shows that designing a controller based
on LPV models makes it possible to control the robot in
a wider workspace.

8. DISCUSSION AND FUTURE WORK

Simulation experiments shows the validity of the approach
using a linear controller for the LPV system. Better per-
formances could be reached with more elaborate control
laws, such as the parallel distributed compensation (PDC)
(Tanaka and Wang, 2004). This is the topic of ongoing
research. It is composed of linear feedbacks assembled
together with the same nonlinear function h; as in the
model (34):

2N
u=->Y hL (39)
=1

yielding to corresponding closed-loop model:
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Fig. 8. Displacement of end-effector along x (top) y (cen-
ter) and z axis (bottom) in open-loop (dashed line)
and closed-loop (plain line). The robot starts from
its rest shape (Fig. 5 a) and converges to a slightly
deformed position (Fig. 5 b).
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2N 9N

DD hahs )

i=1 j=1

(40)

In addition, to study the robustness of the control law,
one should study the modeling errors coming from the re-
duction algorithm. Indeed, the POD algorithm decompose
the full order state x into two parts, a reduced part x,
that represents faithfully x and a neglected part x; that is
neglected such that:

z=Vox, + Vizr = Viz, (41)
Results of Thieffry et al. (2019) shows how to design a
controller that takes into account this reduction error x5
based on linear models. Its extension to LPV models has to
consider a global error coming from the convex aggregation
of the polytopic vertices. This extension is left for future
research.

9. CONCLUSION

This work presents new results about dynamic control
of soft robots using a nonlinear reduced-order numerical
model. The finite element method provides us with a large-
scale nonlinear model that is linearized along a trajectory
to build a linear parameter varying (LPV) model. This
work is an important step towards nonlinear control of
soft robots modeled using finite element method. Further



research will focus on the design on a nonlinear observer
to enable experimental validation of the approach.
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