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ABSTRACT

We explore the effect of past market movements on the instantaneous correlations between assets
within the futures market. Quantifying this effect is of interest to estimate and manage the risk
associated to portfolios of futures in a non-stationary context. We apply and extend a previously
reported method called the Principal Regression Analysis (PRA) to a universe of 84 futures contracts
between 2009 and 2019. We show that the past up (resp. down) 10 day trends of a novel predictor
– the eigen-factor – tend to reduce (resp. increase) instantaneous correlations. We then carry
out a multifactor PRA on sectorial predictors corresponding to the four futures sectors (indexes,
commodities, bonds and currencies), and show that the effect of past market movements on the future
variations of the instantaneous correlations can be decomposed into two significant components. The
first component is due to the market movements within the index sector, while the second component
is due to the market movements within the bonds sector.

1 Introduction

A crucial input for managing portfolio risk is the covariance matrix of the underlying assets. The empirical determination
of this matrix is fraught with difficulties. One is that of sample size: when the length of the available time series is
not very large compared to the number of assets in the portfolio, the empirical covariance matrix suffers from very
significant biases. For example, the smallest eigenvalue is underestimated and the largest eigenvalue overestimated. The
corresponding eigenvectors are also strongly affected by measurement noise. As a consequence, the realized risk of
optimal (Markowitz-like) portfolios can be considerably larger than anticipated, see e.g. [1].

But there is another, perhaps more fundamental reason for the out-of-sample risk to be larger than expected: we do
not live in a stationary world, described by a time-invariant covariance matrix. The covariance between assets evolves
not only because the volatility of each asset changes over time [2] and react to the recent market trend [3, 4, 5], but
also because the correlations themselves increase or decrease, depending on market conditions — see e.g. [6, 7, 8].
Sometimes these correlations jump quite suddenly, due to an unpredictable geopolitical event. The arch example of
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such a scenario is the Asian crisis in the fall of 1997, when the correlation between bonds and stocks indexes abruptly
changes sign and become negative — a “flight to quality” mode that has prevailed ever since [9, 10]. Whereas these
events are hard to predict, some measurable indicators (or factors) do anticipate future changes of the correlation matrix.
For example, as documented in [11], the structure of the stock correlation matrix depends (statistically) on the past
returns of the stock index (i.e. the average of all stock returns). The main effect is that the top eigenvalue of the
correlation matrix increases after the whole market goes down (and vice versa). Correspondingly, the top eigenvector
rotates towards u0 = (1, 1, · · · , 1)/

√
N after a drop of the index.

The main idea of Ref. [11] is to regress the instantaneous correlation matrix on the past value of one or several indicators
Ia, as follows:

ri(t)rj(t) = Cij +
∑
a

Da
ij(τ)Ia(t− τ) + εij(t, τ) ,

where ri(t) is the standardized return of asset i between t and t+ 1, ε a zero-mean noise term and Ia(t− τ) the value
of the indicator ‘a’ fully known at time t. This indicator is assumed to be of zero mean, such that C is by definition
the unconditional correlation matrix. Finally, Da(τ) is a matrix that measures the sensitivity of the instantaneous
correlation matrix to indicator Ia lagged by τ . Low rank approximations of the Da(τ) matrices allow one to build
intuitive and parsimonious models of how correlations are affected by the past. The eigenvalues and eigenvectors of this
matrix are expected to describe the impact of Ia(t − τ) on correlations in a more precise way than what one would
obtain by separate examination of the slope coefficients Di,j(τ). This protocol has been dubbed Principal Regression
Analysis (PRA) in [11], and has the virtue of being much easier to calibrate and to interpret than Dynamical Conditional
Correlation (DCC) models, see for example [12].

The aim of the present study is to extend to futures market the analysis of [11], which was devoted to individual stocks.
This is interesting for different reasons. One is that the CTA (Commodity Trading Advisor) industry routinely deals
with portfolios of futures, and the risk of these portfolios is obviously an important aspect CTA funds want to monitor
and control. Second, most stocks are positively correlated and, correspondingly, the top eigenvector of the correlation
matrix always remains close to the uniform mode u0. This is not the case in the universe of futures contracts. For
example, as mentioned above, stock indexes and bonds are typically negatively correlated (at least since 1998).

In this paper, we apply a Principal Regression Analysis to the universe of futures contracts, and elicit the main factors
affecting the structure of the corresponding correlation matrix. Whereas the dynamical structure of the correlation
matrix of stock returns has been discussed in several studies, using different methods, we are not aware of similar
investigations of futures returns. We first analyse the simplest case of a single factor, that we choose to be a ‘hand-made’
index I0, where stock indexes, currencies (vs. dollar) and commodities all have the same positive weight, and bonds
have a negative weight of equal magnitude. We study the time scale over which the return of this index should be
measured such that the effect on the correlation matrix is strongest, and find ≈ 10 days. We then replicate the analysis
with an index constructed from the top eigenvector of C which is close to, but not identical to I0, and find that the
quality of the prediction is increased. Finally, we run a multivariate PRA using four factors, namely the past returns of
the four relevant sectors in the universe of futures: stock indexes, bonds, currencies and commodities. This allows us to
get a more complete picture of the mechanisms leading to a change in the correlation structure of futures markets.

2 Data and notations

The data that we use are daily returns of N = 84 different futures, from tbeg = 1/1/2009 to tend = 1/1/2019. The list
of the different futures is given in Appendix A. None of the chosen assets are exchanged on the Asian futures market, in
order to avoid spurious correlations between returns labelled with different dates, arising from the offsets in the market
opening times.

The futures that we consider are classified in four different sectors: indexes (IDX), commodities (CMD), bonds (YLD)
and foreign exchange rates (FXR). In the FXR sector, all currencies are defined with respect to the US Dollar.
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The daily returns at time t are defined as the difference between the prices at time t and t− 1, divided by the standard
deviation of the price estimated using the last thirty days.1 They are denoted by rk(t), where k indexes a given contract.
We also redefine these returns as to have zero-mean and unit standard deviation:

rk(t)←
rk(t)− 〈rk〉

σk
(1)

where 〈rk〉 denotes the average return over the time window T and σk its standard deviation.

We also define the vector of returns r(t) := (r1(t), . . . , rN(t))
ᵀ ∈ RN , and the instantaneous correlation matrix

ρi,j(t) := ri(t)rj(t). (2)

We will denote by R the matrix with r(t) as its t-th columns. The futures market index at day t is denoted by I0(t) and
is defined as

I0(t) :=
1

N

N∑
i=k

skrk(t) (3)

where

sk =

{
1 if k ∈ YLD

−1 if k /∈ YLD
(4)

and YLD denotes the set of futures in the bonds sector. This sign flip anticipates the fact that the top eigenvector of the
correlation matrix has a positive sign on IDX, CMD and FXR sectors and a negative sign on YLD.

For F ∈ {IDX, YLD, CMD, FXR}, we define the sub-index IF(t) as

IF(t) :=
1

|F|
∑
k∈F

rk(t) (5)

All factors (3) and (5) have zero-mean, as the returns are centered. We further scaled them to be of unit variance.

The eigenvalues of an N ×N symmetric matrix A are ranked in descending order and are denoted by

λA1 ≥ . . . ≥ λAN (6)

The corresponding unit-norm eigenvectors are denoted by vA
1 , . . . ,v

A
N .

Before turning to our Principal Regression Analysis, we analyze the average correlation matrix C = (T − 1)−1RᵀR

obtained from the data. It is depicted in Fig. 1.a, sorted by sectors and sub-sectors. In the same figure we also show
a version of this matrix with averaged correlations within individual subsectors (Fig. 1.b) and sectors (Fig. 1.c). The
spectrum of C is shown in Fig. 2.a . The eigenvectors associated to the largest eigenvalue (market mode) and second
largest eigenvalue are Visually represented in Fig. 2.b and Fig. 2.c, respectively. We find λC1 = 19.08 and λC2 = 8.59.

Let us introduce e0 the uniform mode for our pool of futures. Given that assets in the YLD sector are anti-correlated
with the rest of the pool’s assets (see Fig. 2.b), we define it as:

e0 = N−1/2(sk)1≤k≤N (7)

where sk is defined in (4). The top eigenvector is such that e0 · vC
1 = 0.90, meaning that the eigenvector vC

1 is indeed
quite similar to the uniform mode.

1This allows us to remove part of, but not all, local volatility fluctuations. The normalized returns are furthermore clipped between
−5 and 5, to remove very extreme price changes and/or errors.
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Figure 1: (a) Empirical correlation matrix C for the futures data used in the present paper (b) Subsector-averaged
version (c) Sector-averaged version.
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Figure 2: (a) Normalized spectrum of the empirical correlation matrix (b) & (c) Visual representation of the two
dominant eigenvectors of the empirical correlation matrix titled with their associated eigenvalues.

3 Principal Regression Analysis

3.1 A Naive Index Factor

We first consider a linear statistical model similar to what is considered in [11], only using the futures market sign-
adjusted index I0 defined in (3) instead of the mean index for stocks. We therefore consider a statistical model such that
for each pair of futures indexed by i, j, the instantaneous correlation at time t is a linear function of the index τ days
ago. More precisely, the hypothesized model reads:

ρi,j(t) = Ci,j +Di,j(τ)I0(t− τ) + εi,j(t, τ) , (8)

with ρi,j(t) := ri(t)rj(t) and τ a certain lag that we will take to be equal to one day in the present section. The plot of
Fig. 5 makes the case for hypothesizing such a statistical model: it shows the value of the average signed correlations,
defined as

ρ(t) =
1

N(N − 1)

∑
i6=j

sisjρi,j(t) (9)

as a function of the past day index I0(t− 1). A negative, close to linear relationship is clearly visible. Given that Nρ(t)
can be written as e0 · ρ(t)e0 ≈ vρ1(t) · ρ(t)v

ρ
1(t) = λρ1(t), this motivates the fact that (8) is a reasonable model, as there

is a simple linear relationship between λρ(t)1 and λDN – see below in (10).

For a given τ , the slope coefficients Di,j(τ) are determined by OLS (Ordinary Least-Squares). As alluded to in the
introduction, 〈I〉 = 0 ensures that the intercept is precisely the i, j entry of the empirical correlation matrix C.
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Figure 3: (a) D matrix obtained by fitting the statistical model (8). (b) Subsector-averaged version. (c) Sector-averaged
version.
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Figure 4: (a) Spectrum of the D(τ = 1)-matrix obtained by fitting the statistical model (8), superposed to the spectrum
of the null-hypothesis. (b) λDN and its corresponding CDF in the null-hypothesis case. (c) Visual representation of vD

N .
(d) Its overlap with the market mode vC

1 and the CDF of the corresponding quantity in the null-hypothesis case.

The plots in Fig. 3 depict the obtained D(τ = 1)-matrix (simply denoted by D in the following), which exhibits a
remarkable structure. Its ranked-eigenvalue spectrum is depicted in Fig. 4.a, superposed to the null-hypothesis spectrum2.
We find in particular that the most negative eigenvalue λDN is highly significant, and equal to −3.1 (p = 0.01). All
other eigenvalues are not significant.

As far as eigenvectors are concerned, vD
N is represented in Fig. 4.c. We find that vC

1 · vD
N = 0.93 (p = 0.01), this

quantity being represented along with the CDF of the corresponding null-quantity in Fig. 4.d. Hence, vD
N is nearly

co-linear with the top eigenvector of C. We also find that all other pairs |vC
i · vD

j | are much smaller than unity and not
significant.

Hence, we find that the instantaneous correlation matrix ρij(t) has all its eigenvectors and eigenvalues essentially
independent of I0(t− 1), except for the top one eigenvalue, which can be written as:

λρ1(t) ≈ λC1 + I0(t− 1)λDN (vC
1 · vD

N )2. (10)

In other words, a negative (resp. positive) past index tends to increase (resp. decrease) the largest eigenvalue of the
correlation matrix, i.e. increase (resp. decrease) local correlations between futures that are correlated in the market
mode and increase (resp. decrease) anti-correlations between anti-correlated ones. Since vC

1 · vD
N ≈ 1, the behaviour of

I0 hardly changes the direction of the top eigenvector. If anything, the top eigenvector vρ(t)1 of the corrected correlation
matrix ρ(t) deviates from the uniform mode for negative past-day values of I0, an effect even more pronounced for

2Throughout this paper the null-hypothesis is computed by averaging over 1000 D-matrices, each of which is obtained by fitting
the model (8) to a centered and standardized random predictor, independent of the returns, in place of I0(t− 1) or Eβ(t− 1).
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positive values of this index. These results can be inferred from the plot in Fig .6. This behavior of the futures market is
in contrast with that of stocks presented in [11], for which negative index values resulted in the market mode rotating
towards the uniform mode in the subsequent days.

We also find that eigenvectors of D other than vD
1 do not lie in a subspace spanned by a simple subset of C’s

eigenvectors, neither are they easily interpretable in terms of sectors. For example, to generate a vector such that its dot
product with D’s second eigenvector is greater than 0.9, we need to include at least five higher-order eigenvectors of C.

Yet, the matrix plots of Fig. 3 give some insight about the distribution of the correlations correction across different
futures. In particular, it is clear that correlations between assets from the IDX sector tend to increase more than others
for a given level of negative past-day index.

3.2 Exponential Moving Average Index

We now consider a modified index that is weighted by an exponentially-decreasing kernel. More precisely, we define

Jβ(t) :=

Tk∑
s=0

I0(t− s)e−βs (11)

where Tk is the cutoff time defined as Tk = β−1log(100), such that e−βTk = 0.01. Again, we further normalise Jβ(t)
so that it has unit variance. The corresponding Dβ is then obtained by fitting model (8) with I0(t − 1) replaced by
Jβ(t− 1).

0 50 100 150 200 250
1/

10.0

7.5

5.0

2.5

0.0

D
E
1
,

N

(a)

0 50 100 150 200 250
1/

0.00

0.25

0.50

0.75

1.00

v
C
v
D
E
1
,

N

(b)

0 50 100 150 200 250
1/

0.0

0.5

1.0

1.5

2.0

D
E
1
,

1

(c)

0 50 100 150 200 250
1/

0.00

0.25

0.50

0.75

1.00

v
C
v
D
E
1
,

1

(d)

β-1 = 10 days

β-1 = 10 days

Figure 7: Evolution of some of Dβ’s spectral characteristics as a function of the decay time β−1. (a) Dβ’s most
negative eigenvalue; (b) Dot product of associated eigenvector with the market mode vC

1 ; (c) Dβ’s most positive
eigenvalue; (d) Dot product of associated eigenvector with the market mode vC

1 . All grey zones indicate non-significant
values down to p = 0.05 level. Orange dashed lines represent the value of the corresponding quantity for D(τ = 1).

6



December 28, 2019

C
M
D
:M
E
T
A
LS

C
M
D
:G
R
A
IN
S

C
M
D
:O
IL

C
M
D
:M
E
A
T
S

C
M
D
:S
O
FT
S

C
M
D
:G
A
S

ID
X
:U
S
_I
D
X

ID
X
:E
U
_I
D
X

FX
R
:T
IE
R
_3
_F
X
R

FX
R
:T
IE
R
_1
_F
X
R

FX
R
:T
IE
R
_2
_F
X
R

Y
LD
:G
O
V
_B
O
N
D

Y
LD
:S
H
O
R
T
_R
A
T
E

CMD:METALS

CMD:GRAINS

CMD:OIL
CMD:MEATS
CMD:SOFTS

CMD:GASIDX:US_IDX
IDX:EU_IDX

FXR:TIER_3_FXR

FXR:TIER_1_FXR
FXR:TIER_2_FXR
YLD:GOV_BOND

YLD:SHORT_RATE

(a)

C
M
D
:M
E
T
A
LS

C
M
D
:G
R
A
IN
S

C
M
D
:O
IL

C
M
D
:M
E
A
T
S

C
M
D
:S
O
FT
S

C
M
D
:G
A
S

ID
X
:U
S
_I
D
X

ID
X
:E
U
_I
D
X

FX
R
:T
IE
R
_3
_F
X
R

FX
R
:T
IE
R
_1
_F
X
R

FX
R
:T
IE
R
_2
_F
X
R

Y
LD
:G
O
V
_B
O
N
D

Y
LD
:S
H
O
R
T
_R
A
T
E

(b)

C
M
D
:M
E
T
A
LS

C
M
D
:G
R
A
IN
S

C
M
D
:O
IL

C
M
D
:M
E
A
T
S

C
M
D
:S
O
FT
S

C
M
D
:G
A
S

ID
X
:U
S
_I
D
X

ID
X
:E
U
_I
D
X

FX
R
:T
IE
R
_3
_F
X
R

FX
R
:T
IE
R
_1
_F
X
R

FX
R
:T
IE
R
_2
_F
X
R

Y
LD
:G
O
V
_B
O
N
D

Y
LD
:S
H
O
R
T
_R
A
T
E

(c)

0.50

0.25

0.00

0.25

0.50

Figure 8: (a) Dβ matrix obtained by fitting the statistical model (8), with Jβ in place of I0 and for the optimal timescale
parameter β−1 = 10 days. (b) Subsector-averaged version. (c) Sector-averaged version.
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Figure 9: (a) Spectrum of the Dβ-matrix obtained by fitting the statistical model (8), with Jβ in place of I0, where
β = 0.1, the optimal timescale. This spectrum is superposed to that of the null-hypothesis case. (b) λDβ

N and its
corresponding CDF in the null-hypothesis case. (c) Visual representation of vDβ

N . (d) Its overlap with the market mode
vC
1 and the CDF of the corresponding quantity in the null-hypothesis case.

Fig. 7.a shows the evolution of Dβ’s most negative eigenvalue against the value of the decay time β−1, while the
alignment of the associated eigenvector with the market mode vC

1 is depicted in Fig. 7.b. From these plots, we can infer
that a timescale of β−1 = 10 days maximizes the magnitude of the effect. The largest positive eigenvalue of Dβ , on the
other hand, does not reveal any notable features, see Fig. 7.c & .d. In the following, Dβ denotes Dβ=0.1.

The matrix Dβ=0.1 is depicted in Fig. 8, and some important spectrum characteristics are shown in Fig. 9. Both the
value of the most negative eigenvalue and of the dot product with the market mode are increased compared to the
instantaneous case D(τ = 1): we measure λDβ

N = −7.8 (p < 0.01) and vC
1 · v

Dβ

N = 0.96 (p < 0.01). As expected,
the feedback between past market behaviour and future correlations takes some time to build up; we find that 10 trading
days (two weeks) is the order of magnitude of this reaction time.

Note that all other eigenvalues (in particular positive eigenvalues) and dot products are much smaller in absolute value,
and therefore not significant, as in Sec. 3.1.

3.3 The “Eigen-Factor”

Elaborating on the previous results, we now construct our final indicator, which relies on the local correlation matrix
CK(t), based on the recent past returns between t−K and t− 1.
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Figure 10: Evolution of some of DEβ ’s spectral characteristics as a function of the timescale parameter β−1. (a) DEβ ’s
smallest eigenvalue (b) Dot product of associated eigenvector with the market mode vC

1 (c) DEβ ’s largest eigenvalue
(d) Dot product of associated eigenvectors with the market mode vC

1 . All greyed zones indicate non-significant values
to the p = 0.05 level. Orange dashed lines represent the value of the associated quantity for DE , the matrix obtained by
fitting the statistical model (13) with the instantaneous index (obtained by taking Tk = 0 in (12)).
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Figure 11: (a) DEβ matrix obtained by fitting the statistical model (13) with optimal timescale parameter β−1 = 10
days. (b) Subsector-averaged version. (c) Sector-averaged version.

We chose K = 3N (days) as a trade-off between finite-size noise and nonstationarity effects. For each t, the top
eigenvector vCK

1 (t) of CK(t) is determined. The exponentially smoothed “eigen-factor” is then computed as:

Eβ(t) =

Tk∑
s=0

r(t) · vCK
1 (t) e−βs. (12)

We again make sure that Eβ is centered and standardized.

We consider the eigen-factor Eβ(t) as a more precise version of Jβ(t), obtained by fine-tuning each future contract
in the index according to its weight in the local market mode while enforcing causality (instead of the ±1 weights in
I0(t)). This procedure does not require ad-hoc changes of signs, like we did for the YLD sector (which might actually
change again in the future, as it changed in 1997). Another “anomaly” that can be detected in Fig. 1 is the YEN vs.
USD, with a correlation with the IDX sector at odds with other currencies. All these idiosyncracies are automatically
accounted for with the eigen-factor Eβ(t).

The statistical model for the PRA associated to this eigen-factor reads

ρ(t) = C+DEβEβ(t− 1) + ε . (13)
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We first carry out a sensitivity analysis of the dominant eigenvalues of the obtained DEβ matrices against the β
parameters. The results are depicted in Fig. 10, and advocate for a choice of the optimal timescale parameter β = 0.1,
which coincides with that of the Jβ factor. In the following, DE will denote DEβ=0.1

.
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Figure 12: (a) Spectrum of the DE-matrix obtained by fitting the statistical model (13), where β = 0.1, the optimal
timescale. This spectrum is superposed to that of the null-hypothesis case. (b) Value of λDE

N and its corresponding CDF
in the null-hypothesis case. (c) Visual representation of vDE

N . (d) Its overlap with the market mode vC
1 and the CDF of

the corresponding quantity in the null-hypothesis case.
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Figure 13: Angle between the instantaneous, Eβ dependent correlation matrix top eigenvector and the uniform mode
e0 compared to the angle between the unconditional correlation matrix top eigenvector vC

1 with e0. The ∠ symbol
denotes the arccos function. We measure ∠(e0,vC

1 ) = 0.45 rad. Note that for moderately positive eigen-factor
Eβ(t− 1) ∈ [0; 1], the top eigenvector rotates towards e0.

Let us now describe the results of the PRA using the eigen-factor Eβ(t) with this optimal timescale parameter. The
matrix DE obtained by fitting the statistical model (13) with the optimal timescale parameter β = 0.1 is depicted in
Fig. 11. Note that the structure of DE appears much more markedly than within our previous two attempts, compare with
Fig. 3 and 8. The spectral characteristics of DE are shown in Fig. 12. These results indicate that theEβ(t) index leads to
a significantly stronger effect than what we observed with Jβ(t). In particular, we measure λDE

N = −9.56 (p < 0.01)

and vC
1 · v

DE

N = 0.96 (p < 0.01), to be compared with, respectively, −7.8 and 0.96 for Jβ . All other eigenvalues (in
particular positive eigenvalues) and dot products are again significantly smaller in absolute value and can be neglected.

As for the index I0, we measure the difference in deviation of ρij(t)’s top eigenvector from the uniform mode e0. The
results are depicted in Fig. 13. The results are qualitatively the same as for the I0 index: when the eigen-factor moves,
the top eigenvector of ρij(t) moves away from the the uniform mode e0, except for a small region of Eβ(t− 1) ∈ [0; 1]

where it rotates towards e0.

4 Zooming-in: Sector Indicators

In order to break down the effect reported above into different sector contributions, we now carry out a PRA using
corresponding sub-indexes as indicators. More precisely, we consider the mean return of each sector over time scale
β−1, and hypothesize the following statistical model

ρ(t) = C+
∑
F∈F

DFIF,β(t− 1) + ε , (14)
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with the notations defined in Sec. 2. Again, we chose the value β−1 = 10 days for the time decay parameter in the
following analysis (chosen equal for all sectors).
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Figure 14: Spectra of the DF matrices obtained by fitting the statistical model (14). The numbers reported on top of the
extreme eigenvalues give the value of the dot product between the corresponding eigenvector and the market mode vC

1 .

The spectra of the DF matrices are represented in Fig. 14. The dot products of the eigenvectors corresponding to the
extreme eigenvalues with the market mode vC

1 are also reported on the figure. The results show that the only eigenvalues
and eigenvectors that carry both value and direction significance are IDX smallest eigenvalue λDIDX

N = −8.5 (p < 0.01)

and YLD-index largest eigenvalue λDYLD
1 = 3.9 (p < 0.01). The impact on the correlations following the market

mode is then clear through

λρ1(t) ≈ λC1 + IIDX,β(t− 1)λDIDX

N (vC
1 · v

DIDX

N )2 + IYLD,β(t− 1)λDYLD
1 (vC

1 · v
DYLD
1 )2, (15)

which shows that negative (resp. positive) past IDX-index increases (resp. decreases) the correlations along the market
mode, while the opposite holds for the past YLD-index. However, the magnitude of the effect is approximately two
times larger for the IDX index compared to YLD, given the relative values of λDIDX

N and λDYLD
1 .

Given the low magnitude of their eigenvalues, and the unclear direction of their eigenvectors, the effect of the CMD and
FXR sector indexes is more difficult to interpret: their overlap with the market mode vC

1 is small. Therefore, quantifying
the effect of these indexes on the correlations ρ(t) in an interpretable manner requires to identify a low-dimensional
subspace in which the top eigenvectors of DFXR or DCMD live, in the basis of C’s eigenvectors. But as was the case in
Sec. 3.1 for higher modes of the D matrix, we find that the subspaces in which the corresponding eigenvectors live have
no simple interpretations.

5 Summary and Conclusion

This work shows that the correlation matrix describing the co-evolution of futures contract depends significantly on
the past return of the "futures market mode" (where stock indexes, commodities and currencies have a +1 weight and
bonds a −1 weight). More precisely, our results suggest that negative past returns of this futures market mode lead to an
increased forward average correlation. This effect is even more prominent if one considers the so called "eigen-factor",
an average index that finely weights each future contract according to its weight in the empirical correlation’s matrix
dominant eigenmode. We have also identified that an EMA of both indexes with a characteristic timescale of about 10
days maximizes its explanatory power of the changes in future average correlations.

Sectorial indexes give us a finer picture of the futures market’s index leverage effect, as our analysis indicates that
the mean variations of returns within different sectors have different effects on the future correlations, both in sign
and magnitude. Namely, past market movements within the indexes (IDX) sector are negatively correlated with a
given day’s instantaneous correlations, while the opposite is true for bonds (YLD) sector. As the indexes and bond
sectors are anti-correlated in the market mode, the sectorial indexes give us a consistent decomposition of the results
that were obtained with simple indexes. Moreover, this decomposition gives us a quantitatively finer picture of each
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sector’s contribution to the average correlations movements, with the indexes sector having twice as much effect on the
correlations on average than the bonds sector.

This work calls for subsequent investigations in several directions. Firstly, the predictive power of the linear PRA could
be tested, using, e.g., an out-of-sample score of the risk as obtained with a PRA-fitted linear model, such as (8) or (14).
This score can then be compared to that obtained through an uncorrected empirical matrix, to assess whether one would
gain in using the PRA models for risk estimation purposes in non-stationary regimes. Secondly, the identification of
the various predictors considered in this paper opens the path to using them as features in more complex correlations
and risk assessment models (e.g. neural networks). Finally, it would be interesting to decompose the effect exposed in
this paper into a local volatility contribution (which our local volatility normalisation does not remove entirely) and a
genuine local correlation contribution. Work in this direction is underway [13].
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A List of futures

In this appendix, we provide the list of futures used in this study. We organize these contracts by sector, and by market
on which they are traded. This list is reported in Table 1.

Table 1: List of futures ordered by sectors and markets

Sector IDX (indexes) YLD (bonds) FXR (currencies) CMD (commodities)
Market

Chicago Mercantile Exchange

E-mini Russell 2000 Index Futures,
E-Mini NASDAQ 100 Index Future,
E-Mini S&P’s MidCap 400 Index Future,
E-Mini S&P’s 500 Index Future

3 Month Eurodollar Future

Australian Dollar Currency Future,
Brazilian Real Currency Future,
Canadian Dollar Currency Future,
Swiss Franc Currency Future,
Euro Foreign Exchange Currency Future,
British Pound Currency Future,
Japanese Yen Currency Future,
Mexican Peso Currency Future,
New Zealand Dollar Currency Future,
South African Rand Currency Future

Feeder Cattle Future,
Live Cattle Future,
Lean Hogs Future

Chicago Board of Trade Mini Dow Jones Industrial
Average e-CBOT Future

10 Year US Treasury Note Future,
2 Year US Treasury Note Future,
5 Year US Treasury Note Future,
US Long Bond Future

Corn Future,
Hard Red Winter Wheat Future,
Soybean Meal Future,
Soybean Oil Future,
Soybean Future,
Wheat Future

New York Mercantile Exchange

Light Sweet Crude Oil Future,
NY Harbor ULSD Futures,
Henry Hub Natural Gas Futures,
Palladium Future,
Platinum Future,
Reformulated Gasoline Blendstock
for Oxygen Blending RBOB Futures,

Commodity Exchange, Inc.
Copper Future,
Gold 100 Troy Ounces Future,
Silver Future,

Eurex
DAX Index Future,
EURO STOXX 50 Future,
Swiss Market New Index Future

5 Year Euro BOBL Future,
10 Year Euro BUND Future,
30 Year Euro BUXL Future,
2 Year Euro SCHATZ Future

Euronext Derivatives Paris Amsterdam Index Future,
CAC 40 Index Future

Rapeseed Future,
Milling Wheat Future

ICE Futures FTSE 100 Index Future

3 Month Euro Euribor Future,
3 Month Euroswiss Future,
Long Gilt Future,
90 Day Sterling Future

Brent Crude Oil Future,
Canola Future,
Cocoa Future, Gas Oil Future,
Robusta Coffee Future 10-Tonne,
White Sugar Future,
Natural Gas Future, C Coffee Future,
Number 2 Cotton Future,
Number 11 World Sugar Future,
Frozen Concentrated
Orange Juice A Future,

London Metal Exchange

Aluminium,
Lead
Nickel,
Tin,
Zinc

Montreal Exchange S&P/TSX 60 Index Future 10 Year Canadian Bond Future,
3 Month Canadian Bank Acceptance Future

Meff Renta Variable (Madrid) Madrid IBEX 35 Index Future
Borsa Italiana (IDEM) FTSE/MIB Index Future
South African Futures Exchange FTSE/JSE Top 40 Index Future

Forward market

Czech Koruna,
Hungarian Forint,
Israeli New Shekel,
Norwegian Krone,
Poland Zloty,
Swedish Krona,
Singapore Dollar,
Turkish lira
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