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Abstract30

The global mean equilibrium warming is higher than expected from extrapolating transient31

time scales in our new collection of millennial long general circulation models. 27 simulations32

with 15 general circulation models from 10 modeling centers show a 5-53% (median 15%)33

larger equilibrium climate sensitivity (ECS) than estimated by the “Gregory” method. The34

spatial patterns of radiative feedbacks change continuously, becoming less stable in most35

regions. However, in the equatorial Pacific, initially positive feedbacks decrease, thus, be-36

come more stabilizing with equilibration time. The global feedback evolution is initially37

dominated by the tropics, but joined eventually by the Southern Hemisphere mid latitudes.38

Time-dependent feedbacks underscore the need to define a measure of climate sensitivity39

which ensures different models, observations, and paleo proxies are similarly equilibrated40

when compared to each other and combined to estimate future warming.41

1 Estimating equilibrium climate sensitivity42

The equilibrium climate sensitivity (ECS) is defined as the annual-mean, global-mean,43

surface air warming once radiative equilibrium is reached in response to doubling the atmo-44

spheric CO2 concentration above pre-industrial levels. It is by far the most commonly and45

continuously used concept to assess our understanding of the climate system expressed in46

climate models and it is used to compare models, observations, and paleo-proxies (Knutti47

et al., 2017; Charney, 1979). Due to the large heat capacity of the ocean, the climate48

system takes millennia to equilibrate to a forcing perturbation, but simulating such a long49

equilibration time with a climate model is computationally expensive. As a result, many50

modeling studies use extrapolation methods on short, typically 150-year long, simulations51

to project equilibrium conditions (Taylor et al., 2011; Andrews et al., 2012; Collins et al.,52

2013; Otto et al., 2013; Lewis & Curry, 2015; Andrews et al., 2015; Forster, 2016; Calel &53

Stainforth, 2017). These so-called effective climate sensitivities (Murphy, 1995; Gregory et54

al., 2004) are often reported as ECS values (Hargreaves & Annan, 2016; Tian, 2015; Brient &55

Schneider, 2016; Forster, 2016). Recent research provides evidence for decadal-to-centennial56

changes of feedbacks (Murphy, 1995; Senior & Mitchell, 2000; Gregory et al., 2004; Win-57

ton et al., 2010; Armour et al., 2013; Proistosescu & Huybers, 2017) but the behavior on58

longer timescales has not been compared among models. Here, we utilize LongRunMIP, a59

large set of millennia-long coupled general circulations models (GCMs) to estimate the true60
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Figure 1. Evolution of global and annual mean top of the atmosphere (TOA) imbalance and

surface temperature anomalies for simulations contributing to LongRunMIP (14 small panels). The

first 150 years of step forcing simulations are depicted in gray. For experiments which are not step

forcing simulations only the period after stabilizing CO2 concentrations is shown. The black line

shows the linear regression of TOA imbalance and surface warming for the last 15% of warming.

The panel on the lower right shows the ratio ∆ Tbest est/∆Teff 1−150, see text for definitions. A dot

at the lower end of the bar indicates that the 90% confidence intervals of ∆ Tbest est and ∆Teff 1−150

obtained by resampling 10’000 times do not overlap. The gray hashed bar in the background is the

median of all simulations. FAMOUS abrupt4x is outside of the depicted range at 1.53. SM Table 1

specifies the model versions and names, length of simulations, and numerical values for different

climate sensitivity estimates.

–3–



manuscript submitted to Geophysical Research Letters

equilibrium climate sensitivity, study the centennial-to-millennial behavior of the climate61

system under elevated radiative forcing, and test extrapolation methods. LongRunMIP is62

a model intercomparison project (MIP) that is opportunistic in that we collect millennial63

long simulations withouth a previously agreed upon protocol. The minimum contribution64

is a simulation of at least 1000 years with a constant CO2 forcing level. It consists mostly65

out of doubling or quadrupling step forcing simulations (“abrupt2x”, “abrupt4x”, ...) as66

well as increases in CO2 achieved through annual increments of 1% reaching doubled or67

quadrupled concentrations (“1pct2x”, “1pct4x”; Fig. 1). SM Table 1 lists the simulations68

and models used in this paper, Rugenstein et al. (subm.) documents the modeling effort69

and more contributions in detail.70

The equilibration of top of the atmosphere (TOA) radiative imbalance and surface tem-71

perature anomaly of the simulations are depicted in Fig. 1. Throughout the manuscript,72

we show anomalies as the difference to the mean of the unforced control simulation. Gray73

dots indicate annual means of the first 150 years of a step forcing simulation, requested by74

the protocol of CMIP5 (Eyring et al., 2016) and widely used to infer ECS (Andrews et al.,75

2012; Geoffroy, Saint-Martin, Olivié, et al., 2013). We refer to this time scale as “decadal76

to centennial”. Colors indicate the LongRunMIP gain, the “centennial to millennial” time77

scales we explore here. The distance to the reference line at TOA = 0 indicates that most78

simulations are close to equilibrium, however, even if a simulation equilibrated the TOA im-79

balance, the surface temperature, surface heat fluxes, or ocean temperatures can still show80

a trend (discussed in Rugenstein et al. (subm.)). We define the best estimate of equilibrium81

warming, ∆ Tbest est, as the temperature-axis intersect of the regression of annual means in82

TOA imbalance and surface temperature anomaly over the simulation’s final 15% of global83

mean warming (black lines in Fig. 1). We use “∆ T” instead of “ECS” to indicate that we84

study equilibration for a range of forcing levels, not abrupt2x only. Other simulations can85

be scaled to match the ECS definition (values given in SM Table 1). The lower right panel86

in Fig. 1 illustrates that all simulations eventually warm significantly more (measured by87

∆ Tbest est) then predicted by the most commonly used method to estimate the equilibrium88

temperature by extrapolating a least-square regression of the first 150 years (Gregory et al.,89

2004; Flato et al., 2013), denoted here “∆ Teff 1−150”. While this method implies a con-90

stant feedback parameter – the slope of the regression line – other extrapolation methods91

allow for a time dependent feedback parameter, but usually fail to predict ∆ Tbest est by92

estimating too low values (up to 28%) and for some models too high values (up to 16%).93
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Linearly regressing year 20-150 results in a too low model median ECS of 7%, while the two94

layer energy balance model including ocean heat uptake efficacy results in a too low model95

median ECS of 9% (see discussion around SM Fig. 1 and SM Table 1 for a description of96

the extrapolation methods). The results are qualitatively the same if ∆ Tbest est is defined97

by regressing regressions over the last 20 instead of 15% of warming or without using TOA98

imbalance information but instead time averaging the surface warming toward the end of99

every simulation.100

2 Global feedback evolution101

Current extrapolation methods underestimate the equilibrium response because climate102

feedbacks change with the degree of equilibration (Murphy, 1995; Senior & Mitchell, 2000;103

Andrews et al., 2015; Knutti & Rugenstein, 2015; Rugenstein, Caldeira, & Knutti, 2016;104

Armour, 2017; Proistosescu & Huybers, 2017; Paynter et al., 2018). We define the global105

net TOA feedback as the local tangent in temperature-TOA space (dTOA/dT) computed106

by a least square regression of all global and annual means of netTOA imbalance and surface107

temperature anomaly within a temperature bin, which is moved in steps of 0.1 K throughout108

the temperature space to obtain the continuous local slope of the point cloud (sketched out in109

SM Fig. 2a and described in Rugenstein, Gregory, et al. (2016)). We decompose the net TOA110

imbalance into its clear sky and cloud radiative effects (CRE; Soden and Held (2006); Ceppi111

and Gregory (2017)) in the shortwave and longwave (Fig. 2 a). The feedbacks do not change112

on obviously separable time scales, but continuously – in some models more at the beginning113

of the simulations (Fig. 2 a1), in some models after 150 years (Fig. 2 a3) or, in some models,114

intermittently throughout the simulation (Fig. 2 a2, a4). The shortwave CRE dominates115

the magnitude and the timing of the net feedback change, and can be counteracted by the116

longwave CRE (Fig. 2a1, a2). The reduction of the shortwave clear sky feedback associated117

with ice albedo, lapse rate, and water vapor is a function of temperature and occurs on118

centennial to millennial time scales. Longwave clear sky changes, when present, contribute119

to a small increase of the sensitivity with equilibration time and temperature. The net120

feedback parameter can be composed of a subtle balance of different components at any121

time (Fig. 2a2, a4) and the forced signal is not obviously linked to the feedback arising from122

internal variability (circles in Fig. 2a), defined by regressing all available annual and global123

means of TOA imbalance and surface temperature anomalies (relative to the mean) of the124

control simulations.125
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Figure 2. Time evolution of global feedbacks (a) Continuous feedback evolution for four char-

acteristic models. Net TOA feedback (gray) is the sum of its components: the cloud effects in

the shortwave (red) and longwave (blue), and clear sky feedbacks in the shortwave (salmon) and

longwave (light blue). Circles at the right of each panel indicate the feedbacks arising from internal

variability; shading and vertical lines shows the 2.5-97.5% confidence intervals. Panel titles give

the model name and length of the simulation. Time periods of 1-20 years and 150-1000 years are

shaded gray. (b) Feedback evolution in all available simulations of all models for three time periods.

Dots represent median values, bars spans all but the two highest and lowest simulations, and the

line spans all simulations. SM Fig. 4 and 5 show panel a and b for all simulations.
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Models which are more sensitive at the beginning of the simulation are generally also126

more sensitive towards the end of the equilibration, however, the feedback factor can chance127

little or up to an order of magnitude. We can quantify the continuous changes across128

models by considering different time periods, e.g., years 1-20, 21-150, and 151-1000 (Fig. 2b),129

for which we regress all points within these time periods. In addition to the increase of130

the feedback parameter between year 1-20 and 21-150, which is documented for CMIP5131

models (Geoffroy, Saint-Martin, Bellon, et al., 2013; Andrews et al., 2015; Proistosescu132

& Huybers, 2017; Ceppi & Gregory, 2017), there is a further increase on centennial to133

millennial timescales. The model spread is large and does not substantially reduce in time.134

Previous research has shown that the change in feedbacks over time can come about135

through a dependence of feedback processes on the increasing temperature (Hansen et al.,136

1984; Jonko et al., 2013; Caballero & Huber, 2013; Meraner et al., 2013; Bloch-Johnson et al.,137

2015), due to evolving surface warming patterns and feedback processes (Senior & Mitchell,138

2000; Winton et al., 2010; Armour et al., 2013; Rugenstein, Gregory, et al., 2016; Gregory139

& Andrews, 2016; Paynter et al., 2018), or both. Though we will focus in the following140

on robust pattern changes in surface temperatures and feedbacks, which occur in most or141

all simulations irrespective of their overall temperature anomaly, we analyze temperature142

dependence for the six models which contributed more than one forcing level. ∆Tbest est143

calculated from the abrupt4x forcing is somewhat larger than from the abrupt2x forcing (SM144

Table 1; Jonko et al. (2013); Block and Mauritsen (2013); Gregory et al. (2015); Good et al.145

(2015)), however the relation between the forcing levels also changes with equilibration time146

in most models (not shown). This means the relation between ECS estimates calculated from147

abrupt2x and abrupt4x simulations depends on the method and definition of the sensitivity148

measure.149

3 Pattern evolution of surface warming and feedbacks150

The evolution of surface warming patterns during the three time periods discussed above151

displays a fast establishment of a land-sea warming contrast, Arctic amplification, and the152

delayed warming over the Southern Ocean that have been studied on decadal to centennial153

time scales (Fig. 3; Senior and Mitchell (2000); Li et al. (2013); Collins et al. (2013); Armour154

et al. (2016)). Arctic amplification does not change substantially, whereas Antarctic ampli-155

fication strengthens approximately 50% on centennial to millennial timescales (Salzmann,156

2017; Rugenstein et al., subm.). The warming in the North Atlantic reflects the initial157
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Figure 3. Model-mean normalized patterns of surface warming (local warming divided by

global warming) between the average of (a) the control simulation and year 15-25, (b) year 15-

25 and 140-160, (c) year 140-160 and 900-1000, and their differences (d and e). Only the models

CCSM3, CESM104, CNRMCM6, ECHAM5MPIOM, FAMOUS, GISSE2R, HadCM3L, HadGEM2,

IPSLCM5A, MPIESM11, and MPIESM12 are used with their step forcing simulations. For models

contributing several simulations, these are averaged. Stippling in panel d and e indicates that 9 out

of 11 models agree in sign.

58%

18%

23%

10%

-9%

47%

22%

42%

-6%

-5%

Figure 4. Time evolution of feedback patterns. Model-mean of local contribution to the change

in global feedbacks (local TOA anomaly divided by global warming during the period indicated in

the panel titles; see text for definitions) (a–c) and their differences (d, e). The global feedback value

is shown in the panel title. Regionally aggregated contributions to the global values are indicated

with gray triangles (22◦S-22◦N, 22◦S/N-66◦S/N, 66◦S/N-90◦S/N, representing 40%, 27%, and 4%

of the global surface area respectively) and percent numbers. Model selection, weighting, and

stippling is the same as in Fig. 3. SM Fig. 6–12 shows all TOA components.
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decline and subsequent strengthening of the Atlantic Meridional Overturning Circulation158

(Stouffer & Manabe, 2003; Li et al., 2013; Rind et al., 2018; Jansen et al., 2018). In the159

Pacific, at all times, the warm pool temperatures stay warmer than the East Pacific in160

absolute terms in all but two models (not shown). The equatorial east Pacific warms more161

than the warm pool in all but three simulations, a phenomenon reminiscent of the positive162

phase of the El-Niño-Southern-Oscillation (ENSO) or the Interdecadal Pacific Oscillation163

(IPO) (“ENSO-like warming” (Song & Zhang, 2014; Andrews et al., 2015; Luo et al., 2017)).164

Through time, this tendency first increases (Fig. 3d) but then stays constant or reverses sign165

(Fig. 3e), meaning that the East and West equatorial Pacific warm at the same rate or not166

at all. Robustly, across all simulations, the difference between the South East Pacific and167

warm pool temperatures increase, with the warm pool initially warming more, but later less168

than the South East Pacific, with the inflection point occurring as early as the first decade169

and as later as 3000 years. While the reduction of the walker circulation coincides with170

the decadal to centennial ENSO-like warming pattern, it does not correspond to changes171

on the centennial to millennial time scales, indicating that subtropical gyre advection and172

upwelling play a more prominent role on the longer time scales (Knutson & Manabe, 1995;173

Song & Zhang, 2014; Andrews & Webb, 2018; Luo et al., 2017; Zhou et al., 2017).174

Feedbacks defined as the local tangent in temperature-TOA space as used in Fig. 2175

contain a signal from both the internal variability and the forced response. In order to isolate176

the forced response, we take the difference of the means at the beginning and end of the time177

periods discussed above. We call this definition of feedbacks finite difference approach, as178

it represents a change across a time period; SM Fig. 2b. Fig. 4 shows the local contribution179

to the global net TOA changes for the same time periods and models as used in Fig. 3. In180

the initial years, the atmosphere restores radiative balance through increased radiation to181

space almost everywhere, except in the western-central Pacific (Fig. 4a), whereas on decadal182

to centennial time scales, the structure of the feedbacks mirrors the surface temperature183

evolution and develops a pattern reminiscent of ENSO/IPO (Fig. 4b). The cloud response184

dominates this pattern SM Fig. 6-8, which is attributed for CMIP5 models to the lapse rate185

and cloud feedbacks (Andrews et al., 2015; Andrews & Webb, 2018; Ceppi & Gregory, 2017).186

For the millennial time scales, our models show that feedbacks become less negative almost187

everywhere, switching from slightly negative to positive in parts of the Southern Ocean188

and North Atlantic region, and become less destabilizing in the Tropical Pacific (Fig. 4c).189

Unexpectedly, the feedback pattern change from decadal to centennial time scales (Fig. 4d)190
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is reversed in many regions on the centennial to millennial time scales (Fig. 4e), namely in191

the entire Pacific basin, the Atlantic, and parts of Asia and North America. This “pattern192

flip” is dominated by longwave CRE (SM Fig. 8) and mirrors the reduction in ENSO/IPO-193

like surface warming patterns discussed for the surface temperature evolution. Although the194

spatial patterns of changing temperature and radiative feedbacks vary a lot among models,195

the large scale features discussed here occur robustly across most models and forcing levels,196

and also occur in the ramp simulations.197

4 Regional accounting for changing global feedbacks198

We quantify the contribution of different regions to the global feedback change (%199

numbers in Fig. 4d,e). Whereas the tropics account for the bulk of the change (58% on200

decadal to centennial and 47% on centennial to millennial time scales), the mid-latitudes201

become more important with time (Northern and Souther Hemisphere combined 41% on202

decadal to centennial and 66% on centennial to millennial time scales). The high latitudes,203

dominated by the shortwave clear sky feedback (SM Fig. 12), play only a minor role in204

influencing the global response at all timescales. This regional accounting of global feedbacks205

permits us to test competing explanations regarding the spatial feedback pattern by placing206

them in a common temporal framework (Senior & Mitchell, 2000; Li et al., 2013; Jonko et207

al., 2013; Caballero & Huber, 2013; Paynter et al., 2018). The Southern Hemispheric mid to208

high latitudes (Senior & Mitchell, 2000), the Northern Hemispheric subpolar regions (Rose209

& Rayborn, 2016; Trossman et al., 2016), and the Tropics (Jonko et al., 2013; Meraner210

et al., 2013; Block & Mauritsen, 2013; Andrews et al., 2015), especially in the Pacific211

(Andrews & Webb, 2018; Ceppi & Gregory, 2017) have all been suggested to be the primary212

region controlling the global feedback evolution. Our models show a delayed Southern213

relative to Northern Hemispheric warming throughout the millennia-long simulations, which214

correlates with the time evolution of net TOA and shortwave CRE (not shown), confirming215

the hypothesis of Senior and Mitchell (2000). The subtropical cloud response in the model-216

mean is non-negligible in the Southern Ocean and North Atlantic on decadal to centennial217

time scales as proposed by Rose et al. 2016 and Trossman et al. 2016; however, it comes to218

dominate the global response only on centennial to millennial time scales. We find that the219

longwave clear sky feedback does moderately increase in many models as the temperature220

or the forcing level increases, mainly in the tropics and Northern Hemispheric mid-latitudes221

(Fig. 2a and SM Fig. 3 and 4). This is in accordance with the proposed argument that the222
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tropics govern the global feedback evolution because the water vapor feedback increases with223

warming (Jonko et al., 2013; Meraner et al., 2013; Block & Mauritsen, 2013; Andrews et224

al., 2015), following the rising tropical tropopause (Meraner et al., 2013). The importance225

of the Pacific response and the regions of short and longwave cloud response (SM Fig. 6–226

8) in our models qualitatively agree with the proposed change of tropospheric stability227

patterns on decadal to centennial time scales (Andrews & Webb, 2018; Ceppi & Gregory,228

2017). However, on centennial to millennial time scales, the Pacific response becomes less229

important compared to the mid-latitudes and the net tropical CRE becomes negligible (SM230

Fig. 6).231

5 Implications232

We demonstrate that, though the feedback response in the first century is dominated233

by the tropics, the mid-latitudes come to lead the global feedback response in subsequent234

centuries. We stress that the global net feedback change is a result of a subtle balance of235

a) different regions and b) different TOA components at all times (even more so in single236

simulations than in than in the model mean shown here (Rugenstein, Caldeira, & Knutti,237

2016; Paynter et al., 2018; Andrews & Webb, 2018)). This underscores the necessity of238

process-based feedback studies in individual models as well as multi-model ensembles to239

draw robust conclusions. It may be difficult to compare the observed regional responses240

and time scales with GCM behavior (Ceppi & Gregory, 2017); however, the similarity of241

unforced (SM Fig. 3) and forced (Fig. 4d) feedbacks in the tropics indicates that it may be242

possible to connect feedbacks in the near future and feedbacks inferred from the satellite243

record. Ways forward to relate the model’s forced response to the observational record244

include (1) increasing our theoretical understanding of formation of surface temperature245

patterns, the interaction of tropospheric stability, clouds, and surface temperature, (2) in-246

creasing our understanding of model biases, especially the ocean-atmosphere interactions,247

and (3) studying how observed historical trends and paleoclimate data constrain the various248

climate and Earth system sensitivities discussed here.249

Our results show that sensitivity tends to increase over millennia on the approach to250

equilibrium. ECS has been historically used as a model benchmark (Charney, 1979), but251

give the strong time dependence of radiative feedbacks, one might argue that the transient252

climate response (TCR) or the effective climate sensitivity (here called ∆Teff 1−150) might253

be better measures to characterize e.g., the next few decades to centuries (Knutti et al.,254
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2017). However, next to being not an accurate indicator of the equilibrium response, these255

alternative climate sensitivity measures capture the models in different degrees of equili-256

bration (Fig. 1). Part of the spread in these sensitivities among models might be due to257

different degrees of equilibration (different SST patterns) and not per se different feedback258

magnitudes. These climate sensitivity measures also capture different degrees of internal259

variability for each model (Fig. 2 and SM Fig. 2). It has been recently shown that ECS260

correlates higher than TCR with the end-of-21st-century warming across models (Gregory261

et al., 2015; Grose et al., 2018) and it is an open question how TCR, ECS, and the effective262

climate sensitivity relate to each other (Fig. 1 and SM Fig. 1; see also e.g., Knutti et al.263

(2015) or Millar et al. (2015)). ECS estimates based on paleo-proxies usually assume equi-264

librated “fast” feedbacks, which we show are changing on millennial time scales. Thus, we265

underscore the need of defining a new, clear, measure of climate sensitivity, which ensures266

different models, observations, and paleo proxies are in the same state when compared to267

each other or combined in calculations to estimate future warming.268
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tiannual Ocean–Atmosphere Adjustments to Radiative Forcing. Journal of Climate,447

29 (15), 5643-5659. Retrieved from http://dx.doi.org/10.1175/JCLI-D-16-0312448

.1449

Salzmann, M. (2017). The polar amplification asymmetry: role of Antarctic surface height.450

–17–



manuscript submitted to Geophysical Research Letters

Earth System Dynamics, 8 (2), 323–336. Retrieved from https://www.earth-syst451

-dynam.net/8/323/2017/ doi: 10.5194/esd-8-323-2017452

Senior, C. A., & Mitchell, J. F. B. (2000). The time-dependence of climate sensitivity.453

Geophysical Research Letters, 27 (17), 2685–2688. Retrieved from http://dx.doi454

.org/10.1029/2000GL011373455

Soden, B. J., & Held, I. M. (2006). An Assessment of Climate Feedbacks in Coupled456

Ocean-Atmosphere Models. Journal of Climate, 19 (14), 3354-3360. Retrieved from457

http://dx.doi.org/10.1175/JCLI3799.1458

Song, X., & Zhang, G. J. (2014, 2014/07/26). Role of Climate Feedback in El Nino-like459

SST Response to Global Warming. Journal of Climate. Retrieved from http://460

dx.doi.org/10.1175/JCLI-D-14-00072.1 doi: 10.1175/JCLI-D-14-00072.1461

Stouffer, R., & Manabe, S. (2003). Equilibrium response of thermohaline circulation to462

large changes in atmospheric CO2 concentration. Climate Dynamics, 20 (7-8), 759-463

773. Retrieved from http://dx.doi.org/10.1007/s00382-002-0302-4464

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011, 2013/11/05). An Overview of CMIP5465

and the Experiment Design. Bulletin of the American Meteorological Society , 93 (4),466

485–498. Retrieved from http://dx.doi.org/10.1175/BAMS-D-11-00094.1 doi:467

10.1175/BAMS-D-11-00094.1468

Tian, B. (2015). Spread of model climate sensitivity linked to double-intertropical conver-469

gence zone bias. Geophysical Research Letters, 42 (10), 4133–4141. Retrieved from470

http://dx.doi.org/10.1002/2015GL064119 doi: 10.1002/2015GL064119471

Trossman, D. S., Palter, J. B., Merlis, T. M., Huang, Y., & Xia, Y. (2016). Large-scale ocean472

circulation-cloud interactions reduce the pace of transient climate change. Geophysical473

Research Letters, 43 (8), 3935–3943. Retrieved from http://dx.doi.org/10.1002/474

2016GL067931475

Winton, M., Takahashi, K., & Held, I. M. (2010). Importance of Ocean Heat Uptake Efficacy476

to Transient Climate Change. Journal of Climate, 23 (9), 2333-2344. Retrieved from477

http://dx.doi.org/10.1175/2009JCLI3139.1 doi: 10.1175/2009JCLI3139.1478

Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global479

cloud feedback on the spatial pattern of sea surface temperature change with a green’s480

function approach. Journal of Advances in Modeling Earth Systems, 9 (5), 2174–481

2189. Retrieved from http://dx.doi.org/10.1002/2017MS001096 doi: 10.1002/482

2017MS001096483

–18–


