
HAL Id: hal-02567414
https://hal.science/hal-02567414

Submitted on 15 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulations of unsteady viscous
incompressible flows using general pressure equation

Adrien Toutant

To cite this version:
Adrien Toutant. Numerical simulations of unsteady viscous incompressible flows using general pressure
equation. Journal of Computational Physics, 2018, 374, pp.822-842. �10.1016/j.jcp.2018.07.058�. �hal-
02567414�

https://hal.science/hal-02567414
https://hal.archives-ouvertes.fr


Numerical simulations of unsteady viscous
incompressible flows using general pressure equation

Adrien Toutant

University of Perpignan
PROMES-CNRS (UPR 8521)

Tecnosud, Rambla de la Thermodynamique
66100 Perpignan, France

Abstract

In fluid dynamics, an important problem is linked to the knowledge of the
fluid pressure. Recently, another approach to study incompressible fluid flow
was suggested. It consists in using a general pressure equation (GPE) derived
from compressible Navier-Stokes equation. In this paper, GPE is considered
and compared with the Chorin’s artificial compressibility method (ACM) and
the Entropically damped artificial compressibility (EDAC) method. The three
methods are discretized in a staggered grid system with second order centered
schemes in space and a third order Runge-Kutta scheme in time. Three test
cases are realized: two-dimensional Taylor-Green vortex flow, the traveling wave
and the doubly periodic shear layers. It is demonstrated that GPE is accurate
and efficient to capture the correct behavior for unsteady incompressible flows.
The numerical results obtained by GPE are in excellent agreement with those
obtained by ACM, EDAC and a classical finite volume method with a Poisson
equation. Furthermore, GPE convergence is better than ACM convergence. The
proposed general pressure equation (GPE) allows to solve general, time-accurate
, incompressible Navier-Stokes flows. Finally, the parametric study realized in
terms of Mach and Prandtl numbers shows that the velocity divergence can be
limited by an arbitrary maximum and that acoustic waves can be damped.

1. Introduction

Incompressible Navier-Stokes (INS) equations correspond to a mixture of
hyperbolic and elliptic partial differential equations [1]. The pressure in (2) is
not an independent thermodynamic variable. It can be seen as a Lagrangian
multiplier of the incompressibility constraint. It is determined by the Laplace
or Poisson equation:

∂α∂αP = −(∂βuα)(∂αuβ) (1)
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The physical meaning of (1) is that in a system with infinitely fast sound prop-
agation, any pressure disturbance induced by the flow is instantaneously prop-
agated into the whole domain. The absence of time evolution equation for
pressure is a well known difficulty. Indeed, solving the Poisson equation is often
the most costly step in simulation. This difficulty has motivated the search
of alternative numerical approaches to determine pressure without solving the
Poisson equation. Six different ways have been found:

1. The so-called artificial compressibility method (ACM) where a pressure
evolution equation is postulated [2]. Many modifications of the Chorin
method were suggested in order to compute accurate solutions. For ex-
ample, Ohwada and Asinari [3] proposed to introduce a dissipation term in
order to improve the quality of numerical solution obtained with artificial
compressibility method. The addition of the dissipation term of the arti-
ficial continuity equation is useful for surpressing checkerboard instability
when a collocated grid system is employed. This revisited ACM is noted
SCI for surpressing checkerboard instability. In this paper, a staggered
grid system is used. It is shown by numerical results that checkerboard
instability is avoided thanks to the staggered grid system and without a
dissipation term. The dissipation term proposed in this paper allows to
obtain the exact pressure evolution in the case of Taylor-Green vortices
and to damp accoustic waves.

2. The Lattice Boltzmann method (LBM) which uses a velocity-space trun-
cation of the Boltzmann equation from the kinetic theory of gases [4].
LBM and ACM have similarities [5]. A hybrid method between ACM and
LBM has been proposed [6].

3. An inverse kinetic theory which permits the identification of the (Navier-
Stokes) dynamical system and of the corresponding evolution operator
which advances in time the kinetic distribution function and the related
fluid fields [7]. The pressure evolution equation obtained by this method
is non-asymptotic. The full validity of INS equations is preserved.

4. The kinetically reduced local Navier-Stokes (KRLNS) wich establishes a
simplified equation for the grand potential [8].

5. The entropically damped form of artificial compressibility (EDAC) wich
employs a thermodynamic constraint to damp pressure oscillations [9].

6. The general pressure equation (GPE) wich derives the exact pressure evo-
lution from compressible Navier-Stokes equation [10]. GPE can be seen
as a physical justification of ACM. GPE contains an additional dissipa-
tion term. KRLNS and EDAC contain exactly the same diffusion term.
For KRLNS, the diffusion term is applied to grand potential instead of
pressure. In fact, the KRLNS is exactly the same as GPE if one replaces
the negative of the grand potential by pressure. The difference between
EDAC and GPE comes from pressure advection. In SCI, the dissipation
term is chosen proportional to pressure and not proportional to the Lapla-
cian of pressure. Similarities and differences between GPE, ACM, EDAC,
KRLNS and SCI are detailled in section 2.
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KRLNS [11, 12, 13, 14] and EDAC [9] have been applied for the simulation
of different viscous incompressible flows: three-dimensional Taylor-Green vortex
flow, steady-state cavity flow, two-dimensional Taylor-Green vortex flow and
doubly periodic shear layers. This paper realizes a similar work with the GPE
approach. It proposes a discretization of GPE in a staggered grid system with
second order centered schemes in space and a third order Runge-Kutta scheme in
time. In this paper, GPE [10] is applied for the simulation of different unsteady
viscous incompressible flows: two-dimensional Taylor-Green vortex flow, the
traveling wave and the doubly periodic shear layers. The results obtained with
GPE are compared with those obtained by ACM, EDAC and a classical finite
volume method with a Poisson equation. They show that the proposed general
pressure equation (GPE) allows to solve general, time-accurate, incompressible
Navier-Stokes flows.

The outline of the paper is as follows. The computational approach is de-
scribed in section 2. Sections 3 presents the results obtained for unsteady analyt-
ical solutions of viscous incompressible flows: the two-dimensional Taylor-Green
vortex flow and the traveling wave. The more complex case of doubly periodic
shear layers is studied in section 4.

2. Computational approach

The classical incompressible Navier-Stokes (INS) equations consist of the
equation for the momentum and the continuity equation:

∂tuα + ∂β(uβuα) + ∂αP =
1

Re
∂β∂βuα ∂βuβ = 0 (2)

With the general pressure equation (GPE), the continuity equation is replaced
by:

∂tP +
1

Ma2
∂βuβ =

γ

RePr
∂β∂βP (3)

With artificial compressibility methods (ACM), the previous equation is ap-
proximated by:

∂tP +
1

Ma2
∂βuβ = 0 (4)

With SCI, a dissipation term is added to the equation of ACM

∂tP + γP +
1

Ma2
∂βuβ = 0 (5)

where γ is a positive function of space and time [3]. It is worth noting that
Ohwada and Asinari choose a discretization that introduces an other dissipation
term than γP . This other dissipation term is proportional to the pressure
Laplacian. However, it cannot be compared with the pressure Laplacian used
in GPE, EDAC or KRLNS. Indeed, in SCI, the pressure Laplacian is multiplied
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by the cell size: its contribution is negligible when grid independence is reached.
With EDAC, pressure equation is written:

∂tP + uβ∂βP +
1

Ma2
∂βuβ =

γ

RePr
∂β∂βP (6)

The KRLNS method is based on a subtitution,

G = P − Ek (7)

where G is stated to be the negative of the grand potential and Ek is the kinetic
energy. The time-evolution of G is given by:

∂tG +
1

Ma2
∂βuβ =

γ

RePr
∂β∂βG (8)

ACM (eq. (4)) corresponds to the limit of GPE (eq. (3)) with Pr = +∞.
The diffusive term in GPE, KRLNS and EDAC can be surprising. GPE is
derived from a rigorous asymptotic analysis of the compressible Navier-Stokes
equations. The diffusive term in GPE comes from the conductive heat transfer
of the enthalpy equation. Indeed, the enthalpy equation is written in terms of
pressure. The conductive heat transfer is written in terms of pressure using the
following equation:

∂β∂βT =

(
∂2T

∂P 2

)
ρ

(∂βP )(∂βP ) +

(
∂2T

∂ρ2

)
P

(∂βρ)(∂βρ) +(
∂T

∂P

)
ρ

∂β∂βP +

(
∂T

∂ρ

)
P

∂β∂βρ (9)

For sufficiently large time-space scales (see the discussion in [8]), one can ne-
glect density variation (ρ, χT and α are supposed constant and evaluated at
equilibrium) and temperature variation (around a globally uniform equilibrium
temperature) becomes a function of pressure:

∂β∂βT ≈
(
∂T

∂P

)
ρ

∂β∂βP =
χT
αρ
∂β∂βP (10)

where χT is the isothermal compressibility coefficient χT = 1
ρ

(
∂ρ
∂P

)
T

and where

αρ is the isobaric thermal expansion coefficient αρ = − 1
ρ

(
∂ρ
∂T

)
P

. For more de-

tails on the establishment of GPE equation, the reader will refer to [10]. The
diffusive term of GPE is the difference from artificial compressibility models.
The difference between GPE and EDAC resides essentially in the advective
term of pressure that is neglected in GPE and not in EDAC. As it is shown by
the numerical results (see section 3), the pressure advection of EDAC conducts
to errors for pressure estimation (compared to pressure obtained with INS).
However, the pressure advection term is usually neglected in EDAC. In this
case, there is therefore no difference between EDAC and GPE. Furthermore, it
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is worth noting that these errors will disappear with the physical Mach number
that is supposed to be very small. However, in these methods, the Mach number
becomes an artificial parameter, which may be larger than the physical Mach
number. The other difference between GPE and EDAC comes from the physical
interpretation of the diffusive term. For GPE, the diffusive term is physical, it
comes from the conductive heat transfer of the enthalpy equation. For EDAC,
the diffusive term is an artificially way to minimize density fluctuations. In
GPE, the Prandtl number like the Mach number can become an artificial pa-
rameter, which may be smaller than the physical Prandtl number. As it is
shown by the numerical results (see section 4), a small Prandtl number allows
to damp acoustic waves. KRLNS is exactly the same as GPE if one replaces the
negative of the grand potential by pressure. In order to clarify the differences
between SCI, EDAC, KRLNS and GPE, one can subtract the different pressure
equations. One obtains:

GPE − SCI =
1

RePr
∂β∂βP + γP (11a)

GPE −KRLNS = −uβ∂βP +

∂β(uβEk) +
1

Re
∂βuα∂βuα (11b)

GPE − EDAC = −uβ∂βP (11c)

It is shown in [9] that

• the convection of kinetic energy ∂β(uβEk) is likely negligible based on the
difference in acoustic and convective speeds.

• the kinetic energy dissipation 1
Re∂βuα∂βuα is important in obtaining a

qualitatively correct pressure evolution.

The present numerical results show that pressure advection in EDAC conducts
to errors in pressure evolution. However, the pressure advection term is usually
neglected in EDAC. Concerning the Prandtl number, simulations realized with
EDAC and KRLNS generally assume Pr = γ. In this paper, the effect of the
ratio Pr

γ is studied. Because the Prandtl number and the heat capacity ratio

only appear in the coefficient of pressure diffusion γ
RePr , it is useless to study

separately their effect. Consequently, it is assumed without loss of generality
that γ = 1 and the effect of the Prandtl number is studied. It is shown that
small Prandtl number in GPE allows accoustic wave damping.

The equation for the momentum, GPE, ACM and EDAC are discretized
with the same scheme without subiteration. The temporal integration is per-
formed using the case 7 of the third order low storage Runge-Kutta schemes
proposed by Williamson [15]. Due to acoustic, the time scale of INS is related
to that of GPE, ACM, EDAC and KRLNS equations; tGPE = tACM = tEDAC =
tKRLNS = Ma tINS [11]. This means that the time step used in GPE, ACM,
EDAC and KRLNS is Ma times smaller than that of INS. This justifies the
use of a third Runge-Kutta scheme instead of a fourth Runge-Kutta scheme
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like in the work of Hashimoto et al. [13, 14]. It is worth noting that very low
Mach numbers do not imply accuracy problems. They allow very small velocity
divergence but they imply very small time-step. One objective of the paper
consists in realizing a parametric study on the Mach number to estimate how
big the Mach number can be in order to increase the time-step without modify-
ing the results (see section 4.3). Concerning the spatial discretization, we will
restrict ourselves to two spatial dimensions to limit the length of the presenta-
tion; the extension to 3D is straightforward. The chosen spatial discretization
corresponds to a staggered uniform grid system. The velocity components are
distributed around the pressure points. The continuity is centered at pressure
points. The momentum equation corresponding to each velocity component is
centered at the respective velocity point. Staggered grid compared to collocated
grid has the advantage that pressure gradient is naturally calculated at velocity
points and velocity divergence at pressure points. Furthermore, it allows an eas-
ier comparison of the results with INS softwares that use mainly staggered grid
system. Finally, staggered grid are generally better for avoiding checkerboard
instability. The proposed discretization allows simulations with classical ACM.
As it is shown in section 4.2, classical ACM is the most interesting for compu-
tational cost because only velocity divergence has to be calculated. The setting
is illustrated in fig. 1. All used schemes are second order centered schemes:

(∇ · U)ij ≡ ui+1j − uij
∆x

+
vij+1 − vij

∆y
(12a)

(∇ · (uU))ij ≡ 0.25

(
(ui+1j + uij)

2 − (ui−1j + uij)
2

∆x
+ (12b)

(uij+1 + uij)(vi−1j+1 + vij+1)− (uij−1 + uij)(vi−1j + vij)

∆y

)
(∂xP )ij ≡ Pij − Pi−1j

∆x
(12c)

(U · ∇P )ij ≡ 0.5

(
ui+1j

Pi+1j − Pij
∆x

+ uij
Pij − Pi−1j

∆x
+ (12d)

vij+1
Pij+1 − Pij

∆y
+ vij

Pij − Pij−1
∆y

)
(∆u)ij ≡ ui+1j − 2uij + ui−1j

∆2
x

+
uij+1 − 2uij + uij−1

∆2
y

(12e)

The convective term (∇ · (uU))ij is discretized with the standard divergence
form in a staggered grid system [16]. It is conservative a priori for momentum
equation and it is conservative for kinetic energy if (∇·U)ij = 0 [17]. Like LBM,
the proposed discretization is local: the pressure and the velocity in one specified
grid point only depends of its immediate neighbors of the previous time step. It
will greatly facilitate the parallelization of the method and it is anticipated that
this method will be very efficient for massively parallel simulation. In particular,
using graphics processing unit (GPU) is useful. Hashimoto et al [13, 14] realized
parallel computations of KRLNS on GPU by using the CUDA library provided
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by the NVIDIA. They found that the computational time of KRLNS approach
using 4th order approximations is 2.7 times faster than that of pseudo spectral
method. The speedup of parallel computation is at least 5. Because KRLNS
and GPE use the same equation (KRLNS for grand potential and GPE for
pressure), the GPE gain of computational time due to parallel computation on
GPU is expected to be the same than for KRLNS.

  

Figure 1: Staggered grid system

3. Unsteady analytical solutions of the Navier-Stokes equation

The analytical solutions of the Navier-Stokes equation simulated in this sec-
tion are the two-dimensional Taylor-Green vortices and the two-dimensional
traveling wave problem. They correspond to unsteady viscous incompressible
flows. For GPE and ACM, they are solved using a 2nx2n computational grid for
n = 4, 5, 6 and 7. The Reynolds, Prandtl and Mach numbers for each run are
respectively Re = 100, Pr = 1 and Ma = 0.02 (note that the Prandtl number
is not a parameter for ACM). The time step for each run is ∆t = 10−4.

3.1. Decaying vortices

The flow considered in this section corresponds to two-dimensional Taylor-
Green vortices [18] in a doubly-periodic unit square:

u(x, y, t) = cos(2πx)sin(2πy)e−
8π2

Re t (13a)

v(x, y, t) = −sin(2πx)cos(2πy)e−
8π2

Re t (13b)

p(x, y, t) = −1

4
(cos(4πx) + cos(4πy))e−

16π2

Re t (13c)
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It is worth noting that the previous velocity and pressure fields are exact solu-
tions of INS eq. (2) and GPE eq. (3) with Pr = 1. They are not solution of
ACM eq. (4) or KRLNS or EDAC. Indeed, one gets [19]:

∂β(uβuα) + ∂αP = 0 (14a)

∂tuα =
1

Re
∂β∂βuα (14b)

∂αuα = 0 (14c)

∂tP =
1

RePr
∂α∂αP. (14d)

For each case, the L2 norms of the error in the u-component of the velocity
and in the pressure were computed at time t = 0.1 (for symmetry reasons,
the v-component of the velocity has exactly the same norm of error than the
u-component). The results are shown in fig. 2. The convergence rates quoted
in the caption of the figure are computed by taking the logarithm to base 2 of
the error ratio from 64x64 and 128x128 computations. Because Taylor-Green
vortices are exact solution of GPE eq. (3) but are not solution of ACM eq. (4)
and EDAC eq. (6), the convergence rates of GPE are better than those of ACM
and EDAC. The convergence rate of GPE for the velocity is exactly equal to 2
(the order of the spatial schemes). For the 128x128 mesh, the L2 norm of GPE
error is smaller than for ACM and EDAC.

3.2. Traveling wave solution of the Navier-Stokes equations

The flow considered in this section corresponds to the traveling wave solution
of the Navier-Stokes equations in a doubly-periodic unit square:

u(x, y, t) =
1

3
+

2

3
cos(2π(x− t))sin(2π(y − t))e− 8π2

Re t (15a)

v(x, y, t) =
1

3
− 2

3
sin(2π(x− t))cos(2π(y − t))e− 8π2

Re t (15b)

p(x, y, t) = −1

9
(cos(4π(x− t)) + cos(4π(y − t)))e− 16π2

Re t (15c)

It is worth noting that the previous velocity and pressure fields are exact solution
of INS eq. (2). They are not solution of GPE eq. (3) or ACM eq. (4) or EDAC
eq. (6). For each case, the L2 norms of the error in the u-component of the
velocity and in the pressure were computed at time t = 0.7. The results are
shown in fig. 3. The convergence rates quoted in the caption of the figure are
computed by taking the logarithm to base 2 of the error ratio from 64x64 and
128x128 computations. As for the Taylor-Green vortices, GPE L2 norm of error
is smaller than for ACM and EDAC.
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Figure 2: Convergence results for the Taylor-Green vortices. The computed convergence rates
are GPE velocity, 2.00; ACM velocity, 1.42; EDAC velocity, 1.2; GPE pressure, 1.87; ACM
pressure, 0.57; EDAC pressure, 0.1.

4. Doubly periodic shear layers

The case of doubly periodic shear layers is from [20, 21]. The initial condi-
tions on the periodic unit square are given by:

u =

{
tanh(ρ(y − 0.25)), if y < 0.5.

tanh(ρ(0.75− y)), otherwise.
(16a)

v = δsin(2π(x+ 0.25)) (16b)

where ρ is the shear layer width parameter and δ the strength of the initial per-
turbation. Here, ρ = 80, and δ = 0.05 are used. These parameters correspond
to those used in [21, 13, 14]. The strength of the initial perturbation is the same
in [20, 21]. The shear layer with parameter of 80 correspond to the thin layer
of [21] (it is an intermediate value between the thick layer (ρ = 30) and the
thin layer (ρ = 100) from [20]). The Reynolds, Prandtl and Mach numbers for
each run are respectively Re = 10 000, Pr = 1 and Ma = 0.02 (note that the
Prandtl number is not a parameter for ACM). The Prandtl and Mach numbers
are modified for the parametric study in section 4.3. The time step for each
run is ∆t = 10−5 (except for the simulations with a Mach number Ma = 0.002
whose the time step is ∆t = 10−6).
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Figure 3: Convergence results for the traveling wave example. The computed convergence
rates are GPE velocity, 1.96; ACM velocity, 1.94; EDAC velocity, 2.00; GPE pressure, 0.85;
ACM pressure, 1.95; EDAC pressure, 2.00.

4.1. Mesh independence

The shear layer problem was computed with 64x64, 128x128, 256x256, 384x384,
512x512, 768x768 and 1024x1024 grids. Mesh independence is studied with ve-
locity, pressure, velocity divergence, kinetic energy, vorticity and enstrophy.
Kinetic energy Ek, vorticity ζ and enstrophy E are defined by

Ek =
1

2
(u2 + v2) (17a)

ζ =
∂v

∂x
− ∂u

∂y
(17b)

E =

∫
S

ζ2dS (17c)

Kinetic energy can not be defined uniquely on a staggered grid. In this work,
kinetic energy is descretized at pressure points and vorticity is discretized at
nodes (see fig. 1):

(Ek)ij =
1

4
(u2ij + u2i+1j + v2ij + v2ij+1) (18a)

ζij =
vij − vi−1j

∆x
− uij − uij−1

∆y
(18b)
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Figure 4 shows the vorticity field at t = 1 for the different grids. The results
from the 64x64 and 128x128 grids show the beginning of unstable oscillations
and additional spurious vortices. The additional spurious vortices have disap-
peared in the 256x256 and 384x384 grids but small oscillations remain. The
results from the 512x512 and 768x768 grids appear identical (the 1024x1024
grid -not shown here- gives the same results). It indicates that the 512x512 grid
allows computing a reasonably accurate solution. Figure 5 shows the velocity di-
vergence field at t = 1 for different grids. This figure confirms that the 512x512
grid is sufficient. One can distinguish different frequencies corresponding to the
different initial velocity scales. It is worth noting that the average of the velocity
divergence is equal to zero. Figures 6 and 7 display the computed kinetic energy
and enstrophy of the solutions for the different grids. It is clear that these plots
are not diagnostic to determine mesh independance (since 256x256 grid seems
sufficient with these plots). The time evolution of the root mean square velocity
divergence (eq. (19)) is given in fig. 8 for the different grids. One notes that
the maximum value does not depend on the grid and that again the 512x512
grid is accurate enough. Figures 9 to 13 show the spatial evolution in function
of x at y=0.25 and t=1 of x-velocity, y-velocity, kinetic energy, pressure and
vorticity respectively. Because the velocity divergence evolves faster in the y-
direction (see figure 5), figure 14 represents the spatial evolution in function of
y at x=0.25. Note that the point (x,y)=(0.25,0.25) corresponds to the vortex
centre. All these figures confirm that the 512x512 grid is accurate enough. This
grid is also the one used by [13, 14]. Consequently, for the comparison with
classical finite volume method with a Poisson equation and for the parametric
study, the grid is 512x512.
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(a) Mesh 64x64 (b) Mesh 128x128

(c) Mesh 256x256 (d) Mesh 384x384

(e) Mesh 512x512 (f) Mesh 768x768

Figure 4: Vorticity at t=1
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(a) Mesh 384x384 (b) Mesh 512x512

(c) Mesh 768x768 (d) Mesh 1024x1024

Figure 5: Velocity divergence at t=1
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Figure 6: Kinetic energy decay

 100

 120

 140

 160

 180

 200

 220

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
n
s
tr

o
p
h
y

Time

Mesh         64x64
Mesh     128x128
Mesh     256x256
Mesh     384x384
Mesh     512x512
Mesh     768x768
Mesh 1024x1024

Figure 7: Enstrophy decay
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Figure 8: Time evolution of root mean square velocity divergence (top: whole time of the
simulation, bottom: zoom on one representative peak)
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Figure 9: Spatial evolution of x-velocity in function of x at y=0.25 and t=1
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Figure 10: Spatial evolution of y-velocity in function of x at y=0.25 and t=1
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Figure 11: Spatial evolution of kinetic energy in function of x at y=0.25 and t=1
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Figure 12: Spatial evolution of pressure in function of x at y=0.25 and t=1
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Figure 13: Spatial evolution of vorticity in function of x at y=0.25 and t=1
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Figure 14: Spatial evolution of velocity divergence in function of y at x=0.25 and t=1
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4.2. Comparison with incompressible simulations

In this section, the results obtained with GPE, ACM, EDAC and INS are
compared. The INS simulations are realized with the TrioCFD software de-
velopped by CEA (French atomic agency) [22]. The selected spatial and tem-
poral schemes in TrioCFD are the same as those implemented for GPE. The
INS time step is ∆t = 10−3 for the 256x256 grid and ∆t = 5 10−4 for the
512x512 grid. The pressure is solved with the classical pressure-Poisson for-
mulation [23, 21]. The Poisson equation is solved with the conjugate gradient
method and the Symmetric Successive Over-Relaxation preconditioning tech-
nique. With a Mach number of 0.02 for GPE (ACM or EDAC) and a residual
norm tolerance of 10−12 for the Poisson equation (INS), it is found that com-
putational time of GPE, ACM and EDAC is respectively 1.3, 1.5 and 1.2 times
smaller than that of INS. ACM is the most interesting in terms of computa-
tional time because only velocity divergence has to be calculated. EDAC is the
least interesting because pressure advection and diffusion have also to be com-
puted. Only the pressure and the vorticity fields (fig. 15 and 16 respectively)
are presented because the results with velocity and kinetic energy are the same.
Figures 15 and 16 indicate that the results obtained with GPE, ACM and INS
are in very good agreement. The differences between GPE, ACM and EDAC
are not distinguishable. The differences with INS are smaller than those due to
the mesh. These results demonstrate that the proposed discretization of GPE,
ACM and EDAC allows describing the time evolution of velocity and pressure
without subiteration. They also show that the additional term in the EDAC
equation compared to the GPE equation is negligible. It confirms the asymptotic
expansion realized in [10] that conducts to neglect pressure advection (uβ∂βP )
for small Mach number. The test of different time steps for GPE, ACM and
EDAC shows that ∆t = 2.5 10−5 is stable and that ∆t = 5 10−5 is not stable
for the 512x512 grid. Consequently, it is found that the proposed discretization
conducts to the same stability time step for GPE, ACM and EDAC.
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Figure 15: Spatial evolution of pressure in function of x at y=0.25 and t=1 (top: whole
profile, bottom: zoom around the peak x∈ [0.2, 0.3]). Comparison between incompressible,
ACM, EDAC and GPE simulations for two different meshes (256x256 and 512x512).
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Figure 16: Spatial evolution of vorticity in function of x at y=0.25 and t=1 (top: whole
profile, bottom: zoom around the peak x∈ [0.2, 0.3]). Comparison between incompressible,
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4.3. Prandtl and Mach numbers effect

GPE depends on three dimensionless numbers: the Reynolds, Prandtl and
Mach numbers. In this section, a parametric study on the Prandtl and Mach
numbers is realized. The effect of the Reynolds number is not studied because it
is considered here as a physical parameter while the Prandtl and Mach numbers
are considered as numerical parameters. The objective is to estimate

• how small the Prandtl number can be in order to damp acoustic waves
without modifying the results and,

• how big the Mach number can be in order to increase the stability time
step without modifying the results.

The tested Prandtl numbers are 0.001, 0.01, 0.1, 1, 10 and +∞. The tested
Mach numbers are 0.2, 0.1, 0.05, 0.025, 0.02 and 0.002.

Figures 17, 18, 19 and 20 show the results obtained for all the pairs (Ma,Pr)
with Ma ∈ {0.2, 0.02 and 0.002} and Pr ∈ {0.1, 1 and 10}. Figures 17 and 18
show that a Mach number Ma = 0.2 is too big and modifies integral quantities
such as kinetic energy and enstrophy. In contrast, the Prandtl number seems
to have no effect on these integral quantities. The spatial evolution of pressure
and vorticity presented in figures 19 and 20 confirms that Ma = 0.2 modifies
the results and that the Prandtl number has almost no effect.

The same profiles with more values of the Mach number and Pr = 1 are
plotted in figures 21 and 22. Very low Mach numbers do not imply accu-
racy problems but they imply very small time-step. Indeed, due to acous-
tic, the time scale of GPE, tGPE , is related to that of INS equations, tINS ;
tGPE = MatINS . A Mach number equal to 0.05 -value typically used in lattice
Boltzmann simulations- offers a good compromize between the accuracy of the
results and the stability time step. This value is coherent with the order of
magnitude proposed for KRLNS by [11]. For GPE, this value has to be confirm
in other configurations.

The rms velocity divergence is defined by

(∂αuα)rms =

√∫
V

(∂αuα)2dV (19)

It is worth noting that the mean velocity divergence
∫
V

(∂αuα)dV is exactly
equal to zero due to periodic conditions and the used staggered grid system.
Figure 23 shows that the maximum of the rms velocity divergence is propor-
tional to the Mach number. The proportionality constant seems to be equal to
0.3. This linear scaling and this proportionality constant have also been found
for KRLNS [11]. A Fourier transform of the temporal signal gives that the nondi-
mensionalized period is also proportional to the Mach number (T = 7.10−3 for
Ma = 0.02 and T = 7.10−4 for Ma = 0.0021). The period corresponds to the

1For Ma=0.2, the signal is not enough periodic to isolate one frequency.
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Figure 17: Kinetic energy decay for different Mach and Prandtl numbers.

plane wave associated to the thickness of the shear layer. Indeed, noting δsl the
nondimensionalized shear layer thickness, one gets δsl ≈ T

2πMa = 0.056.
Figures 24 and 25 seem to show that the Prandtl number has almost no

effect on velocity and pressure. However, figure 26 indicates that the Prandtl
number impacts significantly the velocity divergence. Indeed, according to the
Prandtl number, we can distinguish the acoustic waves or/and the shear layer
vortex in the velocity divergence field. For a Prandtl number smaller or equal to
0.001, acoustic waves are completely damped at t = 1 and only shear layer vor-
tex are observable. For a Prandtl number between 0.01 and 0.1, both acoustic
waves and shear layer vortex are present. For a Prandtl number greater or equal
to one, only acoustic waves are visible. Furthermore, it is worth noting that,
even if a small Prandtl number conducts to acoustic wave damping, a smaller
Prandtl number does not imply a smaller velocity divergence. These observa-
tions are coherent with the acoustic plane wave solution of GPE equations. In
one dimension with the acoustic approximation, GPE equations are

∂tu+ ∂xP =
1

Re
∂x∂xu (20a)

∂tP +
1

Ma2
∂xu =

1

RePr
∂x∂xP (20b)
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Figure 18: Enstrophy decay for different Mach and Prandtl numbers.

The acoustic plane wave solution is given by

u =

(
1− Pr
2RePr

ksin(ωt− kx) +
ω

k
cos(ωt− kx)

)
Ma2e−at (21a)

P = cos(ωt− kx)e−at (21b)

ω2 = k2

(
1

Ma2
− 1

4Re2

(
1− 1

Pr

)2

k2

)
(21c)

a =
1 + Pr

2RePr
k2 (21d)

For Pr = 1, this solution gives the classical relation k2 = ω2

c2 (in dimensional
variables and with c the speed of sound). The expression of the damping coeffi-
cient is coherent with the fact that both viscosity and thermal conductivity are
involved in acoustic wave attenuation [1]. The smaller the Prandtl number, the
higher the damping coefficient ( lim

Pr→0
a = +∞). One can compare the effect of

the Mach and Prandtl numbers on the velocity divergence in figures 26 and 27.
A small Mach number allows the decrease of both acoustic waves and shear
layer vortex in the velocity divergence field. A small Prandtl number allows the
damping of acoustic waves but not of the shear layer vortex. A smaller Mach
number implies a smaller velocity divergence. It is not the case for the Prandtl
number.
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5. Conclusion

The proposed general pressure equation (GPE) allows to solve general, time-
accurate, incompressible Navier-Stokes flows. GPE should be considered as an
analog of the Lattice Boltzmann Method. The velocity divergence is not equal to
zero but it can be limited by an arbitrary maximum. General pressure equation
(GPE), artificial compressibility method (ACM) and entropically damped form
of artificial compressibility (EDAC) have been applied for simulations of Taylor-
Green vortices, traveling wave and doubly periodic shear layers in order to
investigate their accuracy, efficiency and the capability to capture the correct
transient behavior. The proposed discretization uses a staggered grid system,
second order centered schemes in space and a third order Runge-Kutta scheme
in time without subiteration. The solutions obtained by GPE, ACM and EDAC
are in excellent agreement with analytical solutions or with that of a classical
finite volume method using a Poisson equation. It is found that the GPE,
ACM and EDAC approaches can capture the correct transient behavior without
subiteration, and keep the divergence fluctuation at smaller level by giving an
appropriately low Mach number. GPE L2 norm of errors are smaller than those
of ACM and EDAC. For Taylor-Green vortices, the better convergence rate
of GPE is explained by the fact that this flow is analytical solutions of GPE
but not of ACM and EDAC. Consequently, the additional diffusion term of
GPE compared to ACM seems physically crucial and the additional pressure
advection term of EDAC compared to GPE seems to be useless. The one-
dimensional acoustic plane wave analytical solution of GPE gives the acoustic
damping coefficient. This coefficient is inversely proportional to the Prandtl
number (for small Prandtl number). Numerically, it is shown that a small
Prandtl number allows to damp acoustic waves.
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Figure 19: Spatial evolution of pressure in function of x at y=0.25 and t=1 (top: whole profile,
bottom: zoom around the peak x∈ [0.2, 0.3]). Effects of the Prandtl and Mach numbers.
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Figure 20: Spatial evolution of vorticity in function of x at y=0.25 and t=1 (top: whole profile,
bottom: zoom around the peak x∈ [0.2, 0.3]). Effects of the Prandtl and Mach numbers.

29



-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

s
s
u
re

x

Ma=0.2 Pr=1

Ma=0.1 Pr=1

Ma=0.05 Pr=1

Ma=0.025 Pr=1

Ma=0.02 Pr=1

Ma=0.002 Pr=1

Figure 21: Spatial evolution of pressure in function of x at y=0.25 and t=1. Effect of the
Mach number.
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Figure 22: Spatial evolution of vorticity in function of x at y=0.25 and t=1. Effect of the
Mach number.
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Figure 23: Time evolution of root mean square velocity divergence (top: whole time of the
simulation, bottom: zoom on the last 0.05s). Effect of the Mach number.
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Figure 24: Spatial evolution of pressure in function of x at y=0.25 and t=1. Effect of the
Prandtl number.
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Figure 25: Spatial evolution of vorticity in function of x at y=0.25 and t=1. Effect of the
Prandtl number.
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(a) Pr=0.001 (b) Pr=0.01

(c) Pr=0.1 (d) Pr=1

(e) Pr=10 (f) Pr = +∞

Figure 26: Velocity divergence at t=1 for Ma=0.02 and for different Prandtl numbers.
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(a) Ma=0.002 (b) Ma=0.2

Figure 27: Velocity divergence at t=1 for Pr=1 and for different Mach numbers.
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