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Abstract

We consider the Kardar-Parisi-Zhang (KPZ) equation for the stochastic growth of an in-
terface of height h(x , t ) on the positive half line with boundary condition
∂x h(x , t )|x=0 = A. It is equivalent to a continuum directed polymer (DP) in a random
potential in half-space with a wall at x = 0 either repulsive A > 0, or attractive A < 0. We
provide an exact solution, using replica Bethe ansatz methods, to two problems which
were recently proved to be equivalent [Parekh, arXiv:1901.09449]: the droplet initial
condition for arbitrary A ¾ −1/2, and the Brownian initial condition with a drift for
A = +∞ (infinite hard wall). We study the height at x = 0 and obtain (i) at all time the
Laplace transform of the distribution of its exponential (ii) at infinite time, its exact prob-
ability distribution function (PDF). These are expressed in two equivalent forms, either
as a Fredholm Pfaffian with a matrix valued kernel, or as a Fredholm determinant with
a scalar kernel. For droplet initial conditions and A > −1

2 the large time PDF is the GSE

Tracy-Widom distribution. For A =
1
2 , the critical point at which the DP binds to the wall,

we obtain the GOE Tracy-Widom distribution. In the critical region, A+
1
2 = εt−1/3 → 0

with fixed ε = O(1), we obtain a transition kernel continuously depending on ε. Our
work extends the results obtained previously for A = +∞, A = 0 and A = −1

2 .
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1 Introduction

The continuum Kardar-Parisi-Zhang (KPZ) equation in one dimension [1–7] describes the
stochastic growth of an interface parameterized by a height field h(x , t) at point x ∈ R and
time t. In appropriate units it reads

∂th(x , t) = ∂ 2
x h(x , t) + (∂xh(x , t))2 +

p
2ξ(x , t) , (1)

where ξ(x , t) is a centered Gaussian white noise with E
�

ξ(x , t)ξ(x ′, t ′)
�

= δ(x− x ′)δ(t− t ′).
An important question is to determine the probability distribution function (PDF) for the height
at one point, h(0, t), given an initial condition h(x , t = 0). Exact solutions, valid for all times
t > 0, have been obtained for several initial conditions, notably droplet, flat and Brownian
(including stationary) [8–16]. Remarkably they are expressed using Fredholm determinants

2
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or Pfaffians. From them it was shown that, in the large time limit, the PDF’s of the shifted
height fluctuations, H(t) = h(0, t) + t

12 ∼ t1/3, are described by the Tracy Widom distribu-
tions [17, 18], i.e. the distributions of the largest eigenvalues of standard Gaussian random
matrix ensembles [19,20]. Some of these results were obtained using the replica Bethe ansatz
(RBA) method. This method, pioneered by Kardar [21], consists of several steps. First one
maps, via the Cole-Hopf transformation Z(x , t) = eh(x ,t), the KPZ equation for h(x , t) to the
stochastic heat equation (SHE) for Z(x , t), which can then be interpreted as the partition func-
tion of a continuum directed polymer of length t in a random potential with final point at x .
Next one expresses the n-th integer moment of Z(x , t) using (i) a mapping to the attractive
delta Bose gas with n bosons (the replica) in one dimension, and (ii) its exact solution from the
Bethe ansatz. From the moments one then obtains the generating function (i.e. the Laplace
transform of the PDF of Z(x , t)), and at large time, the PDF of h(x , t).

Here, we consider the KPZ equation on the half-line, where Eq. (1) is considered for x ∈ R+

along with the Neumann boundary condition (b.c.)

∀t > 0, ∂xh(x , t) |x=0= A ⇔ (∂x − A)Z(x , t) |x=0= 0, (2)

where A is a real parameter which describes the interaction with the boundary (a wall at
x = 0). This problem was considered in a pioneering paper by Kardar [22] in the equivalent
representation in terms of a directed polymer in a half space bounded by a wall. The wall is
repulsive for A > 0 and attractive for A < 0. The case A = +∞ imposes Z(x = 0, t) = 0, an
infinitely repulsive wall. It can also be seen as absorbing wall, while A = 0 can be seen as a
reflecting wall. A binding transition to the wall was predicted for A= −1/2 as A is decreased,
from heuristic considerations on the ground state of the associated delta Bose gas in presence
of a wall. It was later observed in numerical simulations of a discretized model [23]. More
recently, exact results for three specific values of A, i.e. A = +∞, 0,−1/2, were obtained
[24–26] for the droplet IC defined as

h(x , t = 0) = −
|x −κ|
η

− logη , η→ 0+ ⇔ Z(x , t = 0) = δ(x −κ). (3)

What was studied is the height at the origin, H(t), i.e. H(t) = h(κ = 0, t) for finite A, and
H(t) = h(κ, t)− logκ with κ→ 0+ since a regularization is needed for A= +∞ (see below).
In all three cases the solution can be expressed in terms of a Fredholm Pfaffian involving a
matrix kernel [24–27]. For A = +∞, the infinitely repulsive wall, it was found [24] that
the PDF of the scaled height, H(t)/t1/3, converges at large t to the Tracy-Widom distribution
associated to the Gaussian Symplectic Ensemble (GSE) of random matrices [18–20]. Note that
the original RBA solution of [24] involves a scalar kernel, but recently an equivalent solution
was obtained by us in terms of a matrix kernel [27]. For A= 0, although the finite time matrix
kernel differs from the case A = +∞, it was found that the large time limit of the PDF also
corresponds to the TW-GSE distribution [25]. Both cases used the mapping to the delta Bose
gas, with use of respectively the RBA for A= +∞ and nested contour integral representations
of the moments for A= 0. The case A= −1

2 , i.e. the critical case, was solved instead using a
continuum limit from the ASEP model with an open boundary [26]. It was found that at large
time the PDF converges to the Tracy Widom distribution associated to the Gaussian Orthogonal
Ensemble (GOE) which thus describes the large time behavior at the transition.

Until now the KPZ equation for general A has resisted the analysis. The RBA approach
of [24] has been extended using that the associated Bose gas is integrable for general A. This
led to an explicit formula for the n-th integer moment of Z [28], which will be fully confirmed
here, but valid however only in some restricted range of n and A, namely A+ 1/2> n/2. The
origin of this restriction is that for any finite A, a complicated structure of multi particle bound

3
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states to the wall arises in the spectrum of the associated delta Bose gas. This problem did not
impact the study in [24] since for A= +∞ there are no boundary bound states. Extracting the
PDF from the moments in the restricted range has eluded previous attempts, but here we will
provide the solution to this puzzle. Another approach was followed recently: the full structure
of these bound states was obtained [29] leading to an improved moment formula a priori valid
for all A, n. A (quite formal) Pfaffian formula was obtained from these moments. Among the
partial results obtained, the large time limit as a GSE-TW distribution for all A> −1/2, and the
convergence to a Gaussian PDF in the bound phase A< −1/2 [29]. This study however failed
until now to produce the full finite time answer, and also to obtain the large time behavior in
the critical region.

The half-space problem has also been addressed for other solvable models in the KPZ uni-
versality class, mostly in the mathematics literature. In a pioneering paper, Baik and Rains [30]
studied the longest increasing sub-sequences (LIS) of symmetrized random permutations. The
problem maps to a discrete zero temperature model of a directed polymer in a half-space,
with a tunable parameter α which makes the boundary more attractive as α increases. They
found, in the limit of large polymer length t, a transition when α reaches the critical value
αc = 1. For α < αc the PDF of the fluctuations of the DP energy (analog to the height in a
growth model) is given by the Tracy-Widom GSE distribution [18] on the characteristic KPZ
scale t1/3. For α > αc the PDF is Gaussian on the scale t1/2, as the DP paths are bound to the
diagonal line. At the critical point, α= αc the PDF is given by the GOE Tracy-Widom distribu-
tion on the t1/3 scale. A similar transition was found for the height distribution in the discrete
PNG growth model on a half-line, with a source at the origin, as the the nucleation rate at
the origin is increased above a threshold [31, 32]. Results were also obtained for the TASEP
in a half-space [33]. Finally, formula were obtained for the (finite temperature) log-gamma
DP with symmetric weights [34, 41] and half-quadrant geometries [35] with, however, not
yet rigorous asymptotic results. In the case of the ASEP model in a half space a Bethe ansatz
study was carried in Ref. [36] without however asymptotic results. In the case A= −1/2, the
ASEP and its KPZ limit were studied using half-space Macdonald processes [41] and TW GOE
asymptotics were proved, see Refs. [26,58].

It is natural to conjecture that the transition for the KPZ equation at A= −1/2 is in the same
universality class, in the large time limit, as the one discovered by Baik and Rains in [30] and
that this universality is common to the full KPZ class, see Ref. [58]. Baik and Rains performed
a detailed analysis on a scale α− 1 = wt−1/3 around the transition. They found that the PDF
depends continously on w and interpolates between the GSE/GOE/Gaussian distributions as
w is increased. This transition PDF was obtained as a solution of Painlevé type system of
equations. Further results were obtained recently using Pfaffian-Schur processes, for variants
of TASEP models and last passage percolation in a half-quadrant [37, 38]. Not only the one-
point, but also the multi-point height distributions where studied (the extended process) and
for arbitrary positions with respect to the wall. A Fredholm Pfaffian formula was obtained
with an explicit expression for the (extended) matrix kernel around the GSE/GOE/Gaussian
transition. One may conjecture that it is compatible with the Painlevé system of [30] but this
has not yet been verified. Finally numerical studies have addressed the half-line problem.
In [39] the convergence to the GSE was explored in a half-space geometry aimed to open the
way for an experimental confirmation. In [23] the Baik Rains transitional PDF was verified
and connections to conductance fluctuations in Anderson localization were explored.

The aim of this paper is to provide an exact solution for the KPZ equation on a half-line for
generic values of A using the replica Bethe ansatz. We study the height at x = 0 and obtain
(i) at all time the generating function (i.e. the Laplace transform of the PDF of Z = eh) (ii)
at infinite time, its exact probability distribution function (PDF). These are expressed in two
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equivalent forms, either as a Fredholm Pfaffian with a matrix valued kernel, or as a Fredholm
determinant with a scalar kernel. For droplet initial conditions and A> −1

2 the large time PDF
is the GSE Tracy-Widom distribution. We obtain an explicit formula for the transition kernel
in the critical region, A+ 1

2 = εt−1/3 → 0 with fixed ε = O(1), continuously depending on ε.
Although it is different from the expression obtained in [37, 38], we conjecture that the two
expressions are in fact equivalent, and check it by a systematic expansion in traces to third
order. In the limit ε→ 0 we obtain that the PDF converges to the GOE TW distribution. Our
results thus show universality and that the KPZ equation in the half-line is in the KPZ class.
Note however that for a technical reason, we are able to present the result only for the case
A¾ −1/2, i.e. ε¾ 0.

Our strategy is the following. It is inspired by a theorem shown recently:

Theorem 1.1 (Parekh. Theorem 1.1 from [40]). Let Z(0, x) denote the solution of the Stochas-
tic Heat Equation (SHE) with Robin-boundary parameter A ∈ R and droplet initial condition
Z(x , 0) = δ(x). Let ZBr(x , t) the solution to the SHE with Brownian initial condition with drift
A+ 1

2 i.e. ZBr(x , 0) = eB(x)−(A+ 1
2 )x , where B is a (zero drift) Brownian motion, with Dirichlet

boundary condition ZBr(0, t) = 0. Then we have the following equality in distributions

Z(0, t) = lim
κ→0

ZBr(κ, t)
κ

. (4)

Remark 1.2. This theorem comes as a limit of an identity proved in Ref. [41], Proposition 8.1,
on half-space Macdonald processes.

We thus choose to study, rather than our original problem with parameter A, the KPZ prob-
lem on the half-line with Dirichlet boundary conditions, but with Brownian initial conditions.
To be able to apply the theorem we choose the drift of the Brownian to be A+ 1

2 . Since the
boundary conditions are Dirichlet (i.e. A = +∞) we can apply the same RBA method as
in [24] (there are no boundary bound states for A= +∞). The only technical difficulty is the
calculation of the "overlap" of the Brownian initial condition with the eigenstates of the delta
Bose gas, which we are able to perform. We then obtain a formula for the n-th integer moment
of ZBr(x , 0), which then leads us to a formula for the moments of the droplet initial condition
for generic A using the theorem. Although obtained via a completely different calculation the
formula is, in the end, identical to the one obtained in [28] (which, in a sense, confirms the
theorem). It is also valid only in the same restricted range A+ 1

2 > n/2 (as the overlap di-
verges beyond). This is a well known difficulty, which arises already on the full line, but was
surmounted in Refs [14,15] to obtain the solution of KPZ with Brownian initial conditions on
the full line. We thus follow the same strategy, and it leads us to the abovementioned results.

Let us close by mentioning that these exact formulae for the KPZ equation at all times are
very useful to obtain exact results for the large deviations of the PDF of the KPZ height field
both at large time [46–49] and short time [50–53] and in particular in the half-space [27]with
excellent agreeement with numerics [54,55]. These exact solutions have also been used in the
mathematics community to prove exact bounds on the tails of the PDF of the KPZ height, see
Refs. [42–45]. Although we will study here only typical fluctuations and not large deviations,
the new formulae obtained in this work should also allow for such results for generic A in the
future.

2 Presentation of the main results

In this paper we obtain in a single unified calculation the statistics of
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(i) Z(t) = eh(t) and H(t) = h(0, t) + t
12 where h(0, t) is the height at x = 0 with droplet

initial condition in presence of a wall of parameter A ;
(ii) ẐBr(t) = ehBr(t) = limκ→0+ ehBr(κ,t) and HBr(t) = hBr(κ, t) + t

12 where hBr(κ, t)− logκ is
the height at x = κwith Brownian initial condition with a drift A+ 1

2 in presence of a hard-wall.
From the theorem of Parekh in [40] one has the equality of the two generating functions,

for any ς > 0
EKPZ,Brownian

�

exp(−ςeHBr(t))
�

= EKPZ

�

exp(−ςeH(t))
�

. (5)

The expected value of the left hand side is taken over the white noise of the KPZ equation and
the Brownian initial condition while the expected value of the right hand side is taken over
the white noise of the KPZ equation.

2.1 Finite time

Our main result valid for all time t ¾ 0 and all A> −1
2 is that the generating function for ς > 0

can be written as a Fredholm Pfaffian

EKPZ

�

exp(−ςeH(t))
�

= 1+
+∞
∑

ns=1

(−1)ns

ns!

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp
Pf
�

K(ri , r j)
�

ns×ns
, (6)

where kernel K is matrix valued and represented by a 2× 2 block matrix with elements

K11(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z) cos(πw) cos(πz)e−rw−r ′z+t w3+z3
3 ,

K22(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z)
sin(πw)
π

sin(πz)
π

e−rw−r ′z+t w3+z3
3 ,

K12(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z) cos(πw)
sin(πz)
π

e−rw−r ′z+t w3+z3
3 ,

K21(r, r ′) = −K12(r
′, r).

(7)

In this formula the contours C are parallel to the imaginary axis and cross the real axis between
0 and A+ 1

2 . For definition and more details about Fredholm Pfaffians see the end of Section
3.3. For a visual illustration of the block structure in the Pfaffians of matrix valued kernel,
appearing in (6), see e.g. (146).

Remark 2.1. This formula reproduces the known cases. For A → +∞, the ratio of Γ func-
tions containing A behaves as ∼ e−2(w+z) log A. A change of variable r = r̃ − 2 logA then re-
covers the formula that we obtained in Eq. (5) and (6) of [27] with the correspondence
H1 = H(t)+2 log A (up to a trivial rescaling involving time explained below Eq. (62) in [27]).
There it was shown that this formula is equivalent to the result obtained in [24] in terms of a
scalar kernel. Our result for A= 0, using some elementary manipulations 1 identifies with the
one in [25]. The limit A= −1

2 of our formula is more involved, and we discuss it below.

1We first rewrite (7) using sinπz
π = 1

Γ (z)Γ (1−z) , cosπz = π

Γ ( 1
2+z)Γ ( 1

2−z)
, Γ (2z) = Γ (z)Γ (z + 1

2 )2
2z−1/

p
π for z and for

w. We can now compare with formula (5) and below in [25] (arXiv version). One finds K22(r, r ′) = K̃11(−r,−r ′)/π
(using the change (w1, w2) → (−w,−z)) K11(r, r ′) = K̃22(−r,−r ′)π (using the change (s1, s2) → (w, z)) and
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The series in Eq. (6) can also be interpreted as a Fredholm Pfaffian, see Eq. (54), implying
a duality between the generating function of the exponential KPZ height and an average of a
"Fermi factor" over a Pfaffian point process (see Ref. [27] Eq. 7 for instance for further details
on this type of duality)

EKPZ

�

exp(−ςeH(t))
�

= EK





+∞
∏

i=1

1
1+ ςeai



 , (8)

where the set {ai} forms a Pfaffian point process with kernel K .

2.2 Large time limit

At large time, we have obtained the following limit behavior of the solution of the Kardar-
Parisi-Zhang equation:

• For any A > −1
2 , the one-point KPZ height fluctuations follow the Tracy-Widom GSE

distribution

lim
t→∞
P(

h(0, t) + t
12

t1/3
¶ s) = F4(s). (9)

• For A= −1
2 , the one-point KPZ height fluctuations follow the Tracy-Widom GOE distri-

bution.

lim
t→∞
P(

h(0, t) + t
12

t1/3
¶ s) = F1(s). (10)

Remark 2.2. Here F4(s) =
1
2(F1(s) +

F2(s)
F1(s)
) is the cumulative distribution function (CDF) of

the GSE-TW distribution, as defined in [56]. Another convention, which we denote F̃4 with
F4(s) = F̃4(

sp
2
), is given in [18,57].

Near the transition point A = −1/2, there is critical regime for A+ 1
2 → 0 and t → +∞

simultaneously, with the crossover parameter ε= (A+ 1
2)t

1/3 being kept fixed and O(1). From

the above formula (7) taking ς = e−st1/3
one obtains the large time limit of the matrix kernel.

This limit kernel, which depends continuously on ε, is called the transition matrix kernel. Its
expression, Kε, is given in two equivalent forms in Eqs. (64) and in Eqs. (71) for ε > 0. In the
limit ε→ +∞ this transition kernel becomes equal to the standard matrix kernel of the GSE
(the GSE limit is also obtained by taking the large time limit for any fixed A> −1/2 directly
from (7)). The transition at A = −1/2 for the KPZ equation is believed to be in the same
universality class than the one for last passage percolation in a half-quadrant. For the latter an
explicit Fredholm Pfaffian formula was obtained in Ref. [37,38]. Although the kernel there is
different from ours, we have checked by expansion in traces to third order that for ε > 0 their
Fredholm Pfaffian coincides (see Appendix C).

In Ref. [27] we presented a general procedure to construct a scalar kernel from a matrix
valued kernel with a Schur Pfaffian structure. Here we use this method to obtain the CDF of
the one-point KPZ height in terms of a Fredholm determinant involving the following scalar
kernel

lim
t→∞
P(

H(t)
t1/3
¶ s) =

q

Det(I − K̄)L2([s,+∞[) := F (ε)(s), (11)

K12(r ′, r) = K̃12(−r,−r ′)π (using the change (s, w)→ (w,−z)), where K̃ denotes the kernel displayed in formula
(5) and below in [25]. One has also performed a shift r, r ′ → r, r ′ + 2 log2, which together with the identifica-
tion ζ/4 ≡ −ς shows that Z (0) in [25] is identical to eH here. The extra (−1)ns = (−1)L factor amounts to the
permutation of the column and lines of the 2× 2 block Pfaffian. Finally, t/2 there is t here.
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where the transition kernel for ε > 0 is given by

K̄(x , y) =
1
2

∫∫

C2

dwdz
(2iπ)2

ε+w
ε−w

ε+ z
ε− z

w− z
w+ z

1
w

e−xz−yw+ w3+z3
3 . (12)

Here, the contours C are parallel to the imaginary axis and cross the real axis between 0 and ε.
For ε→ +∞, we check that this kernel converges towards the scalar kernel associated to the
GSE, obtained in [24] for the droplet initial condition with A= +∞. The limit ε→ 0+ is more
delicate to handle, but via a careful analysis we are able to show that it converges towards the
known scalar kernel of the GOE-TW distribution. We have introduced the notation F (ε)(s) for
further purpose. Hence we show here that F (0)(s) = F1(s).

In Section 5.4 we extend our calculation and obtain the scalar kernel at any finite time.
The explicit result in displayed in Eqs. (124), (125), (126) and (112).

Finally, although we do not address the case A< −1/2 or ε < 0 the conjectured equivalence
with the kernel of Ref. [37,38] (which holds for ε > 0) suggests that for any A< −1

2 , the one-
point KPZ height has Gaussian fluctuations.

lim
t→∞
P(

h(0, t) + t( 1
12 − (A+

1
2)

2)

t1/2
p

2A+ 1
¶ s) =

1
p

2π

∫ s

−∞
dye−

y2

2 , (13)

which is also the conclusion of the RBA analysis of [29], arising there from the contribution
of the boundary bound states. Physically it is expected indeed in the phase where the DP is
bound to the wall.

3 Bethe ansatz calculation for Brownian initial condition with Dirich-
let boundary condition

Let us recall that via the Cole-Hopf mapping the partition sum Z(x , t) = eh(x ,t), where h(x , t)
is solution of the KPZ equation (1), satisfies the stochastic heat equation (SHE)

∂t Z(x , t) = ∂ 2
x Z(x , t) +

p
2ξ(x , t) Z(x , t) (14)

understood here with the Ito prescription. Here we consider the problem on the half-line
x ¾ 0. Let us denote ZBr(x , t) the solution of the SHE (14) with the Brownian initial condition
in presence of a drift A+ 1

2

ZBr(x , 0) = eB(x)−(A+ 1
2 )x , (15)

where B(x) is the standard Brownian (i.e. with B(0) = 0), and with Dirichlet boundary con-
dition ZBr(x = 0, t) = 0. We will first calculate the integer moments of ZBr(x , t), from which
we will obtain the moments of the limit ẐBr(t) = limκ→0+ ZBr(κ, t)/κ. Then we will use that

EKPZ,B

�

ẐBr(t)
n
�

= EKPZ

�

Z(t)n
�

(16)

to obtain the moments of Z(t) = Z(x = 0, t), which denotes here the solution of the SHE for
the droplet initial condition and a wall of parameter A, our problem of main interest. Note
that on the left hand side the average is over the Brownian B(x) and the KPZ noise while on
the r.h.s. it is over the KPZ noise only.
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The general equal time moments of the solution of the SHE, ZBr(x , t), over the KPZ noise
can be expressed [21] as quantum mechanical expectation values of the evolution operator in
imaginary time of the Lieb Liniger model [59]

EKPZ,B

�

ZBr(x1, t) . . . ZBr(xn, t)
�

= 〈x1 . . . xn|e−tHn |Ψ(t = 0)〉. (17)

Here Hn is the Hamiltonian of the Lieb Liniger model [59] for n quantum particles with
attractive delta function interactions of strength c = −c̄ < 0

Hn = −
n
∑

i=1

∂ 2
x i
− 2c̄

∑

1¶i< j¶n

δ(x i − x j), (18)

with here an below, in our units c̄ = 1. The initial state is such that

EKPZ,B

�

ZBr(x1, t = 0) . . . ZBr(xn, t = 0)
�

= 〈x1 . . . xn|Ψ(t = 0)〉. (19)

Since here we are considering the Brownian initial condition and interested in averages both
over the Brownian and the KPZ noise we must take the initial state |Ψ(t = 0)〉 as

〈x1 . . . , xn|Ψ(t = 0)〉= Φ0(x1, . . . , xn) := EB






exp





n
∑

j=1

B(x j)− (A+
1
2
)x j










. (20)

A simple calculation shows that Φ0(x1, . . . , xn) is the fully symmetric function which in the
sector 0¶ x1 < · · ·¶ xn takes the form

Φ0(x1, . . . , xn) = exp





n
∑

j=1

1
2
(2n− 2 j + 1)x j − (A+

1
2
)x j



 . (21)

3.1 Bethe ansatz formula for the moments

We can now rewrite (17) at coinciding points using the decomposition of the evolution oper-
ator e−tHn in terms of the eigenstates of Hn as

EKPZ,B

�

ZBr(x , t)n
�

=
∑

µ

Ψµ(x , . . . , x)〈Ψµ|Φ0〉
1
||µ||2

e−tEµ . (22)

Here the un-normalized eigenfunctions of Hn are denoted Ψµ (of norm denoted ||µ||) with
eigenenergies Eµ. Here we used the fact that only symmetric (i.e. bosonic) eigenstates con-
tribute since the initial and final states are fully symmetric in the x i . Hence the

∑

µ denotes
a sum over all bosonic eigenstates of the Lieb-Liniger model, also called delta Bose gas, and
〈Ψµ|Φ0〉 denotes the overlap, i.e. the hermitian scalar product of the initial state (21) with the
eigenstate Ψµ.

We should remember now that Hn is defined on the half-line x ¾ 0. The boundary con-
dition (2) at the wall with parameter A translates into the same boundary condition for the
wavefunctions (in each of their coordinate). This half-line quantum mechanical problem can
be solved by the Bethe ansatz for A = +∞, i.e. for Dirichlet boundary condition as needed
here [36, 60, 61] (see also section 5.1 of [62]). Note that it can also be solved for arbitrary
A, [25, 62–68] which led to the formula in [28] and [29], but here we circumvent this, using
instead the Brownian with Dirichlet boundary condition.

9

https://scipost.org
https://scipost.org/SciPostPhys.8.3.035


SciPost Phys. 8, 035 (2020)

From the Bethe ansatz the eigenstates Ψµ are thus Bethe states, i.e. superpositions of plane
waves over all permutations P of the n rapidities λ j for j ∈ [1, n]with an additional summation
over opposite pairs±λ j due to the infinite hard wall. The bosonic (fully symmetric) eigenstates
can be obtained everywhere from their expression in the sector x1 < · · ·< xn, which reads

Ψµ(x1, . . . , xn) =
1
(2i)n

∑

P∈Sn

n
∏

p=1





∑

εp=±1

εpeiεp xpλP(p)A[ε1λP(1),ε2λP(2), . . . ,εnλP(n)]



 ,

A[λ1, . . . ,λn] =
∏

n¾`>k¾1

(1+
i c̄

λ` −λk
)(1+

i c̄
λ` +λk

).

(23)

This wavefunction automatically satisfies both

1. The matching condition arising from the δ(x i − x j) interaction

�

∂x i+1
− ∂x i

+ c̄
�

Ψµ(x1, . . . , xn) |x i+1=x i
= 0. (24)

2. The hardwall boundary condition Ψµ(x1, . . . , xn) = 0 if some x i = 0.

The allowed values for the rapidities λi , which parametrize the true physical eigenstates are
determined by the Bethe equations arising from the boundary conditions at x = L as dis-
cussed below. One will find that the normalized eigenstates ψµ = Ψµ/||µ|| vanish as (λi −λ j)
or (λi + λ j) when two rapidities become equal or opposite: hence the rapidities obey an ex-
clusion principle.

The detailed Bethe equations, which determine the allowed values for the set of rapidities
{λ j}, depend on the choice of boundary condition at x = L. However, in the L → +∞ limit,
these details do not matter. For simplicity we choose another hardwall at x = L. The Bethe
equations then read

e2iλ j L =
∏

6̀= j

λ j −λ` − i c̄

λ j −λ` + i c̄

λ j +λ` − i c̄

λ j +λ` + i c̄
. (25)

Remark 3.1. This set of equations is invariant by λ j →−λ j for any j.

In the case of the infinite hardwall, these equations are also given in Ref. [61] and their
solutions in the large L limit were studied in Ref. [69]. The structure of the states for infinite L
is found similar to the standard case, i.e. the general eigenstates are built by partitioning the
n particles into a set of ns bound-states formed by m j ¾ 1 particles with n =

∑ns
j=1 m j . Each

bound state is a perfect string [70] , i.e. a set of rapidities

λ j,a = k j +
i c̄
2
(m j + 1− 2a), (26)

where a = 1, . . . , m j labels the rapidities within the string. Such eigenstates have momentum
and energy

Kµ =
ns
∑

j=1

m jk j , Eµ =
ns
∑

j=1

m jk
2
j −

c̄2

12
m j(m

2
j − 1). (27)

The ground-state corresponds to a single n-string with k1 = 0. The difference with the standard
case is that the states are now invariant by a sign change of any of the momenta λ j → −λ j ,
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i.e. k j →−k j . From now on, we will denote the wavefunctions of the string states as Ψ{k`,m`}.
The inverse of the squared norm of an arbitrary string state was obtained in Ref. [24] as 2

‖|µ||2 :=

∫ L

0

dx1· · ·
∫ L

0

dxn|Ψ{k`,m`}(x1, . . . , xn)|2

1
||µ||2

=
1
n!

c̄n−ns 2ns

ns
∏

i=1

Ski ,mi

∏

1¶i< j¶ns

Dki ,mi ,k j ,m j
L−ns

Dk1,m1,k2,m2
=

�

4(k1 − k2)2 + (m1 −m2)2c2

4(k1 − k2)2 + (m1 +m2)2c2

�

×
�

4(k1 + k2)2 + (m1 −m2)2c2

4(k1 + k2)2 + (m1 +m2)2c2

�

Sk,m =
22m−2

m2

[m/2]
∏

p=1

4k2 + c2(m− 2p)2

4k2 + c2(m+ 1− 2p)2
,

(28)

with Sk,1 = 1. Note that we have only kept the leading term in L as L → +∞. Inserting the
norm formula Eq. (28) into Eq. (22), we obtain the starting formula for the integer moments
of the partition sum with Brownian weight on the endpoint in the limit L→ +∞

EKPZ,B

�

ZBr(x , t)n
�

=
n
∑

ns=1

2ns c̄n

ns!c̄ns n!

ns
∏

p=1

∑

mp¾1

∫

R

dkp

2π
mpSkp ,mp

e(m
3
p−mp)

c̄2 t
12 −mpk2

p t

×δn,
∑ns

j=1 m j

ns
∏

i< j

Dki ,mi ,k j ,m j
Ψ{k`,m`}(x , . . . , x) 〈Ψ{k`,m`}|Φ0〉.

(29)

Here the Kronecker delta enforces the constraint
∑ns

j=1 m j = n with m j ¾ 1 and in the sum-

mation over states we used
∑

k j
→ m j L

∫

R
dk
2π which holds also here in the large L limit: the

momenta sums become continuous and one can use that the string momenta m jk j correspond
to free particles as in Refs. [9,12,13,24,29]. Since we are interested in

ẐBr(t) = lim
x→0+

ZBr(x , t)
x

, (30)

we can simplify the factor Ψ{k`,m`}(x , · · · , x) in (29). For the general Bethe state (23) (before
insertion of the string solution), the small x limit reads

Ψµ(x , . . . , x) = n!xn
n
∏

j=1

λ j +O(xn+1). (31)

Inserting the string solution we see that we can replace in (29) at small x

Ψ{k`,m`}(x , · · · , x) = n!xn
ns
∏

j=1

Ak j ,m j
+O(xn+1), (32)

Ak,m =
m
∏

a=1

(k+ i
c̄
2
(m+ 1− 2a)) = (−i c̄)m

Γ (1+m
2 + ik

c̄ )

Γ (1−m
2 + ik

c̄ )
. (33)

To obtain the n-th moment of (30) from (29) we still need to calculate the overlap
〈Ψ{k`,m`}|Φ0〉 where Φ0 is given in (21). In general it involves sums over permutations and
leads to complicated expressions unless there is some kind of “miracle”, known to happen in
full space only for a few special initial conditions (droplet, half-flat, Brownian). Here, as we

2correcting the small misprint in formula (9) in [24].
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find in the Appendix A, the final result in the half-space for Brownian initial conditions is quite
simple

〈Ψµ|Φ0〉= n!
n
∏

j=1

λ j

A2 +λ2
j

. (34)

Inserting the rapidities λ j of the string state one see that the denominator of this formula reads

Ek, j =
m
∏

a=1

1

A2 + (k+ i c̄
2(m+ 1− 2a))2

=
1

c̄2m

Γ (1−m
2 + A+ik

c̄ )

Γ (1+m
2 + A+ik

c̄ )

Γ (1−m
2 + A−ik

c̄ )

Γ (1+m
2 + A−ik

c̄ )
, (35)

while the numerator was already calculated in (32). We can thus define Ck, j = A2
k, j Ek, j and

putting all together we obtain the starting expression for the integer moments:

EKPZ

�

ẐBr(t)
n
�

=
n
∑

ns=1

2ns c̄nn!
ns!c̄ns

ns
∏

p=1

∑

mp¾1

∫

R

dkp

2π
Ckp ,mp

mpSkp ,mp
e(m

3
p−mp)

c̄2 t
12 −mpk2

p t

×δn,
∑ns

j=1 m j

ns
∏

i< j

Dki ,mi ,k j ,m j
, (36)

where the expressions for C , S, D are given above and where we recall the constraint
∑ns

j=1 m j = n. Let us use c̄ = 1 from now on. Denoting

Bk,m = 4m2Ck,mSk,m

= 2k(−i)2m−1
m−1
∏

j=1−m

(2ik+ j)
m
∏

a=1

1

A2 + (k+ i 1
2(m+ 1− 2a))2

=
m−1
∏

j=0

(4k2 + j2)
Γ (1−m

2 + A+ ik)

Γ (1+m
2 + A+ ik)

Γ (1−m
2 + A− ik)

Γ (1+m
2 + A− ik)

=
2k
π

sinh(2πk)Γ (2ik+m)Γ (−2ik+m)
Γ (1−m

2 + A+ ik)

Γ (1+m
2 + A+ ik)

Γ (1−m
2 + A− ik)

Γ (1+m
2 + A− ik)

.

(37)

The starting formula for the moments of our two equivalent problems (droplet initial condi-
tions with any A, and Brownian initial condition with drift A+ 1/2 and Dirichlet) reads

EKPZ

�

Z(t)n
�

= EKPZ,B

�

ẐBr(t)
n
�

=
n
∑

ns=1

n!2ns

ns!

ns
∏

p=1

∑

mp¾1

∫

R

dkp

2π

Bkp ,mp

4mp
e(m

3
p−mp)

t
12−mpk2

p tδn,
∑ns

j=1 m j

ns
∏

i< j

Dki ,mi ,k j ,m j
,

(38)

where Bk,m is given in (37) and Dki ,mi ,k j ,m j
is given in (28) and where we recall the constraint

∑ns
j=1 m j = n. This formula is identical to the one obtained by a completely different calcu-

lation in [28] for the problem of the droplet initial condition with any A, consistent with the
theorem of Ref. [40]. For A → +∞ one recovers the expression (11) in [24], i.e the same
without the ratio of Gamma functions involving A, using that Z there is limA→+∞ A2Z(t) here.

It is important to note that, strictly, the formula (34) for the overlap of the string states with
the Brownian initial condition is valid only when the multiple integrals in the scalar product
are convergent. This requires (see discussion in the Appendix A) the condition n/2 < A+ 1

2 .
Hence the above formula for the integer moments EKPZ,B

�

ẐBr(t)n
�

is valid only when the drift
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is large enough, for each value of n. This requirement for the drift is identical to the one ob-
tained in the full space, for the Brownian initial condition in [14,15] and for the half-Brownian
initial condition in [71]. There, it was shown how to nevertheless use these restricted moment
formula to construct the full solution for the generating function of the moments at finite time
(see definition below). Here we follow the same strategy as in these works and we refer the
reader to Ref. [15] Section 4.3 for further details. The main idea behind the continuation
of the moment formula is that it is possible to avoid all divergences in the complex plane by
finely tuning the contour integrals of the Mellin-Barnes summation formula, which is possible
as long as A+ 1/2¾ 0.

The resulting solution obtained in [14, 15, 71] for the full space holds for any positive
drifts. The limit of zero drift is quite delicate, but can be performed, and leads to the Baik
Rains distribution for stationary KPZ. The analog in the half-space is that we obtain below
a formula valid for positive drift, A > −1/2. With some efforts, we are able to extend it to
A = −1/2 the critical case, leading to the GOE-TW distribution. We have not attempted to
obtain the solution for A< −1/2, i.e. negative drift.

Since the two problems are in correspondence, due to the theorem of Parekh in [40],
the above formula for the moments EKPZ

�

Z(t)n
�

for the droplet initial condition and wall
parameter A is also valid only for n/2 < A+ 1

2 . In that case, this restriction arises from an
a priori different origin. As shown in [29], the string states discussed above do not form a
complete basis for generic A: new boundary bound states arise. To obtain a formula for the
moments valid for any n, A is possible but requires to include all boundary states, as done
in [29]. This is illustrated here in the Appendix B for the first moment of Z(t). We will not
follow that route here, although connections between the two approaches must exist.

3.2 Moments in terms of a Pfaffian

An important identity, which makes the problem solvable in the end, is that the inverse norms
of the states can be expressed as a Schur Pfaffian. Introducing the reduced variables
X2p−1 = mp + 2ikp and X2p = mp − 2ikp for p ∈ [1, ns], the norm reads

∏

1¶i< j¶ns

Dki ,mi ,k j ,m j
=

ns
∏

j=1

m j

2ik j
Pf

2ns×2ns

�

X i − X j

X i + X j

�

, (39)

where we recall that the Pfaffian of an anti-symmetric matrix A of size N × N is defined by

Pf(A) =
Æ

Det(A) =
∑

σ∈SN ,
σ(2p−1)<σ(2p)

sign(σ)
N/2
∏

p=1

Aσ(2p−1),σ(2p), (40)

and that the Schur Pfaffian is given by (see Ref. [78])

Pf

�

X i − X j

X i + X j

�

=
∏

i< j

X i − X j

X i + X j
. (41)

Hence the starting formula for the moments now becomes:

EKPZ

�

Z(t)n
�

= EKPZ,B

�

ẐBr(t)
n
�

=
n
∑

ns=1

n!
ns!

ns
∏

p=1

∑

mp¾1

∫

R

dkp

2π

Bkp ,mp

4ikp
e(m

3
p−mp)

t
12−mpk2

p tδn,
∑ns

j=1 m j
Pf

2ns×2ns

�

X i − X j

X i + X j

�

.
(42)
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3.3 Generating function in terms of a Fredholm Pfaffian

We will now write the generating function for the moments of Z(t), i.e. focusing on the droplet
initial condition with generic A (the result being identical for the Brownian with Dirichlet
boundary conditions). It is defined, for ς > 0, as

g(ς) = EKPZ

�

exp(−ςe
t

12 Z(t))
�

= 1+
∞
∑

n=1

(−ςe
t

12 )n

n!
EKPZ

�

Z(t)n
�

. (43)

The constraint
∑ns

i=1 mi = n in Eq. (42) can then be relaxed by reorganizing the series according
to the number of strings:

g(ς) = 1+
∞
∑

ns=1

1
ns!

Z(ns,ς), (44)

where Z(ns,ς) is the partition sum at fixed number of strings, calculated below. We now show
that one can write the generating function as a Fredholm Pfaffian. It will be possible thanks
to the Schur Pfaffian identity, Eq. (39), given above. The partition sum at fixed number of
strings, expressed in terms of the reduced variables X2p−1 = mp + 2ikp and X2p = mp − 2ikp
for p ∈ [1, ns], reads

Z(ns,ς) =
ns
∏

p=1

∑

mp¾1

∫

R

dkp

2π
(−ς)mp

Bkp ,mp

4ikp
e−tmpk2

p+
t

12 m3
p Pf
2ns×2ns

�

X i − X j

X i + X j

�

, (45)

where Bk,m was given in (37). The summation over the variables mp can be done using the
Mellin-Barnes summation trick similarly to Refs. [14,15]. The barrier A> (n−1)/2 is overcome
exactly as in Ref. [15] (see Lemma. 6 and the discussion following there) from an analytic
continuation of Gamma functions included in the Bk,m factor, the introduction of a particular
contour C0 and a final requirement for the drift A+ 1/2 > 0. Indeed, define the contour
C0 = a + iR with a ∈]0, min(2A + 1, 1)[, then denoting the summand of Eq. (45) by the
function f (mp), we have

∑

m¾1

(−ς)m f (m) = −
∫

C0

dw
2iπ

ςw π

sinπw
f (w) = −

∫

R
dr

ς

ς+ e−r

∫

C0

dw
2iπ

f (w)e−wr . (46)

For each mp we therefore introduce two variables rp and wp and we redefine the reduced
variables X2p and X2p−1 under the minimal replacement mp → wp imposed by the Mellin-
Barnes formula. This leads to the following rewriting of the partition sum at fixed number of
strings (see section 5 in [27] for similar manipulations)

Z(ns,ς) =(−1)ns

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp

∫∫

C2
0

dX2p−1

4iπ

dX2p

4iπ

sin(π2 (X2p − X2p−1))

2π

× Γ (X2p−1)Γ (X2p)
Γ (A+ 1

2 −
X2p
2 )

Γ (A+ 1
2 +

X2p
2 )

Γ (A+ 1
2 −

X2p−1

2 )

Γ (A+ 1
2 +

X2p−1

2 )

× e−(X2p−1+X2p)
rp
2 +t(

X3
2p−1
24 +

X3
2p
24 ) Pf

2ns×2ns

�

X i − X j

X i + X j

�

.

(47)

Remark 3.2. Note that the contour C0 passes to the left of the pole of the Gamma function at
X = 2A+ 1.
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We observe that the integrals are almost separable in X2p and X2p−1 except for the sine
function which couples them. By anti-symmetrization and similarly to Ref. [27] section 5, we
can proceed to the replacement

sin(
π

2
(X2p − X2p−1))→ 2sin(

π

2
X2p) cos(

π

2
X2p−1). (48)

The last manipulations consist in rescaling all variables X by a factor 2 and replacing the
contours of integration by C = a

2 + iR. Hence we have

Z(ns,ς) =(−1)ns

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp

∫∫

C2

dX2p−1

2iπ

dX2p

2iπ

sin(πX2p) cos(πX2p−1)

π

× Γ (2X2p−1)Γ (2X2p)
Γ (A+ 1

2 − X2p)

Γ (A+ 1
2 + X2p)

Γ (A+ 1
2 − X2p−1)

Γ (A+ 1
2 + X2p−1)

× e−(X2p−1+X2p)rp+t(
X3

2p−1
3 +

X3
2p
3 ) Pf

2ns×2ns

�

X i − X j

X i + X j

�

.

(49)

There are a few last steps before we introduce the Fredholm Pfaffian. First define the functions

φ2p(X ) =
sin(πX )
π

Γ (2X )
Γ (A+ 1

2 − X )

Γ (A+ 1
2 + X )

e−rpX+t X3
3 ,

φ2p−1(X ) = cos(πX )Γ (2X )
Γ (A+ 1

2 − X )

Γ (A+ 1
2 + X )

e−rpX+t X3
3 .

(50)

Using a known property of Pfaffians (see De Bruijn [72]), we can rewrite the partition sum at
fixed number of strings itself as a Pfaffian, i.e. we use that

2ns
∏

`=1

∫

C

dX`
2iπ
Φ`(X`) Pf

2ns×2ns

�

X i − X j

X i + X j

�

= Pf
2ns×2ns

�

∫∫

C2

dw
2iπ

dz
2iπ
Φi(w)Φ j(z)

w− z
w+ z

�

. (51)

This leads to the definition of a 2ns × 2ns matrix M such that

Mi j =

∫∫

C2

dw
2iπ

dz
2iπ
Φi(w)Φ j(z)

w− z
w+ z

. (52)

Since a variable rp will be shared between four elements of this matrix, it is more convenient
to view M as composed of 2× 2 blocks which we denote K , whose elements are presented in
Eqs. (7) (for visualization see formula (146)). Finally, the string-replicated partition function
is given by an infinite series of Pfaffians

g(ς) = 1+
∞
∑

ns=1

(−1)ns

ns!

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp
Pf

ns×ns

�

K(rk, r`)
�

. (53)

This series admits a closed form in terms of a Fredholm Pfaffian, which is our main result for
the generating function at finite time together with the explicit expression of the kernel given
in Eqs. (7)

g(ς) = EKPZ

�

exp(−ςeH(t))
�

= Pf(J −σςK)L2(R). (54)

The function σς is given by σς(r) =
ς

ς+e−r and the 2 × 2 kernel J is given by

J(r, r ′) =
�

0 1
−1 0

�

1r=r ′ . For the precise definition and properties of Fredholm Pfaffians

see Section 8 in [73], as well as e.g. Section 2.2. in [37], Appendix B in [74] and Appendix G
in [12,13].
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3.4 An equivalent kernel

For the antisymmetrization, we used the trigonometric decomposition

sin(π(X2p − X2p−1)) = sin(πX2p) cos(πX2p−1)− cos(πX2p) sin(πX2p−1). (55)

The decomposition can be made more general, and for later purpose, for any real α, we de-
compose the sine function as

sin(π(X2p−X2p−1)) = sin(π(X2p−α)) cos(π(X2p−1−α))− cos(π(X2p−α)) sin(π(X2p−1−α)).
(56)

For the rest of the paper we will call this the α-decomposition. To study the limit A→ +∞,
we will use α = 0 and for the limit A→ −1

2 , we will use α = A+ 1
2 . In particular, from the

same symmetrization argument than above, the partition function for ns strings reads, using
the α-decomposition:

Z(ns,ς) =(−1)ns

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp

∫∫

C2

dX2p−1

2iπ

dX2p

2iπ

sin(π(X2p −α)) cos(π(X2p−1 −α))
π

× Γ (2X2p−1)Γ (2X2p)
Γ (A+ 1

2 − X2p)

Γ (A+ 1
2 + X2p)

Γ (A+ 1
2 − X2p−1)

Γ (A+ 1
2 + X2p−1)

× e−(X2p−1+X2p)rp+t(
X3

2p−1
3 +

X3
2p
3 ) Pf

2ns×2ns

�

X i − X j

X i + X j

�

.

(57)

This leads to an α-extension of our functions φ, which in the special case α= A+ 1
2 read

φ2p(X ) =
sin(π(X − (A+ 1

2))

π
Γ (2X )

Γ (A+ 1
2 − X )

Γ (A+ 1
2 + X )

e−rpX+t X3
3 ,

φ2p−1(X ) = cos(π(X − (A+
1
2
))Γ (2X )

Γ (A+ 1
2 − X )

Γ (A+ 1
2 + X )

e−rpX+t X3
3 .

(58)

We see that this choice α= A+ 1
2 can be interesting since it suppresses the pole at X = A+ 1

2 in
the function φ2p, a property that we will use below. At the end we obtain a the same Fredholm
Pfaffian expression for the generating function, with the minimal replacement in the kernel
(7)

sin(πX )→ sin(π(X − (A+
1
2
))),

cos(πX )→ cos(π(X − (A+
1
2
))).

(59)

We emphasize that all the kernels parametrized by α yield the same Fredholm Pfaffian by
construction.
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4 Large time limit of the Fredholm Pfaffian and the distribution of
the KPZ height

We will now study the large time limit of our kernel. To understand the scaling required at
large time, let us recall the expression of the partition sum at fixed number of strings

Z(ns,ς) =(−1)ns

ns
∏

p=1

∫

R
drp

ς

ς+ e−rp

∫∫

C2

dX2p−1

2iπ

dX2p

2iπ

sin(πX2p) cos(πX2p−1)

π

× Γ (2X2p−1)Γ (2X2p)
Γ (A+ 1

2 − X2p)

Γ (A+ 1
2 + X2p)

Γ (A+ 1
2 − X2p−1)

Γ (A+ 1
2 + X2p−1)

× e−(X2p−1+X2p)rp+t(
X3

2p−1
3 +

X3
2p
3 ) Pf

2ns×2ns

�

X i − X j

X i + X j

�

.

(60)

At large time, we want to eliminate the time factor in the exponential, hence we perform the
change of variables

X = t−1/3X̃ , r = t1/3 r̃, A+
1
2
= εt−1/3. (61)

In the large time limit, the Gamma, cosine and sine functions simplify using that for small
positive argument

Γ (x)'
1
x

, cos(x)' 1, sin(x)' x . (62)

Under these simplifications, the partition sum at fixed number of strings reads in the limit
t → +∞ (dropping all tildes)

Z(ns,ς) =(−1)ns

ns
∏

p=1

∫

R
drp

ς

ς+ e−t1/3rp

∫∫

C2

dX2p−1

2iπ

dX2p

2iπ
1

4X2p−1

ε+ X2p

ε− X2p

ε+ X2p−1

ε− X2p−1

× e−(X2p−1+X2p)rp+
X3

2p−1
3 +

X3
2p
3 Pf

2ns×2ns

�

X i − X j

X i + X j

�

.

(63)

The contours C have now to be understood as C = ã + iR, where ã ∈]0,ε[. We emphasize
that the contours all lie at the left of the poles at X = ε. Now that the rescaling at large time
is well understood, we can reconstruct the matrix valued kernel Kε which reads in this limit

Kε11(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz
ε+w
ε−w

ε+ z
ε− z

e−rw−r ′z+ w3+z3
3 ,

Kε22(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

ε+w
ε−w

ε+ z
ε− z

e−rw−r ′z+ w3+z3
3 ,

Kε12(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

1
w
ε+w
ε−w

ε+ z
ε− z

e−rw−r ′z+ w3+z3
3 .

(64)

Remark 4.1. The kernel Kε has a particular structure, indeed its elements are related through
derivative identities: Kε22(r, r ′) = ∂r∂r ′K

ε
11(r, r ′), Kε12(r, r ′) = −∂r ′K

ε
11(r, r ′) and

Kε22(r, r ′) = −∂r Kε12(r, r ′).

Remark 4.2. The kernel Kε can be obtained equivalently from the kernel (7) by the same rescal-
ing of rp = t1/3 r̃p and the changes (w, z) → t−1/3(w, z) in the integrals.
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One has K11(t1/3 r̃, t1/3 r̃ ′) = Kε11(r̃, r̃ ′), K22(t1/3 r̃, t1/3 r̃ ′) = t−2/3Kε22(r̃, r̃ ′),
K12(t1/3 r̃, t1/3 r̃ ′) = t−1/3Kε12(r̃, r̃ ′). This produces a factor t−ns/3 from the Pfaffian, compen-
sating for the change of measure

∏

p drp = tns/3
∏

p d r̃p.

Finally, choosing the variable ς as ς= e−st1/3
, at large time we have

lim
t→+∞

σς(r t1/3) = Θ(r − s), (65)

where Θ is the Theta Heaviside function. The Fredholm Pfaffian formula for the generating
function then becomes in the limit

lim
t→+∞

g(ς= e−st1/3
) = Pf(J − Kε)L2([s,+∞[). (66)

On the other hand, at large time, the Laplace transform of the distribution of the exponential
of the KPZ height converges towards the cumulative probability of the height, i.e.

EKPZ

�

exp(−ςeH(t))
�

= EKPZ

h

exp(−eH(t)−st1/3
)
i

't→+∞ EKPZ

�

Θ(st1/3 −H(t))
�

't→+∞ P(
H(t)
t1/3
¶ s),

(67)

where Θ is the Theta Heaviside function. From this, we obtain the CDF of the height distribu-
tion in the large time limit as a Fredholm Pfaffian

lim
t→+∞

P(
H(t)
t1/3
¶ s) = Pf(J − Kε)L2([s,+∞[) := F (ε)(s) (68)

in terms of the matrix kernel given in (64), also called the transition kernel, as it describes
the critical region around the transition. Anticipating a bit, it should describe the crossover
from GSE/GOE/Gaussian discussed in the introduction, expected from universality arguments.
Although we will indeed show most of it, our formula for the kernel is, however, limited at
this stage to ε > 0.

4.1 Large ε behavior of the matrix valued kernel and convergence to the GSE-
TW distribution

Performing the large time limit at any fixed A> −1/2 corresponds to the previous calculation
with ε = +∞. Hence we now investigate the large ε behavior of the kernel at large time. As
the contours of kernel Kε are parallel to the imaginary axis and cross the real axis between 0
and ε, we can push the limit ε→∞ without any ambiguity. All rational functions involving
the parameter ε in the large time limit of the kernel Kε in Eq. (64) converge to the value −1.
Hence in this limit we obtain a kernel which we denote K∞, and it reads

K∞11 (r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz

e−rw−r ′z+ w3+z3
3 ,

K∞22 (r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

e−rw−r ′z+ w3+z3
3 ,

K∞12 (r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

1
w

e−rw−r ′z+ w3+z3
3 .

(69)

This is precisely the kernel associated to the Gaussian Symplectic Ensemble (GSE) of random
matrices as given in Lemma 2.7. of Ref. [37]. Hence this shows that the distribution of the
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height at x = 0 converges at large time for boundary conditions such that ε →∞ (e.g. for
any fixed A> −1/2) to the GSE Tracy-Widom distribution

lim
t→∞
P(

h(0, t) + t
12

t1/3
¶ s) = F4(s). (70)

4.2 Alternative expression for the large-time transition matrix-valued kernel

In this section we will present an equivalent form of the large time transition kernel for the
KPZ equation, better suited to study general ε. In particular, we will compare it with the tran-
sition kernel obtained in in Ref. [37] from the solution of discrete models, i.e. last passage
percolation and facilitated TASEP.

To study the large time behavior for general ε, i.e. the critical region, it is useful to return
to the α-decomposition of Section 3.4. Let us choose, as discussed there, α= A+ 1

2 . Inserting
the replacement (59) into the finite time kernel (7) and repeating the same steps one obtains
a large time kernel equivalent to (64) (which, for simplicity, we will also denote by Kε). In
that limit the replacement only amounts to multiply by (w− ε)(z − ε)/(wz) the integrand in
Kε22, and by (z − ε)/z the integrand in Kε12, leading to

Kε11(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz
ε+w
w− ε

ε+ z
z − ε

e−rw−r ′z+ w3+z3
3 ,

Kε22(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

(z + ε)(w+ ε)
wz

e−rw−r ′z+ w3+z3
3 ,

Kε12(r, r ′) =
1
4

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

z + ε
wz

ε+w
w− ε

e−rw−r ′z+ w3+z3
3 .

(71)

As advertized above, this choice of α = A+ 1
2 has decreased the number of poles for w or z

equal to ε, which will be useful below.

We now slightly rewrite this kernel to make more apparent its asymptotic behavior for
large arguments r, r ′→ +∞. For this purpose it is useful to move the contours of integration.
The contour C crosses the real axis between 0 and ε. We now choose to move all the contours
to the right of ε. This will pick some residues that we will evaluate. Doing so, and introducing
a contour Ĉ parallel to the imaginary axis and crossing the real axis at the right of ε, we find
the decomposition

Kε11(r, r ′) =
1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz
ε+w
w− ε

ε+ z
z − ε

e−rw−r ′z+ w3+z3
3

+
1
2

∫

Ĉ

dz
2iπz

e
z3+ε3

3

�

e−r ′z−rε − e−rz−r ′ε
�

Kε22(r, r ′) =
1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

(z + ε)(w+ ε)
wz

e−rw−r ′z+ w3+z3
3

Kε12(r, r ′) =
1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

z + ε
wz

ε+w
w− ε

e−rw−r ′z+ w3+z3
3

+
1
2

∫

Ĉ

dz
2iπ

z − ε
z

e−r ′z−rε+ z3+ε3
3 .

(72)

This form is useful to evaluate the transitional CDF F (ε)(s) at large s, i.e. the Fredholm Pfaffian
in a trace expansion at large s. The Fredholm Pfaffian involves integrals of the variables r, r ′
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on [s,+∞[. Its behavior for large s is thus controled by the region of large r, r ′ > s. In that
region, each term in (72) can be evaluated by saddle point: indeed the new contour Ĉ can be
deformed to include the saddle point. Hence the asymptotics is of the standard Airy type, i.e.
each cubic exponential in the integrand leads to a decay ∼ exp(−2

3 s3/2) and the total decay
of each term is thus of the form ∼ exp(−2

3 ps3/2), where the integer p = 1, 2 is the number of
cubic exponentials (akin to the number of Airy functions). To be systematic one thus labels
the terms in (72) in terms of their homogeneity in cubic exponentials (not counting the terms
in ε3). We introduce the notation K(n) when the element K comprises n cubic exponentials
and hence we write the kernel as

Kε11 = Kε,(2)11 + Kε,(1)11 ,

Kε22 = Kε,(2)22 ,

Kε12 = Kε,(2)12 + Kε,(1)12 .

(73)

Remark 4.3. Kε,(1)12 is a rank 1 operator.

An important property of our result is that our transition kernel Kε in (72) is equivalent to
the cross-over kernel3 Kcross in Ref. [37] Definition 2.9, i.e. we conjecture that for ε > 0

Pf(J − Kε)L2([s,+∞[) = Pf(J − Kcross)L2([s,+∞[). (74)

Let us first recall that from Ref. [37] Definition 2.9, the cross-over kernel Kcross is the sum
of two kernels I and R, the latter having a single non-zero component R22. In our notations
and contour conventions, these kernels read

I11(r, r ′) =

∫∫

C2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

z + ε
z

e−r ′z−rw+ w3+z3
3 ,

I12(r, r ′) =
1
2

∫∫

C2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

1
ε− z

e−r ′z−rw+ w3+z3
3 ,

I22(r, r ′) =
1
4

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

1
ε− z

1
ε−w

e−r ′z−rw+ w3+z3
3 ,

I21(r, r ′) = −I12(r
′, r),

R22(r, r ′) = −
1
4

∫

Ĉ

dz
2iπ

e
z3+ε3

3 −rz−r ′ε

ε+ z
+

1
4

∫

Ĉ

dz
2iπ

e
z3+ε3

3 −r ′z−rε

ε+ z
−

1
2

∫

C

dz
2iπ

zez(r ′−r)

(ε+ z)(ε− z)
,

(75)

where we recall that the contour C is parallel to the imaginary axis and crosses the real axis
between 0 and ε and that the contour Ĉ is parallel to the imaginary axis and crosses the real
axis at the right of ε.

Remark 4.4. With these definitions the above formula holds for ε > 0. The kernel of Ref. [37] is
also valid for ε < 0, with the following changes. For ε < 0, the contours of I11 are unchanged,
for I12 the contour of z crosses the real axis at the left of ε, the contour of w crosses the real
axis at the right of 0 such that w+ z > 0. For I22 both contours of w and z cross the real axis
at the right of 0. For R22 the contours cross the real axis between the left of −ε and the right
of ε.

3This kernel appeared previously in Refs. [75, 76] . We thank G. Barraquand for pointing these references to
us.
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It is important to note that for ε > 0, the first two terms of R22 can be absorbed in I22 by
changing the contour Ĉ → C in I22. Indeed the first two terms of R22 are nothing more than
the residues of the poles of I22 at w = ε and z = ε. Hence, in later uses, we will redefine for
convenience R22 to be only its last term

R22(r, r ′) = −
1
2

∫

C

dz
2iπ

zez(r ′−r)

(ε+ z)(ε− z)
=

1
4

sgn(r ′ − r)e−|r−r ′|ε (76)

and include the first two terms in I22. Since only the sum I22+R22 matters this is immaterial.

Since it is already proved in Ref. [37] that in the large positive ε→ +∞ limit, their kernel
is the GSE kernel, we see that in this limit it is equivalent to ours. For general ε > 0 we have
expanded the Fredholm Pfaffians on both sides of Eq. (74) in series of their traces, using the
counting in cubic exponentials explained above. It is equivalent to expanding both predictions
for the CDF for the height in the transition regimes at large s. We found perfect matching up
to, and including, third order, i.e. exp(−2s3/2). Thus we have a strong case for the conjecture
of the full equivalence of the Fredholm Pfaffians. A complete proof of this identity seems for
the moment out of reach.

4.3 Small ε behavior of the matrix-valued kernel

In this Section, we will take the small ε limit of the two-dimensional kernel. Since the kernel
Kcross converges to the Tracy-Widom GOE kernel as ε → 0, see Ref. [37], the limit of Kε for
ε→ 0 will provide a new kernel for the Tracy-Widom GOE distribution in accordance to our
conjecture in Eq. (74). The starting point is the expression of Kε in Eq. (72) and we will show
that the ε→ 0 limit can be taken without any ambiguity within the different elements of the
kernel.

Whenever there is an Airy term of the type e−rz−rε−z3/3, the ε → 0 limit is clear and we
can set ε= 0 directly. In the case of the different projectors, where there is solely a term of the
type e−rε in Eq. (72), the limit has to be investigated properly because of possible convergence
issue when calculating the Fredholm Pfaffian which involves products of the elements of the
matrix-valued kernel, see Eq. (146). Hence, with this remark and expressing the projectors in
terms of Airy functions, we rewrite the kernel Kε as

Kε→0
11 (r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz

e−rw−r ′z+ w3+z3
3

+
e−rε

2

∫ +∞

0

dλAi(λ+ r ′)−
e−r ′ε

2

∫ +∞

0

dλAi(λ+ r)

Kε→0
22 (r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

e−rw−r ′z+ w3+z3
3

Kε→0
12 (r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

1
w

e−rw−r ′z+ w3+z3
3 +

e−rε

2
Ai(r ′)−

εe−rε

2

∫ +∞

0

dλAi(λ+ r ′).

(77)

If one defines the following vectors

|uε(r)〉=

�

e−rε

2
0

�

, |vε(r ′)〉=

 

∫ +∞
0 dλAi(λ+ r ′)

Ai(r ′)− ε
∫ +∞

0 dλAi(λ+ r ′),

!

(78)
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then the kernel Kε→0 admits the reduced representation

Kε→0 = K∞ + |uε〉 〈vε| − |vε〉 〈uε| , (79)

where K∞ is the GSE kernel of Eq. (69). In order to treat the ε dependence in the term
|uε〉 〈vε| − |vε〉 〈uε|, we treat it as a rank one perturbation to a Fredholm Pfaffian.

Pf(J − Kε→0)L2([s,+∞[) = Pf(J − K∞ − |uε〉 〈vε|+ |vε〉 〈uε|)L2([s,+∞[). (80)

By a generalization of the matrix determinant lemma and the Sherman Morrison formula for
Fredholm determinants4, we have

Pf(J − K∞ − |uε〉 〈vε|+ |vε〉 〈uε|) = Pf(J − K∞)
�

1− 〈uε| (I + JK∞)−1J |vε〉
�

. (81)

The remaining goal is to show that the ε → 0 limit can be taken in the inner product in
Eq. (81). It is possible to expand the resolvant (I + JK∞)−1, we will show on the lowest order
term of the expansion that the ε→ 0 limit can be taken easily and we will conjecture the same
conclusion for higher order terms.

〈uε| J |vε〉 − 〈u0| J |v0〉=
1
2

∫ +∞

s
dr

�

(e−rε − 1)Ai(r)− εe−rε

∫ +∞

0

dλAi(λ+ r)

�

=
1
2

∫ +∞

0

dr(e−sε−rε − 2+ e−rε)Ai(r + s)

=
ε→0

O(ε).

(82)

From the first to the second line, we proceeded to the change of variable
(r,λ)→ (u= r +λ ∈ R+, v = r −λ ∈ [−u, u]) and relabeled u→ r.

Our conclusion is that we can simply take the ε→ 0 limit from the beginning in the vectors
|uε〉 and |vε〉 so that the final resulting infinite-time kernel for A= −1/2 reads

K0
11(r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

1
wz

e−rw−r ′z+ w3+z3
3

+
1
2

∫ +∞

0

dλAi(λ+ r ′)−
1
2

∫ +∞

0

dλAi(λ+ r)

K0
22(r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

e−rw−r ′z+ w3+z3
3

K0
12(r, r ′) =

1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

1
w

e−rw−r ′z+ w3+z3
3 +

1
2

Ai(r ′).

(83)

Remark 4.5. Note that in the kernel K0, the derivative relation between its elements is con-
served: K0

22(r, r ′) = ∂r∂r ′K
0
11(r, r ′), K0

12(r, r ′) = −∂r ′K
0
11(r, r ′) and K0

22(r, r ′) = −∂r K0
12(r, r ′).

According to Ref. [37] and our conjecture in Eq. (74), the Fredholm Pfaffian of the kernel
K0 describes the Tracy-Widom GOE distribution. To the best of our knowledge, this kernel K0

has not appeared before in the literature and therefore provides an alternative expression for
the Tracy-Widom GOE distribution. Since it enjoys the same simple derivative structure as the
GSE kernel, see Remark 4.5 above, without involving any sign function, contrary to Kcross, we
hope this kernel will find further applications.

4We obtain this generalization by considering the identity Pf(J − K)2 = Det(I + JK) and treat the term
J(|uε〉 〈vε| − |vε〉 〈uε|) as a rank two perturbation.
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4.4 Solution for finite time at A= −1/2

Having understood the ε→ 0 limit on the infinite time matrix-valued kernel, we extend the
calculation to study the critical case A= −1/2 at finite time. To this aim, we first rewrite the
kernel Eq. (7) using the α-prescription with α= A+ 1

2 .

K11(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z) cos(π(w− A−
1
2
)) cos(π(z − A−

1
2
))e−rw−r ′z+t w3+z3

3 ,

K22(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z)
sin(π(w− A− 1

2))

π

sin(π(z − A− 1
2))

π
e−rw−r ′z+t w3+z3

3 ,

K12(r, r ′) =

∫∫

C2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z) cos(π(w− A−
1
2
))

sin(π(z − A− 1
2))

π
e−rw−r ′z+t w3+z3

3 ,

K21(r, r ′) = −K12(r
′, r).

(84)

We recall that the contours C are parallel to the imaginary axis and cross the real axis between
0 and A+ 1

2 . Let us now push this contour to the right of A+ 1
2 by picking the related pole and

call the new contour Ĉ . We will directly write the result at A= −1/2 without further details
to conclude this Section on the matrix-valued kernel.

K11(r, r ′) =

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (−w)
Γ (w)

Γ (−z)
Γ (z)

Γ (2w)Γ (2z) cos(πw) cos(πz)e−rw−r ′z+t w3+z3
3

+

∫

Ĉ

dz
2iπ
Γ (1− z)
Γ (1+ z)

Γ (2z) cos(πz)et z3
3

�

e−r ′z − e−rz
�

,

K22(r, r ′) =

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (−w)
Γ (w)

Γ (−z)
Γ (z)

Γ (2w)Γ (2z)
sin(πw)
π

sin(πz)
π

e−rw−r ′z+t w3+z3
3 ,

K12(r, r ′) =

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

Γ (−w)
Γ (w)

Γ (−z)
Γ (z)

Γ (2w)Γ (2z) cos(πw)
sin(πz)
π

e−rw−r ′z+t w3+z3
3

+

∫

Ĉ

dz
2iπ
Γ (1− z)
Γ (1+ z)

Γ (2z)
sin(πz)
π

e−r ′z+t z3
3 ,

K21(r, r ′) = −K12(r
′, r).

(85)

This final kernel is the one that describes the critical case A= −1/2 at all times.

It was shown in Ref. [27] that Fredholm Pfaffians with matrix-valued kernel of Schur type
can also be expressed as Fredholm determinants with a scalar kernel. We now dedicate the
rest of this work to the understanding of the structure of the scalar-valued kernel.
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5 From a matrix valued kernel to a scalar kernel

5.1 Solution for the KPZ generating function at all times for generic A in terms
of a scalar kernel

The general kernel we have obtained in Eq. (7) has a particular structure in the form of a Schur
Pfaffian. With this structure, the kernel verifies the hypothesis of Proposition B.2 of [27]. This
proposition states that we can transform the Fredholm Pfaffian of Eq. (54) which involves a
matrix valued kernel, into a Fredholm determinant of a scalar kernel. To proceed, let us first
define the functions

fodd(r) =

∫

C

dw
2iπ

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (2w) cos(πw)e−rw+t w3
3

feven(r) =

∫

C

dz
2iπ

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

Γ (2z)
sin(πz)
π

e−rz+t z3
3 ,

(86)

and the kernel K̄t,ς such that for all (x , y) ∈ R2
+

K̄t,ς(x , y) = 2∂x

∫

R
dr

ς

ς+ e−r
[ feven(r + x) fodd(r + y)− fodd(r + x) feven(r + y)]

= 2∂x

∫

R
dr

ς

ς+ e−r

∫∫

C2

dwdz
(2iπ)2

Γ (A+ 1
2 −w)

Γ (A+ 1
2 +w)

Γ (A+ 1
2 − z)

Γ (A+ 1
2 + z)

× Γ (2w)Γ (2z)
sin(π(z −w))

π
e−xz−yw−rw−rz+t w3+z3

3 .

(87)

We recall that in this formula the contours C are parallel to the imaginary axis and cross the
real axis between 0 and A+ 1

2 .

Then, the Laplace transform of the one-point distribution of the exponential of the KPZ
height admits the following representation:

g(ς) = EKPZ

�

exp(−ςeH(t))
�

= Pf(J −σςK)L2(R) =
q

Det(I − K̄t,ς)L2(R+). (88)

Remark 5.1. In the case of the scalar kernel, there is no α-decomposition as any α prescription
in the functions fodd and feven will eventually lead to the same kernel (87).

Large time limit. To obtain the large time limit of (88) one performs the same rescaling as
in Sec. 4, namely one chooses ς= e−t1/3s and one rescales (w, z)→ t−1/3(w, z), r → t1/3r. The
Fermi factor σς produces a Heaviside function Θ(r − s) and then (88) becomes (11), in terms
of the large time scalar kernel K̄ given in Eq. (12).

5.2 Large ε behavior of the scalar kernel and convergence to the GSE

We recall that at large time the critical cross-over parameter is given by ε = (A+ 1
2)t

1/3. For
large ε, we use the exact same procedure as in Section 4.1 and we obtain from Eq. (12) the
kernel

K̄∞(x , y) =
1
2

∫∫

C2

dwdz
(2iπ)2

w− z
w+ z

1
w

e−xz−yw+ w3+z3
3 := KGLD(x , y), (89)
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which was proved to be the one-dimensional GSE kernel in Refs. [24, 27]. Performing the
integrals one can equivalently write it as

KGLD(x , y) = KAi(x , y)−
1
2

Ai(x)

∫ +∞

0

dλAi(y +λ), (90)

where KAi is the standard Airy kernel. This is the form in which it was obtained in [24] for
the case A= +∞. Here we see that the GSE-TW holds for any fixed A> −1/2 at large time,
consistent with the conclusion obtained above from the matrix valued kernel.

5.3 Small ε limit of the scalar kernel and convergence to the GOE

To investigate the small ε behavior of the scalar kernel, one proceeds as in the matrix case
by moving the contours C of the scalar kernel of Eq. (12) to Ĉ which is to the right of ε, and
collecting all residues along the way. Doing so, we rewrite the scalar kernel as

K̄(x , y) =
1
2

∫∫

Ĉ2

dwdz
(2iπ)2

ε+w
ε−w

ε+ z
ε− z

w− z
w+ z

1
w

e−xz−yw+ w3+z3
3

− εe−εx+ ε
3
3

∫ +∞

0

dλAi(y +λ) +Ai(x)e−εy+ ε
3
3 .

(91)

The new contour Ĉ is now well suited for the small ε limit in the first term. However one
cannot simply set ε = 0 in the last two terms. Indeed the operator product of the last term
with the second one leads to a divergent integral. We now study this delicate limit in details.

To further study the small ε limit, one first conjugates the kernel on the left by the mul-
tiplication of e−εx and on the right by the multiplication of eεy . This operation leaves the
associated Fredholm determinant unchanged. The new kernel obtained by this manipulation
is the following

K(x , y) =
1
2

∫∫

Ĉ2

dwdz
(2iπ)2

ε+w
ε−w

ε+ z
ε− z

w− z
w+ z

1
w

e−xz−yw+εy−εx+ w3+z3
3

− εe−2εx+εy+ ε
3
3

∫ +∞

0

dλAi(y +λ) +Ai(x)e−εx+ ε
3
3 .

(92)

We split this kernel into three components and we will analyze them separately.

K0(x , y) =
1
2

∫∫

Ĉ2

dwdz
(2iπ)2

ε+w
ε−w

ε+ z
ε− z

w− z
w+ z

1
w

e−xz−yw+εy−εx+ w3+z3
3 ,

K1(x , y) = εe−2εx+εy+ ε
3
3

∫ +∞

0

dλAi(y +λ),

K2(x , y) = Ai(x)e−εx+ ε
3
3 .

(93)

• The small ε limit of K0 is taken easily as ε does not play any particular role in the
convergence of the integrals, it reads

lim
ε→0

K0 = KGLD. (94)

• Similarly, the small ε limit of K2 is taken straightforwardly and reads

lim
ε→0

K2 = Ai. (95)

Indeed, the Airy function will always make any integral over x convergent.
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• The convergence of K1 is more complicated and as the devil hides in the details, we have
to analyze this part of the kernel very carefully. One could be tempted to write that

lim
ε→0

K1(x , y) = lim
ε→0

εe−2εx+εy+ ε
3
3

∫ +∞

0

dλAi(y +λ) =
?

0. (96)

This is wrong and the whole subtlety of the small ε limit. The convergence of the kernel
with respect to the variable y is controlled by the Airy function, hence we are allowed

to take the limit eεy+ ε
3
3 → 1. We are now going to show the distributional identity

lim
ε→0

�

εe−2εx
�

=
1
2
δ(x = +∞) :=

1
2
δ∞(x). (97)

When we multiply the kernel K1 on the left by an arbitrary element K , we have to
calculate the following product

∫ +∞

s
dxK(z, x)K1(x , y) = ε

∫ +∞

s
dxK(z, x)e−2εx

∫ +∞

0

dλAi(y +λ). (98)

Proceeding to the change of variable x̃ = 2εx , we have
∫ +∞

s
dxK(z, x)K1(x , y) =

1
2

∫ +∞

2sε
d x̃K(z,

x̃
2ε
)e− x̃

∫ +∞

0

dλAi(y +λ). (99)

In the limit of small ε, this integral should be equal to

1
2

lim
ε→0

∫ +∞

2sε
d x̃K(z,

x̃
2ε
)e− x̃

∫ +∞

0

dλAi(y +λ)

=
1
2

lim
X→+∞

K(z, X )

�

∫ +∞

0

d x̃ e− x̃

�

∫ +∞

0

dλAi(y +λ)

=
1
2

lim
X→+∞

K(z, X )

∫ +∞

0

dλAi(y +λ).

(100)

Naively one would claim that this limit is always zero due to some exponential decay of
the kernels. However, the kernel K2 does not decay

lim
X→+∞

K2(z, X ) = Ai(z) 6= 0, (101)

hence products of K2 and K1 give a non zero result for ε→ 0.

To summarize this discussion, we have shown that the kernel for ε= 0 is equal to

K(x , y) =KGLD(x , y)−
1
2
δ∞(x)

∫ +∞

0

dλAi(y +λ) +Ai(x). (102)

The last effort of this Section now consists in proving that the Fredholm determinant of K is in-
deed identical to the one of the GOE-TW distribution. As it is common for such manipulations,
we introduce the brackets notations

δ∞(x) = |δ∞〉
∫ +∞

0

dλAi(y +λ) = 〈1|Ai

Ai(x) = |Ai〉 ,

(103)

where we have implicitly promoted the Airy function to an operator of kernel Ai(x , y) = Ai(x+y).
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Remark 5.2. With this notation, we have KGLD = KAi −
1
2 |Ai〉 〈1|Ai.

Under these conventions, our kernel for ε= 0 is written as

K= KGLD −
1
2
|δ∞〉 〈1|Ai+ |Ai〉 〈1| . (104)

The kernel K can be interpreted as the KGLD kernel with a rank 2 perturbation. By the matrix
determinant lemma coupled to the Sherman-Morrison formula, we can evaluate the Fredholm
determinant of K and extract the two rank 1 perturbations as

Det (I −K) = Det
�

I − KGLD +
1
2
|δ∞〉 〈1|Ai− |Ai〉 〈1|

�

= Det
�

I − KGLD
�

×
�

�

1− 〈1| (I − KGLD)−1 |Ai〉
�

�

1+
1
2
〈1|Ai(I − KGLD)−1 |δ∞〉

�

+
1
2
〈1|Ai(I − KGLD)−1 |Ai〉 〈1| (I − KGLD)−1 |δ∞〉

�

.

(105)

Since KGLD decreases fast enough at infinity in both arguments, we have for any integer n¾ 1
the equality

(KGLD)n |δ∞〉= 0. (106)

On the contrary, the identity keeps |δ∞〉 invariant, i.e. I |δ∞〉= |δ∞〉 and hence by a regular
series expansion we obtain the action of δ∞ on the resolvant of KGLD.

(I − KGLD)−1 |δ∞〉= |δ∞〉 . (107)

Similarly to the above considerations, by the decay property of the Airy function, we have that
〈1|Ai|δ∞〉 = 0 and we also have readily the inner product 〈1|δ∞〉 = 1. Implementing these
results in the Fredholm determinant of Eq. (105) leads to

Det (I −K) = Det
�

I − KGLD
�

�

1− 〈1| (1−
1
2

Ai)(I − KGLD)−1 |Ai〉
�

= Det
�

I − KGLD − |Ai〉 〈1| (1−
1
2

Ai)
�

= Det
�

I − KAi − |Ai〉 〈1| (1−Ai)
�

.

(108)

In the first line, we simplified Eq. (105) using the action of δ∞, from the first to the second line
we used the Matrix determinant lemma and from the second to the third line we introduced
the expression of KGLD with brackets notations. The last Fredholm determinant was shown by
Forrester in Ref. [77] to be related to the GOE Tracy-Widom cumulative distribution function
F1(s) as

F1(s)
2 = Det

�

I − KAi − |Ai〉 〈1| (1−Ai)
�

L2([s,+∞[) . (109)

Hence, we finally conclude that for ε → 0+, the cumulative probability of the one-point
KPZ height field is given by the GOE Tracy-Widom distribution.

lim
t→∞
P(

H(t)
t1/3
¶ s) = F1(s). (110)
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5.4 Solution for finite time at A= −1/2

Now that we have understood how to handle the limit ε→ 0+ on the infinite time kernel we
can extend the same method to study A= −1/2 at finite time. We first rewrite the finite time
scalar kernel (87) for any A> −1/2 as follows

K̄t,ς(x , y) = −
∫∫

C2

dwdz
(2iπ)2

Γ (1+ A+ 1
2 −w)

Γ (1+ A+ 1
2 +w)

Γ (1+ A+ 1
2 − z)

Γ (1+ A+ 1
2 + z)

A+ 1
2 +w

A+ 1
2 −w

A+ 1
2 + z

A+ 1
2 − z

×Γ (2w)Γ (1+ 2z)ςz+w sin(π(z −w))
sin(π(z +w))

e−xz−yw+t w3+z3
3 , (111)

where we have performed the derivative ∂x , rearranged the Gamma functions and used the
alternative form of the Mellin Barnes formula (46). We consider now the case 0 < A+ 1

2 < 1
(since we will perform the limit A → −1/2 below this is sufficient for our purpose). Then
we can move the integration contour of both variables from C to Ĉ which, at finite time is
Ĉ = a+ iR with a ∈]A+ 1

2 , 1[. This allows to take the A= −1/2 limit, following similar steps
as in the previous Section.

To study the A→−1
2 limit, we will first denote Ã= A+ 1

2 and similarly to the infinite time
limit, we conjugate the kernel K̄t,ς on the left by the multiplication of e−Ãx and on the right by

the multiplication of eÃy and we denote Kt,ς the new kernel. This operation leaves again the
associated Fredholm determinant unchanged. Evaluating the two residues of the kernel splits
it in three parts Kt,ς = K Ã

0 + K Ã
1 + K Ã

2 . The first part is the same expression as (111) with C
replaced by Ĉ . We will write it here with the limit A→−1/2 already taken

K0
0 (x , y)

=
∂x

2π

∫∫

Ĉ2

dwdz
(2iπ)2

Γ (−w)Γ (−z)Γ (w+
1
2
)Γ (z +

1
2
)(4ς)z+w sin(π(z −w))

sin(π(z +w))
e−xz−yw+t w3+z3

3 .

(112)

We now determine the residues at w, z = Ã obtained by pushing the contour C into Ĉ .

• The residue at z = Ã gives the projector

K Ã
1 (x , y) = −ςÃÃeÃy−2xÃ+t Ã3

3 ψÃ(y), (113)

with

ψÃ(y) = −2

∫

Ĉ

dw
2iπ
Γ (1+ Ã−w)
Γ (1+ Ã+w)

Ã+w

Ã−w
Γ (2w)ςw sin(π(w− Ã))

sin(π(w+ Ã))
e−yw+t w3

3 . (114)

We only need the Ã= 0 limit of ψÃ(y) given as

ψ0(y) = −
1
p
π

∫

Ĉ

dw
2iπ
Γ (−w)Γ (w+

1
2
)(4ς)w e−yw+t w3

3 , (115)

where in that limit Ĉ crosses the real axis in the interval ]0, 1[. As in the infinite time
limit, the kernel K Ã

1 converges to

lim
Ã→0

K Ã
1 (x , y) = −

1
2
δ∞(x)ψ0(y). (116)
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Remark 5.3. Introducing the Fourier transform of the Airy function and the Barnes inte-
gral

et w3
3 =

∫

R
dr Ai(r)et1/3wr ,

2F1(a, b, c, z) =
Γ (c)

Γ (a)Γ (b)

∫

iR

ds
2iπ
(−z)s

Γ (a+ s)Γ (b+ s)Γ (−s)
Γ (c + s)

,

(117)

it is possible to express ψ0(y) as

ψ0(y) =

∫

R
drAi(r)



1−
1

Æ

1+ 4ςe−y+t1/3r



 . (118)

This is reminiscent of the result obtained in Refs. [26,58] about the solution at all times
for A= −1/2, see below.

• The residue at w= Ã gives another projector

K Ã
2 (x , y) = −ςÃe−Ãx+t Ã3

3 ∂xψÃ(x). (119)

In the limit A→−1
2 , this kernel converges to

lim
Ã→0

K Ã
2 (x , y) = φ0(x) := −∂xψ0(x) , ψ0(x) =

∫ +∞

0

dλφ0(x +λ). (120)

To summarize, the A→−1
2 limit of the kernel Kt,ς is given by

lim
Ã→0

Kt,ς(x , y) = K0
0 (x , y)−

1
2
δ∞(x)ψ0(y)− ∂xψ0(x)

= K0
0 (x , y)−

1
2
δ∞(x)

∫ +∞

0

dλφ0(y +λ) +φ0(x).
(121)

The structure of this kernel is similar to the one for infinite time in (104). Hence we can follow
the same steps and treat the two projectors and the δ∞ term using the Sherman-Morrison
formula and the matrix determinant lemma which allows us to conclude that

lim
Ã→0

Det
�

I − K̄t,ς

�

= Det
�

I − K0
0 − |φ0〉 〈1| (1−

1
2
φ0)

�

L2(R+)
, (122)

which translates for the generating function of the exponential of the KPZ height as

g(ς)2 = EKPZ

�

exp(−ςeH(t))
�2
= Det

�

I − K0
0 − |φ0〉 〈1| (1−

1
2
φ0)

�

L2(R+)
. (123)

Our final result for the generating function at all time for A = −1/2 can thus be written
more explicitly as

g(ς) = EKPZ

�

exp(−ςeH(t))
�

=
r

Det
�

I − Kς
�

L2(R+)
, (124)

with

Kς(x , y) = K0
0 (x , y)−

1
2
φ0(x)

∫ +∞

0

dλφ0(y +λ) +φ0(x), (125)
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where K0
0 (x , y) is given in (112) and

φ0(x) =
1
p
π

∫

Ĉ

dw
2iπ
Γ (1−w)Γ (w+

1
2
)(4ς)w e−xw+t w3

3 , (126)

where in all formula the contour Ĉ runs parallel to the imaginary axis and crosses the real axis
in the interval ]0,1[. In the large time limit one sets ς = e−t1/3s and rescales the integration
variables w→ wt−1/3, z→ zt−1/3 and perform a similarity transformation on the kernel. The
function φ0 then leads to the Airy function, and one recovers the large time result of the
previous Section.

Remark 5.4. Note that in Refs. [26,58], another formula was proved for finite time and A= −1
2 ,

i.e.

EKPZ

�

exp(−ςeH(t))
�

= EGOE





∞
∏

i=1

1
Æ

1+ 4ςet1/3ai



 , (127)

where the set {ai} forms a Pfaffian GOE point process. The equivalence between the two
formulae is under investigation.

6 Conclusion

In this paper we have extended the replica Bethe ansatz solution to the KPZ equation in a
half-space for droplet initial condition near the wall, previously obtained for wall parameter
A= +∞ and A= 0, to generic value of A. This is an important problem which is believed, via
universality, to exhibit a rich GSE/GOE/Gaussian transition first discovered by Baik and Rains.
Despite much progress in the topic of exact solutions for the KPZ equation, this has remained
a challenge for several years. A recent theorem which maps this problem to the (easier) case
of A = +∞ (Dirichlet) but with a Brownian initial condition was inspiring in the solution.
Indeed we could apply the same type of summation as was developped in the solution of the
Brownian initial condition in the full space. We used the known results for the Bethe ansatz
eigenstates of the delta Bose gas in the half-line with Dirichlet boundary conditions.

At present, for a technical reason, our solution is valid for all times but limited to A¾ −1/2,
i.e. the unbound phase. It allows to demonstrate the convergence to the GSE and GOE Tracy
Widom distributions at large time in this phase. We have also obtained the crossover or tran-
sition kernel valid in the critical region A+ 1

2 = εt−1/3. The form of our transition kernel is
novel, and we have shown that for ε¾ 0 it agrees to a high order with the results of the kernel
obtained by completely different methods for discrete models (facilitated TASEP and last pas-
sage percolation). This non-trivial check leads us to conjecture that these two kernel are fully
equivalent. Additionally, let us note that the phase diagram we have presented for the solution
to the KPZ equation echoes the one obtained in Ref. [41] Section 8 for the log-gamma polymer.

In a companion study [29] we have approached the problem differently by elucidating the
structure of the boundary bound states which appear in the half-line Bose gas with generic
parameter A. It quite easily yields results for the Gaussian phase A< −1/2 where these states
dominate. It would be nice to find a bridge between these studies and to obtain a more com-
plete solution of the KPZ equation in the half-space for all values of A. Let us close by men-
tioning that the physics content of the mapping between the Brownian initial condition and
the droplet initial condition with different interactions with the wall remains to be understood
deeper.
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A Overlap of the half-line Bethe states with the Brownian initial
condition

Here we give some details on the calculation of the overlap 〈Ψµ|Φ0〉 between the half-line
Bethe states and the Brownian initial condition. We recall that Φ0, given in (21), is a fully
symmetric function of its arguments, and that in the sector 0¶ x1 < · · ·¶ xn it equals

Φ0(x1, . . . , xn) = exp





1
2

n
∑

j=1

(2n− 2 j + 1)x j −wx j



 , (128)

where w = (A+ 1
2) is the drift of the Brownian. Since we will find that the overlap is real, we

will instead calculate its complex conjugate and use that 〈Ψµ|Φ0〉∗ = 〈Φ0|Ψµ〉= 〈Ψµ|Φ0〉. Since
Ψµ is also a symmetric function of its arguments, by definition the overlap can thus be written
as

〈Φ0|Ψµ〉= n!

∫

0<y1<y2<···<yn

dy1 . . . dynΨµ(y1, . . . , yn)e
∑n

j=1
1
2 (2n+1−2 j)y j−wy j . (129)

Inserting the explicit form of the Bethe eigenstate (23) as a superposition of plane waves we
obtain

〈Φ0|Ψµ〉=
n!
(2i)n

∑

P∈Sn

n
∏

p=1





∑

εp=±1

εp



 (130)

×
∏

k<`

(1+
i

ε`λP(`) − εkλP(k)
) (1+

i
ε`λP(`) + εkλP(k)

)Gn,w(ε1λP(1), . . . ,εnλP(n)),

where we have defined the integrals

Gn,w(λ1, . . . ,λn) =

∫

0<y1<y2<···<yn

dy1 . . . dyp e
∑n

j=1(−w+iλ j)y j+
1
2 (2n+1−2 j)y j . (131)

These integrals can be explicitly evaluated

Gn,w(λ1, . . . ,λn) =
n
∏

j=1

−1
− jw+ iλn + · · ·+ iλn+1− j + j2/2

. (132)

Now in (130) for each permutation P we can relabel all the εp → εP(p) and denoting by
∑

{ε}=±1 the operation of summation over all the variables ε (an operation independent of
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their labeling) we can rewrite (130) as

〈Φ0|Ψµ〉=
n!
(2i)n

∑

{ε}=±1

n
∏

`=1

ε`

∏

k<`

(1+
i

εkλk + ε`λ`
) (133)

∑

P∈Sn

∏

k<`

(1+
i

εP(`)λP(`) − εP(k)λP(k)
)Gn,w(εP(1)λP(1), . . . ,εP(n)λP(n)),

where we have used the fact that the product
∏

k<`

(1+
i

εP(`)λP(`) + εP(k)λP(k)
) =

∏

k<`

(1+
i

εkλk + ε`λ`
) (134)

is independent of the permutation P. Now we use the following "miracle" equality, proved
in [71]

∑

P∈Sn

∏

k<`

(1+
i

λP(`) −λP(n)
)Gp,w(λP(1), . . . ,λP(n)) =

n
∏

j=1

1

w− 1
2 − iλ j

. (135)

Applying it to the set {εkλk} we obtain

〈Φ0|Ψµ〉=
n!
(2i)n

∑

{ε}=±1

∏

k<`

(1+
i

εkλk + ε`λ`
)

n
∏

j=1

ε j

w− 1
2 − iε jλ j

. (136)

Let us denote w = A+ 1
2 . We now conjecture the following identity valid for any set of

complex numbers λ j

∑

{ε}=±1

∏

k<`

(1+
i

εkλk + ε`λ`
)

n
∏

j=1

ε j

A− iε jλ j
= (2i)n

n
∏

j=1

λ j

A2 +λ2
j

, (137)

which we have checked to high order n= 5 using Mathematica. Inserting in (136) we obtain
the formula for the overlap (34) given in the text.

We note that the overlap formula it is a priori valid before the insertion of the solution of
the Bethe equations, i.e. it is valid for any set of complex λ j , invariant by complex conjugation,
such that the overlap integral converges. The condition for that to be true can be read from
(135) as

Re(iλ j)< w−
1
2

(138)

for all j ∈ [1, n]. Inserting a string state, labeled by {k j , m j} j=1,...,ns
, and specifying w= A+ 1

2 ,
the condition becomes 1

2 max j m j ¶
n
2 < A+ 1

2 .

B Calculation of the first moment of Z(t)

Starting from the general formula (38) for the moments of Z(t) we can read the explicit
expression for EKPZ

�

Z(t)
�

, i.e. n= 1, for A> 0.

EKPZ

�

Z(t)
�

|(38) =

∫

R

dk
π

e−k2 t k2

A2 + k2
. (139)

This result however is not correct for A< 0 as we now show.
The Lieb-Liniger model for a single particle reduces to the standard heat equation on the

half-line with boundary coefficient A, which is easily solved. The (un-normalized) eigenfunc-
tions are the
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• For all A∈ R, the following plane wave solves the eigenvalue equation with eigenenergy
k2

Ψ(x) =
1
2i

�

eikx(1+ i
k
A
)− e−ikx(1− i

k
A
)
�

. (140)

Its norm on a line of length L is ||Ψ||2 = L
2 (1 +

k2

A2 ). The real momentum k is quan-
tized on the line [0, L]. In the L →∞ limit, the summation over eigenstates becomes
∑

k→ L
∫

R
dk
2π . The contribution of this plane wave to the first moment of Z(t) is

ZA(t) = L

∫

R

dk
2π

e−k2 t Ψ(0)
2

||Ψ||2
=

∫

R

dk
π

e−k2 t k2

A2 + k2
. (141)

• For all A < 0, an additional state, i.e. a boundary bound state (BS), with energy −A2

appears
ΨBS(x) = eAx . (142)

Its norm on the infinite line is ||ΨBS||2 = −
1
2A and its contribution to the first moment of

Z(t) is

ZBS(t) = eA2 t ΨBS(0)2

||ΨBS||2
= −2AeA2 tΘ(−A), (143)

where Θ is the Heaviside function.

The total result valid for all A∈ R is thus

EKPZ

�

Z(t)
�

=

∫

R

dk
π

e−k2 t k2

A2 + k2
− 2AeA2 tΘ(−A). (144)

This can also be obtained by solving the heat equation in time, leading to the same result.
We observe that the second contribution ZBS is absent from our result (38). It confirms

that our moment formula is valid only in a certain range of values, i.e. A+ 1/2 > n/2 for
the n-th moment of Z(t). The complete formula thus requires including the boundary bound
states.

C Comparison of the Fredholm Pfaffians

As announced in the main text, we now test our conjecture (74), i.e. we compare the Fredholm
Pfaffian based on our transition kernel, given in (72), and the one based on the crossover kernel
of Ref. [37] Definition 2.9, recalled in (75).

C.1 Series expansion of a Fredholm Pfaffian

Let us recall here the first terms in the series expansion of a Fredholm Pfaffian in powers of its
kernel. Here K denotes a generic kernel. By definition

Pf(J − K)L2([s,+∞[) = 1+
∞
∑

ns=1

(−1)ns

ns!

ns
∏

p=1

∫ +∞

s
drp Pf[K(ri , r j)]ns ,ns

. (145)
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More explicitly we write (with the convention that K21(r, r ′) = −K12(r ′, r))

Pf[J − K]L2([s,+∞[) = 1−
∫ +∞

s
drPf

�

0 K12(r, r)
−K12(r, r) 0

�

+
1
2!

∫∫ +∞

s
dr1dr2Pf









0 K12(r1, r1) K11(r1, r2) K12(r1, r2)
K21(r1, r1) 0 K21(r1, r2) K22(r1, r2)
K11(r2, r1) K12(r2, r1) 0 K12(r2, r2)
K21(r2, r1) K22(r2, r1) K21(r2, r2) 0









−
1
3!

∫∫∫ +∞

s
dr1dr2dr3

Pf

















0 K12(r1, r1) K11(r1, r2) K12(r1, r2) K11(r1, r3) K12(r1, r3)
K21(r1, r1) 0 K21(r1, r2) K22(r1, r2) K21(r1, r3) K22(r1, r3)
K11(r2, r1) K12(r2, r1) 0 K12(r2, r2) K11(r2, r3) K12(r2, r3)
K21(r2, r1) K22(r2, r1) K21(r2, r2) 0 K21(r2, r3) K22(r2, r3)
K11(r3, r1) K12(r3, r1) K11(r3, r2) K12(r3, r2) 0 K12(r3, r3)
K21(r3, r1) K22(r3, r1) K21(r3, r2) K22(r3, r2) K21(r3, r3) 0

















+O(K4)

= 1− TrK12 +
1
2

�

(TrK12)
2 − TrK2

12 + TrK11K22

�

−
1
6

�

(TrK12)
3 + 2TrK3

12 − 3TrK12TrK2
12 + 3TrK12TrK11K22 − 6TrK12K11K22

�

+O(K4),

(146)

where all integrations in the traces run onto [s,+∞[. For completeness, we also provide the
fourth order of the expansion, as given in Appendix G of Ref. [13].

O(K4) =
1
4!

�

Tr[K12]
4 − 6Tr[K12]

2Tr[K2
12] + 3Tr[K2

12]
2 + 8Tr[K12]Tr[K3

12]

− 6Tr[K4
12] + 6Tr[K12]

2Tr[K11K22]− 6Tr[K2
12]Tr[K11K22] + 3Tr[K11K22]

2

− 6Tr[(K11K22)
2]− 24Tr[K12]Tr[K11K22K12] + 24Tr[K11K22K2

12]

+ 12Tr[K11KT
12K22K12]

�

.

(147)

Remark C.1. In the case where K12 is rank 1 operator, we have for all integer n, Tr(Kn
12) = (TrK12)n,

simplifying the expansion dramatically. In that case it becomes [13]

Pf[J − K]L2([s,+∞[) = 1− TrK12 +
1
2

TrK11K22 +
1
2
(2TrK12K11K22 − TrK12TrK11K22)

+
1
4!
(3(TrK11K22)

2 − 6Tr(K11K22)
2) +O(K5). (148)

C.2 Kernel with all contours at the right of ε

To be able to track systematically the degree of homogeneity of each integral in the expansion
at large s as explained in the text, we move all integration contours to Ĉ which is at the right
of ε. For our kernel this was done in (72), leading to the schematic form (73) where the upper
label (p), p = 1,2 denotes the number of independent integrals with a cubic exponential,
leading to the large positive s decay ∼ exp(2

3 ps3/2). We need to put the kernel Kcross in (75)
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in the same form. It reads

I11(r, r ′) =

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

z + ε
z

e−r ′z−rw+ w3+z3
3

I12(r, r ′) =
1
2

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

1
ε− z

e−r ′z−rw+ w3+z3
3

+
1
2

∫

Ĉ

dw
2iπ

w− ε
w

e−r ′ε−rw+ w3+ε3
3

I22(r, r ′) =
1
4

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

1
ε− z

1
ε−w

e−r ′z−rw+ w3+z3
3

+
1
4

∫

Ĉ

dz
2iπ

ez3/3+ε3/3

ε+ z

�

e−r ′z−rε − e−rz−r ′ε
�

R22(r, r ′) =
1
4

sgn(r ′ − r)e−|r−r ′|ε,

(149)

where, as mentionned in the text the total Kcross,22 element of Kcross is equal to the sum I22+R22,
hence for convenience we have moved some terms from R22 to I22. The decomposition in their
homogeneity in cubic exponentials (without counting the terms ε3) read

I11 = I (2)11

I22 + R22 = I (2)22 + I (1)22 + R(0)22

I12 = I (2)12 + I (1)12 .

(150)

The important observation is that there is an anomalous term, of homogeneity zero p = 0,
coming from R22.

Remark C.2. I (1)12 is a rank 1 operator.

C.3 Expansion of the Pfaffians in degree of homogeneity

Consider first the expansion of Pf(J − Kε)L2([s,+∞[) using the formula (146) (and if needed
(160) and (148)). We expand in the total degree of homogeneity (i.e. the degree of stretched
exponential decay at large s) so we need to pick up terms in various orders in the expansion of
the Pfaffian. Fortunately, to expand to third order in homogeneity this order is not too large.
Recalling that

Kε11 = Kε,(2)11 + Kε,(1)11

Kε22 = Kε,(2)22

Kε12 = Kε,(2)12 + Kε,(1)12

(151)

and gathering terms of successive orders of homogeneity in (146), we obtain (here K denotes
Kε)

orderO(0) : 1

orderO(1) : −TrK(1)12

orderO(2) : −TrK(2)12

orderO(3) :
1
2

TrK(1)11 K(2)22 + TrK(2)12 TrK(1)12 − TrK(2)12 K(1)12 .

(152)
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Performing the same operation for Pf(J − Kcross)L2([s,+∞[), inserting (150) into (146) we
obtain

orderO(0) : 1

orderO(1) : −TrI(1)12

orderO(2) : −TrI(2)12 +
1
2

TrR(0)22 I(2)11

orderO(3) :
1
2

TrI(2)11 I(1)22 + TrI(2)12 TrI(1)12 − TrI(2)12 I(1)12

−
1
2

�

TrI(1)12 TrI(2)11 R(0)22 − 2TrI(1)12 I(2)11 R(0)22

�

.

(153)

Thus, to verify that the two Fredholm Pfaffians in (74) are equal to third order, i.e. to and
including O(e−2s3/2

), we need to show the following equalities

TrK(1)12 = TrI(1)12

TrK(2)12 = TrI(2)12 −
1
2

TrR(0)22 I(2)11

1
2

TrK(1)11 K(2)22 + TrK(2)12 TrK(1)12 − TrK(2)12 K(1)12

=
1
2

TrI(2)11 I(1)22 + TrI(2)12 TrI(1)12 − TrI(2)12 I(1)12 −
1
2

�

TrI(1)12 TrI(2)11 R(0)22 − 2TrI(1)12 I(2)11 R(0)22

�

.

(154)

Below we will prove the derivatives w.r.t. s of these equalities , which is simpler in general and
sufficient since all terms vanish at s = +∞. Once we have shown the first two equalities, we
can use them to simplify the third one, so we will need to show

1
2

TrK(1)11 K(2)22 − TrK(2)12 K(1)12 =
1
2

TrI(2)11 I(1)22 − TrI(2)12 I(1)12 + TrI(1)12 I(2)11 R(0)22 . (155)

C.3.1 Comparison of terms of homogeneity 1

One sees from (72) and (149) that I (1)12 (r, r ′) = K(1)12 (r
′, r) hence one has immediately

TrI(1)12 = TrK(1)12 . (156)

The first equality in (154) then holds.

C.3.2 Comparison of terms of homogeneity 2

From (154) we now have to compare

∫ ∞

s
drK(2)12 (r, r) =

?

∫ ∞

s
dr I (2)12 (r, r)−

1
2

∫∫ ∞

s
drdr ′ I (2)11 (r, r ′)R(0)22 (r

′, r). (157)

Taking the derivative with respect to s, and using the anti-symmetry of I11 and R22 this is
equivalent to

K(2)12 (s, s) =
?

I (2)12 (s, s)−
∫ ∞

s
dr ′ I (2)11 (s, r ′)R(0)22 (r

′, s). (158)

We recall that

K(2)12 (r, r ′) =
1
4

∫∫

Ĉ2

dw
2iπ

dz
2iπ

w− z
w+ z

z + ε
wz

ε+w
w− ε

e−rw−r ′z+ w3+z3
3 (159)
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and

I (2)12 (r, r ′) =
1
2

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

1
ε− z

e−r ′z−rw+ w3+z3
3 (160)

and

I (2)11 (r, r ′) =

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

z + ε
z

e−r ′z−rw+ w3+z3
3 (161)

and

R(0)22 (r, r ′) =
1
4

sgn(r ′ − r)e−|r−r ′|ε. (162)

Since the integrals are on [s,+∞[ one has R(0)22 (r
′, s) = −1

4 e−(r
′−s)ε. Evaluating the integral

we obtain
∫ ∞

s
dr ′ I (2)11 (s, r ′)R(0)22 (r

′, s) = −
1
4

∫ ∞

s
dr ′

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
w

z + ε
z

e−r ′(z+ε)−sw+sε+ w3+z3
3

= −
1
4

∫∫

Ĉ2

dz
2iπ

dw
2iπ

w− z
w+ z

w+ ε
wz

e−sz−sw+ w3+z3
3 .

(163)

Inserting into (158) and using the expressions (159), (160) we see that the measure in
the integrals including the exponentials are symmetric in (w, z). Hence the equality (158) will
hold if we can show that the preexponential factor once symmetrized over (w, z) vanishes. The
condition reads

symw,z
w− z
w+ z

ε+w
w

�

1
4

z + ε
z

1
w− ε

−
1
2

1
ε− z

−
1
4z

�

= 0 (164)

and is easily checked to be true using mathematica. Hence the second equality in (154) holds.

C.3.3 Comparison of terms of homogeneity 3

We now calculate each term appearing in (155). One has

TrK(2)12 K(1)12

=
1
8

∫∫ +∞

s
drdr ′

∫∫∫

Ĉ3

dv
2iπ

dw
2iπ

dz
2iπ

w− z
w+ z

z + ε
wz

ε+w
w− ε

v − ε
v

e−r(w+v)−r ′(z+ε)+ w3+z3+v3+ε3
3

=
1
8

∫∫∫

Ĉ3

dv
2iπ

dw
2iπ

dz
2iπ

w− z
w+ z

1
wvz

ε+w
w− ε

v − ε
v +w

e−s(w+v+z+ε)+ w3+z3+v3+ε3
3

(165)

and

TrK(1)11 K(2)22

=
1
8

∫∫ +∞

s
drdr ′

∫∫∫

Ĉ3

dv
2iπ

dw
2iπ

dz
2iπ

�

e−rv−r ′ε − e−r ′v−rε
�

×
w− z
w+ z

(z + ε)(w+ ε)
wvz

e−rw−r ′z+ w3+z3+v3+ε3
3

=
1
8

∫∫∫

Ĉ3

dv
2iπ

dw
2iπ

dz
2iπ

�

1
(v +w)(z + ε)

−
1

(z + v)(w+ ε)

�

×
w− z
w+ z

(z + ε)(w+ ε)
wvz

e−s(w+z+v+ε)+ w3+z3+v3+ε3
3

(166)
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and

TrI(2)12 I(1)12

=
1
4

∫∫ +∞

s
drdr ′

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

w− z
w+ z

w+ ε
w

1
ε− z

v − ε
v

e−r ′(z+v)−r(w+ε)+ w3+z3+v3+ε3
3

=
1
4

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

w− z
w+ z

1
wv

1
ε− z

v − ε
v + z

e−s(z+v+w+ε)+ w3+z3+v3+ε3
3

(167)

and

TrI(2)11 I(1)22

=
1
4

∫∫ +∞

s
drdr ′

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

1
ε+ v

w− z
w+ z

w+ ε
w

z + ε
z

�

e−rv−r ′ε − e−r ′v−rε
�

× e−r ′z−rw+ w3+z3+v3+ε3
3

=
1
4

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

1
ε+ v

w− z
w+ z

w+ ε
w

z + ε
z

�

1
(v +w)(ε+ z)

−
1

(v + z)(w+ ε)

�

× e−s(v+w+z+ε)+ w3+z3+v3+ε3
3

(168)

and, finally

TrI(1)12 I(2)11 R(0)22

=
1
8

∫∫∫ +∞

s
drdr ′dr ′′

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

w− z
w+ z

w+ ε
w

z + ε
z

v − ε
v

sgn(r ′′ − r ′)

× e−|r
′−r ′′|ε−r(ε+w)−r ′′v−r ′z+ w3+z3+v3+ε3

3

=
1
8

∫∫ +∞

s
dr ′dr ′′

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

w− z
w+ z

(z + ε)(v − ε)
vwz

sgn(r ′′ − r ′)

× e−|r
′−r ′′|ε−s(ε+w)−r ′′v−r ′z+ w3+z3+v3+ε3

3

=
1
8

∫∫∫

Ĉ3

dz
2iπ

dw
2iπ

dv
2iπ

w− z
w+ z

z − v
v + z

v − ε
vwz

1
v + ε

e−s(ε+z+v+w)+ w3+z3+v3+ε3
3 .

(169)

Putting now all terms together as in (155) and symmetrizing the preexponential factor in
(w, z) as we did for the terms of homogeneity 2, we find, after a tedious calculation (using
mathematica) that the symmetrized form vanishes. We believe that the agreement of the first
three orders is a rather non-trivial check, which comes in very strong support of our conjecture
(74).
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