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UNSTRUCTURED GRID CONVERGENCE STUDY

G. Deng, A. Leroyer, E. Guilmineau, P. Queutey, M. Visonneau, J. Wackers 
METHRIC, LHEEA/UMR 6598 CNRS, Ecole Centrale de Nantes, France

SUMMARY 

This  paper  focus  on  convergence  study of  CFD  prediction  using  unstructured  grid  with  our  in  house  finite  volume 
unstructured RANSE solver ISIS-CFD. Computations have been performed with different grid sets generated with different  
approaches including similar grid generation with unstructured grid generator  and adaptive grid refinement.  Numerical 
uncertainty is evaluated with Richardson extrapolation. Results obtained both with wall function and wall resolved approach 
are compared. It demonstrates that adaptive grid refinement is the most reliable approach for obtaining a grid independent 
solution.

1 INTRODUCTION

As CFD simulation is playing an important role in design 
procedure,  industrial  users  is  paying  more  and  more 
attention  to  the  reliability  of  numerical  prediction.  The 
most  common  practice  for  industrial  users  is  to  adjust 
numerical setup (mesh density, physical model, numerical 
scheme, ...) and compare the numerical prediction with the 
measurement data. If the agreement is good enough, then, 
such setup will be used as guideline for applications under 
similar condition. Although such procedure can help user 
to obtain a good prediction, it cannot rigorously quantify 
the  numerical  uncertainty  in  a  simulation.  The 
recommended procedure to quantify numerical uncertainty 
is to perform a verification and validation exercise. There 
are  three  kinds  of  verification  and  validation  exercises, 
namely code verification, solution verification and solution 
validation. Code verification aims at demonstrating that the 
governing  equations  are  solved  correctly.  The  most 
appropriate approach for this exercise is to modify the code 
by adding source terms such that numerical solution can be 
compared  with  a  manufactured  solution.  With  the 
manufactured solution, one can easily verify the order of 
convergence of the flow solver as the mesh is refined. If 
the  observed  order  of  convergence  agrees  with  the 
expected theoretical order of convergence as the mesh is 
refined,  numerical  implementation  is  considered  as 
successful.  Such  code  verification  exercise  can  be  done 
only once during the code development and does not need 
to  be  repeated  for  practical  application.  Unlike  code 
verification, solution validation needs to be performed for 
every  time  if  rigorous  uncertainty  quantification  is 
required.  It  aims  at  quantifying  errors  due  to  numerical 
approach. Different sources of error exist in a numerical 
simulation.  The  most  commons  are  space  and  time 
discretization  error,  convergence  error,  errors  due  to 
boundary  condition  and  computational  domain,  etc.  We 
focus  to  error  due  to  spatial  discretization  only  in  this 
paper. The most common and the most reliable approach to 
access spatial discretization error is to perform simulation 
on  a  set  of  similar  grid,  then  apply  an  uncertainty 

estimation based on Richardson extrapolation. The success 
of such uncertainty estimation procedure depends on how 
such similar grid set is generated. Generating a similar grid 
set  with  structured  grid  is  a  trivial  task.  Unfortunately, 
industrial  applications  are  commonly  performed  with 
unstructured grid. Ensuring grid similarity when generating 
a  set  of  unstructured  grid  is  nearly  impossible.  The 
situation  is  worse  when wall  function approach  is  used. 
Wackers  and  al.  [3]  have  proposed  an  alternative  to 
generate  a  set  of  similar  grid  for  uncertainty estimation 
with  adaptive  grid  refinement  controlled  by  grid 
refinement threshold. This approach has been successfully 
applied to an uncertainty estimation exercise for a simple 
2D airfoil configuration as well as a more complex 3D ship 
flow test case both for global quantities (resistance) and for 
local quantities (velocity). The objective of this paper is to 
compare the approach proposed by Wackers et al. with a 
more  classical  grid  generation  approach  using  grid 
generator  in  the  uncertainty  estimation  exercise. 
Computation  will  be  performed both  with  wall  function 
and with wall  resolved approach with a  very simple 2D 
configuration  for  which  structured  grid  set  can  also  be 
generated for comparison.

2 NUMERICAL APPROACH

Computation has been performed with the ISIS-CFD flow 
solver  developed  by  our  team.  Turbulent  flow  is 
simulated  by  solving  the  incompressible  Reynolds-
averaged  Navier-Stokes  equations  (RANS).  The  flow 
solver  is  based on finite  volume method to build  the 
spatial  discretization  of  the  transport  equations.  The 
velocity  field  is  obtained  from  the  momentum 
conservation  equations  and  the  pressure  field  is 
extracted  from  the  mass  conservation  constraint,  or 
continuity  equation,  transformed  into  a  pressure-
equation.  In  the  case  of  turbulent  flows,  additional 
transport equations for modeled variables are discretized 
and solved using the same principles. The gradients are 
computed with an approach based on Gauss’s theorem. 



Non-orthogonal correction is applied to ensure a formal 
first order accuracy. Second order accurate result can be 
obtained on a nearly symmetric stencil. Inviscid flux is 
computed  with  a  piecewise  linear  reconstruction 
associated  with  an  upwinding  stabilizing  procedure 
which  ensures  a  second  order  formal  accuracy  when 
flux limiter is not applied. Viscous flux are computed 
with a central difference scheme which guarantee a first 
order formal accuracy. We have to rely on mesh quality 
to obtain a second order discretization for the viscous 
term.  Free-surface flow is simulated with a multiphase 
flow approach.  Incompressible  and  non-miscible  flow 
phases  are  modeled  through  the  use  of  conservation 
equations  for  each  volume  fraction  of  phase/fluid. 
Implicit  scheme  is  applied  for  time  discretization. 
Second order three-level time scheme is employed for 
time-accurate  unsteady computation.  Velocity-pressure 
coupling is handled with a SIMPLE like approach. Ship 
free motion  can be simulated  with a  6  DOF module. 
Some  degree  of  freedom  can  be  fixed  as  well.  An 
analytical  weighting  mesh  deformation  approach  is 
employed when free-body motion is simulated. Overset 
approach is implemented recently. It will be employed 
in  one  of  the  test  cases  in  the  present  study.  Several 
turbulence models ranging from one-equation model to 
Reynolds  stress  transport  model  are  implemented  in 
ISIS-CFD. Most  of  the  classical  linear  eddy-viscosity 
based  closures  like  the  Spalart-Allmaras  one-equation 
model, the two-equation k-ω SST model by Menter [2], 
for  instance  are  implemented.  A  more  sophisticated 
turbulence closures are also implemented in  the ISIS-
CFD solver, an explicit algebraic stress model (EASM) 
[1].  The EASM model is employed in the present study. 
Wall  function  is  implemented  for  two-equation 
turbulence model.

Adaptive grid refinement is implemented in  the ISIS-
CFD flow solver with different refinement criterion. In 
the present study, we aim at resistance prediction only. 
To this end, the best refinement criterion is the pressure 
Hessian  which  is  a  tensor  based  on  the  second 
derivatives  of  the  pressure  filed.  In  the  refinement 
procedure,  the  mesh  is  refined  until  the  module  of  a 
vector resulting from the tensor product between the cell 
size vector and the pressure Hessian tensor is smaller 
then s threshold value.  Details can be found in [4].

3 SIMILAR MESH SET GENERATION

The success of an uncertainty estimation exercise depends 
strongly how the mesh set employed for the computation is 
generated. Richardson extrapolation can give the expected 
result only when grid similarity of the mesh set is ensured. 
Two grids are considered as similar when mesh orientation 
at the same position is the same, and the mesh size ratio 
between the two grids at any location is a constant. When 
using  wall  function,  grid  similarity  can  no  longer  be 
ensured in the near wall region, since the cell size in the 

wall  normal  direction  should  be  kept  unchanged.  We 
employ  the  hexahedral  unstructured  grid  generator 
Hexpress  for  mesh  generation.  With  Hexpress,  it  is  not 
possible  to  ensure  grid  similarity  everywhere.  Figure  1 
shows two meshes with a refinement ratio of 2 generated 
with  Hexpress.  Although the  mesh  size  ratio  is  about  2 
everywhere, the location of grid refinement interface is not 
exactly  the  same.  The  most  annoying  drawback  of  the 
mesh  generator  Hexpress  is  that  the  boundary  layer 
thickness  becomes  smaller  in  the  fine  grid.  Hence,  in  a 
convergence study using Hexpress, adding more fine grid 
usually  can  not  help  to  obtain  a  better  convergence 
behavior. 

Figure 1. Unstructured grid generated with Hexpress

An alternative to generate a similar grid set is to perform 
an adaptive grid refinement by using different refinement 
threshold. Figure 2 displays two meshes issued from grid 
adaptation.  Pressure  Hessian  is  employed  as  refinement 
criterion in this computation. The upper part is the coarse 
mesh, while the lower part is the fine mesh. The ratio for 
the refinement threshold is equal to 2. It can be seen that 
mesh size ratio is equal to 2 all most everywhere except in 
the boundary layer where we intentionally refine the mesh 
in the wall tangential  direction only in order to preserve 
mesh quality in  the  viscous  layers.  The refined  mesh  is 
projected automatically to the surface of the real geometry. 
As the initial  mesh is  relatively coarse,  the thickness  of 
viscous layer of the refined grid is much bigger compared 
to  the  mesh  generated  directly  with  the  mesh  generator 
Hexpress shown in figure 1. Moreover, it remains constant 
whatever the degree of grid refinement. Hence, turbulence 
boundary layer can be better captured when using adaptive 
grid refinement. It  should be noticed that the distance to 
the wall for the first grid cell is specified with the same 
value corresponding to about y+=30 when generating the 
grid. The different cell size observed in figures 1 and 2 are 
the  result  of  mesh  optimization  performed  by the  mesh 
generator.



Meshes shown in figures  1 and 2 are designed for  wall 
function computation. When generating grid set  for  wall 
resolved computation with mesh generator, it is possible to 
adjust the distance to the wall for the first grid cell such 
that grid similarity is also ensured in the near wall region. 
However,  as  refinement  will  not  be  applied  in  the  wall 
normal direction, grid similarity near the wall is impossible 
to ensure with adaptive grid refinement. Hence,  we decide 
to generate a grid set with the same distance to the wall 
corresponding to about y+=0.2 when using grid generator 
approach.

Figure 2. Mesh obtained with adaptive grid refinement

4 CONVERGENCE STUDY RESULTS

The test case investigated in the present paper is a simple 
ellipse  geometry  with  an  aspect  ratio  of  1:5  in  two 
dimension.  The  computational  domain  is  defined  by 
-6L<x<18L, -4L<y<4L, L being the chord of the ellipse. 
The center of the ellipse is located at (0,0). The pressure is 
set  to  0  at  the  outlet  boundary  x=18L,  while  far  field 
boundary condition with constant  velocity is  imposed  at 
the remaining outer  boundaries.  Reynolds  number based 
on the chord length is 1.0e6.

Index Threshold N Fxp Fx
1 0.36 16114 0.004324 0.009366
2 0.24 31577 0.004244 0.009289
3 0.18 52291 0.004208 0.009256
4 0.12 121853 0.004198 0.009248
p - - 2.21 2.35

U
e

- - 0.004183 0.009236

U
e2

- - 0.004177 0.009228

Table 1: Wall modeled prediction with adaptive refinement

Table  1  presents  the  results  obtained  with  adaptive  grid 
refinement.  N  is  the  number  of  grid  cells.  Fxp  is  the 
pressure resistance, while Fx is the total resistance. Both 
are  normalized  values  using  chord  length  and  far  field 
velocity. “p” is the observed order of convergence.  U

e
 is 

the extrapolated result with observed order of convergence, 
while U

e2
 is the extrapolated value obtained with assumed 

second order accuracy of the finite volume flow solver. As 
the mesh in the wall normal direction is not refined, it is 
expected that monotonic convergence behavior can not be 
obtained for  friction resistance. For this reason,  it  is  not 
shown  in  the  table.  For  the  computation  with  adaptive 
refinement, extrapolation is performed with respect to the 
threshold value. The observed order of convergence is not 
too far from the expected second order accuracy both for 
pressure  resistance  and  for  the  total  resistance.  This 
indicates  that  the  grid  convergence  study  is  successful. 
Prediction obtained  with the  finest  grid  differs  from the 
extrapolated  solution  U

e2
 by  about  0.5%  and  0.2%  for 

pressure resistance and total resistance respectively. Based 
on the extrapolated value U

e2
 for pressure resistance and 

total  resistance,  the  expected  friction  resistance  is 
0.005051.

Index N1 N 100Fxp 100Fxv 100Fx
1 72 11040 0.3897 0.5046 0.8943
2 96 18484 0.3248 0.5128 0.8276
3 120 27448 0.3252 0.5126 0.8379
4 144 40806 0.3502 0.5198 0.8600
5 168 55134 0.3509 0.5182 0.8690
6 192 72186 0.3620 0.5173 0.8793
7 216 90420 0.3683 0.5149 0.8837
8 240 109988 0.3780 0.5148 0.8928
9 264 136070 0.4367 0.5175 0.9542
Table 2: Wall modeled prediction with mesh generation

Table  2  shows  the  predicted  pressure  resistance  Fxp, 
friction resistance Fxv and the total resistance Fx. N1 is the 
number of mesh point in the X direction of the initial mesh 
generated by Hexpress. 1/N1 can be used as mesh size for 
the  Richardson  extrapolation.  With  N1=72,  the  coarsest 
grid contains 3 cells in the initial mesh. The initial mesh is 
refined by 5 levels in Hexpress, resulting 96 cells par chord 
length. One more level of refinement is applied near the 
leading  edge  and  the  trailing  edge.  Mesh  size  is  about 
L/192 in those regions. The first grid is too coarse. Starting 
from grid 2 until grid 8, predicted pressure resistance and 
total  resistance  increase  monotonously and  approach  the 
expected solution given in table 1. However, even on grid 
8,  pressure  resistance  is  still  9.5%  smaller  than  the 
extrapolated solution U

e2
 given in table 1, while the total 

resistance is 3.3% smaller. Further refinement with grid 9 
does not  allow to improve the prediction. The predicted 
result  becomes  much  bigger  than  the  expected  value 
suddenly. Inspection of the numerical solution reveals that 
this sudden change in convergence behavior in grid 9 is 
due to the fact that the thickness of viscous layer becomes 
too small. Cells with poor quality in the transition region 



between the viscous layer and the outer layer deteriorate 
the accuracy of numerical prediction in the viscous layer. 
Results  shown in  table  2  show  the  limitation  with  grid 
generation  approach  when  using  the  unstructured  grid 
generator.

Analysis of the predicted numerical  solution reveals that 
the poor convergence behavior shown in table 2 is due to 
the  fact  that  grid  density  near  the  trailing  edge  is  not 
sufficient. In fact, a small recirculation zone is formed in 
this region. Higher grid resolution is required in this region 
in  order  to  capture  the  flow  separation  correctly.  We 
regenerate  a  new  grid  set  by  increasing  one  more 
refinement level both in the leading edge and the trailing 
edge. On the coarsest grid 1, mesh size is L/394 in those 
regions. 

Inde
x

N1 N 100Fxp 100Fxv 100Fx

1 72 13010 0.3822 0.5092 0.8915
2 96 21510 0.3780 0.5077 0.8857
3 120* 31730 0.3803 0.5045 0.8926
4 144* 46794 0.3945 0.5041 0.8987
5 168* 63060 0.3967 0.5075 0.9043
6 192* 82458 0.4036 0.5055 0.9091
7 216* 103266 0.4061 0.5064 0.9125
p - - 2.50 2.37 0.14

U
e

- - 0.4131 0.5072 1.1428

U
e2

- - 0.4173 0.5074 0.9201

Table 3: Wall modeled prediction with mesh generation

Table  3  shows  the  predicted  resistance  as  well  as  the 
extrapolated solution. The first  two grids are too coarse. 
The extrapolated is obtained with the last 5 finest solutions 
marked by a * in the table. For the pressure resistance, the 
observed order  of  convergence is 2.50. The extrapolated 
solution U

e2
 = 0.4173 differs from the corresponding result 

obtained with adaptive grid refinement shown in table 1 by 
less  than  0.1%.  This  good  agreement  suggests  that  the 
prediction with grid generation approach is successful this 
time. However, it should be noticed that on the finest grid 
7,  the predicted pressure  resistance  is  still  2.7% smaller 
than  the  expected  value,  while  with  adaptive  grid 
refinement,  prediction  obtained  with  grid  4  with  similar 
number of grid cells is only 0.5% smaller than U

e2
.  For 

this computation, monotonic convergence behavior is also 
observed for the friction resistance with an observed order 
of convergence of 2.37. However, the predicted solutions 
do  not  change  monotonously.  Hence,  this  extrapolated 
result  cannot  be considered as  reliable.  Due to  the poor 
convergence behavior in friction resistance, the observed 
order of convergence for the total resistance p=0.14 is too 
small.  In  this  case,  only  the  extrapolated  solution  with 
assumed  second  order  accuracy  U

e2
 can  be  used  for 

uncertainty  estimation.  This  extrapolated  value  differs 
from  the  value  shown  in  table  1  by  0.3%.  This  good 
agreement  confirm  once  again  the  good  convergence 
behavior obtained with this grid set. On the finest grid 7, 

the  predicted  total  resistance  is  0.8%  smaller  than  the 
extrapolated solution U

e2
.

The adaptive grid refinement approach is applied for wall 
resolved  computation.  Results  are  shown  in  table  4. 
Monotonic  convergence  behavior  is  observed  for  all 
resistance  components  with  an  observed  order  of 
convergence higher  than 3.  This  high  value of  observed 
order  of  convergence  may  due  to  the  fact  that  in  our 
computation,  grid  is  not  refined  in  the  wall  normal 
direction.  Hence,  grid  similarity  is  not  ensured.  The 
predicted pressure resistance and total resistance are 0.53% 
and  0.26%  higher  than  the  extrapolated  solution  U

e2 
respectively,  similar  to  what  we  obtained  in  the 
computation  with  wall  modeled  computation  shown  in 
table 1.  

Inde
x

Threshold N 100Fxp 100Fxv 100Fx

1 0.36 32291 0.4507 0.4847 0.9354
2 0.24 55133 0.4421 0.4843 0.9264
3 0.18 82545 0.4401 0.4843 0.9244
4 0.12 179286 0.4393 0.4842 0.9235
p - - 3.15 3.28 3.18

U
e

- - 0.4388 0.4824 0.9230

U
e2

- - 0.4370 0.4841 0.9211

Table 4: Wall resolved prediction with adaptive refinement

Inde
x

N1 N 100Fxp 100Fxv 100Fx

1 72 24260 0.3851 0.4902 0.8753
2 96 36360 0.3751 0.4907 0.8659
3 120* 50330 0.3783 0.4910 0.8693
4 144* 68346 0.3966 0.4908 0.8873
5 168* 87026 0.4100 0.4892 0.8991
6 192 108638 0.4274 0.4863 0.9136
7 216 131280 0.4406 0.4835 0.9242
p - - 0.84 - 1.51

U
e

- - 0.5068 - 0.9440

U
e2

- - 0.4421 0.4877 0.9298

Table 5: Wall resolved prediction with mesh generation

Table  5  shows  the  results  obtained  with  wall  resolved 
simulation  using  grid  set  generated  by  mesh  generator 
Hexpress. Poor convergence behavior similar to the result 
shown in table 2 is observed. The predicted pressure and 
total resistance are smaller than the expected value. They 
increase as the grid is refined. But on the finest grid 7, the 
predicted pressure resistance and total  resistance become 
larger than the expected value U

e2
 shown in table 4. Again, 

this poor convergence behavior is due to the fact that grid 
similarity is not ensured in the near wall region with mesh 
generation approach. Moreover, poor quality cells next to 
the  viscous  layer  deteriorate  the  accuracy  of  numerical 
prediction in the viscous layer. It is very difficult to obtain 
a  reliable  uncertainty  estimation  for  this  simulation. 



Extrapolated results shown in table 5 are obtained with a 
selected  grid  triplets  marked  with  a  *  in  the  table.  The 
extrapolated  U

e2
 values  differ  from the  results  obtained 

with adaptive grid refinement given in table 4 by about 1% 
for all  resistance components.  But this extrapolation can 
not be considered as reliable.

5 CONCLUSIONS

Grid  convergence  study  for  unstructured  grid  is 
investigated with different approaches using a simple 2D 
geometry.  The newly proposed  grid  adaptive  refinement 
approach is found to be capable to provide a solution with 
good convergence behavior both for wall modeled and for 
wall resolved simulation. With grid generation approach, 
as unstructured grid generator is unable to generate a grid 
set ensuring grid similarity everywhere,  user expertise is 
required  when  generating  the  grid.  If  the  grid  is  well 
adapted to the flow, a good convergence behavior can be 
obtained. On the other hand, a poor convergence behavior 
is always an indication that the numerical prediction is not 
reliable. Such poor convergence behavior may be due to a 
too coarse grid resolution, or a poor grid quality locally. 
Generating  a  still  finer  grid  cannot  always  improve  the 
prediction. Compared with usual  approach by generating 
grid  set  with  grid  generator,  adaptive  grid  refinement 
approach  is  found  to  be  more  reliable  way to  generate 
similar grid set employed in a verification and validation 
exercise.
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