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We live in a world surrounded by rich dynamic multisensory signals. Hearing individuals rapidly and 

effectively integrate multimodal signals to decode biologically relevant facial expressions of emotion. 

Yet, it remains unclear how facial expressions are decoded in deaf adults in the absence of an auditory 

sensory channel. We thus compared early and profoundly deaf signers (n = 46) with hearing non-

signers (n = 48) on a psychophysical task designed to quantify their recognition performance for the 

six basic facial expressions of emotion. Using neutral-to-expression image morphs and noise-to-full 

signal images, we quantified the intensity and signal levels required by observers to achieve 

expression recognition. Using Bayesian modelling, we found that deaf observers require more signal 

and intensity to recognize disgust, while reaching comparable performance for the remaining 

expressions. Our results provide a robust benchmark for the intensity and signal use in deafness and 
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novel insights into the differential coding of facial expressions of emotion between hearing and deaf 

individuals. 
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Introduction 

As a social species, one crucial ability for survival in our social environment is the effective 

communication of social information. We acquire the ability to understand others and express our 

inner feelings long before language develops. Indeed, nonverbal communication is a major part of our 

social, interpersonal interaction. It conveys a rich set of information, which is at times beyond the 

limits of human language. One such social information code is revealed by our facial expressions 

(Jack and Schyns, 2015), which are influenced by culture (Jack et al, 2009; 2012a; 2012b – for a 

review see Caldara, 2017) from an early stage of life (Geangu et al., 2016). The ability to decode 

emotional cues in our social environment is essential for normative social functioning. Effective 

representations of our own and others’ internal affective states modelled through facial expressions, 

and accurately expressing these states through facial muscle movements, plays a central role in 

defining healthy social relations and well-being (e.g. Carton, Kessler, & Pape, 1999; Feldman, 

Philippot, & Custrini, 1991; Izard, Fine, Schultz, Mostow, Ackerman, et al., 2001; Nowicki & Duke, 

1992).  

The ability to decode and recognize facial expressions of emotion has been little studied in 

deaf individuals, considered by many as a distinct cultural group (Jones, 2002). In deaf 

communication, faces have a special status. For example, in sign language facial expression provides 

not only emotional but also grammatical and syntactic markers (Brentari & Crossley, 2002; Liddell, 

2003; Reilly, Mcintire, & Seago, 1992; Reilly & Bellugi, 1996). The face and its expressions can also 

function as intensity markers, and the same sign can have different meanings depending on the facial 

expression. Sign language communication therefore requires a specific ability to process facial 

expressions and to differentiate syntactic facial expressions from emotional facial expressions. 

Moreover, in deaf signers, syntactic and emotional facial expressions are processed by different 

cortical regions (Corina, Bellugi, & Reilly, 1999; McCullough, Emmorey, & Sereno, 2005). 

Surprisingly, as might otherwise have been predicted, Grossman and Kegl (2007) did not observe 

better categorization performance in deaf signers compared to hearing non-signers for both emotional 

and linguistic dynamic facial expressions. Instead, they found that hearing non-signers were better 

than deaf signers at categorizing facial expressions from interrogative yes/no and Wh questions (e.g., 
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Where? What? Who? When?) in American Sign Language (ASL). Again, as might otherwise have 

been predicted, another study (Campbell, Woll, Benson, & Wallace, 1999) has shown that users of 

British Sign Language (deaf or hearing) were not better than hearing non-signers in categorizing 

facial expressions from BSL interrogative sentences (i.e., yes/no vs wh- question), or more common 

facial expressions from both BSL and emotional expressions (e.g. puzzled and surprised faces).  

The absence of voice tone information could also change a deaf individual’s representation of 

emotional expressions. An emotional response to a specific event often includes an association 

between a facial expression and a sound. For example, the expression of fear is frequently associated 

with a loud vocal expression. Fear already captures attention efficiently at a very early age (e.g., 

Bayet et al., 2017), and elicits stronger identity neural coding in adults compared to other expressions 

from the visual signal alone (e.g., Turano et al., 2017). In the classic shower scene from Alfred 

Hitchcock’s Psycho (1960), a hearing person will immediately associate the terrified face of Janet 

Leigh with the loud scream heard seconds before she is stabbed in the shower. Different studies have 

indeed shown that multisensory information is integrated during the processing of affective facial 

expressions (Campanella & Belin, 2007; Collignon et al., 2008), and that this multisensory integration 

is likely to undergo perceptual narrowing (Lewkowicz, 2014; Lewkowicz & Ghazanfar, 2009).  

Therefore, in the absence of auditory information, it is possible that there is a difference in the 

development and sensitivity to facial expressions between deaf and hearing individuals. However, in 

an assessment of the emotional valence of different static facial expressions, Watanabe, Matsuda, 

Nishioka, and Namatame (2011) did not observe any differences in the judgements made by deaf and 

hearing participants. In another study using potentially more ecological stimuli (Jones, Gutierrez and 

Ludlow, 2017), the authors explored emotion recognition in deaf and hearing children for both static 

and moving faces (study 1) and for different intensities of static emotion (study 2). Deaf children 

recognized facial expressions better in the dynamic compared to the static condition, whereas no 

difference was found between conditions for the control group of hearing children. Moreover, both 

groups similarly benefited from greater performance when the expressions were higher in emotion 

intensity. In both studies 1 and 2, deaf and hearing children showed similar performance across 

emotions, with the exception of disgust for which deaf children had fewer correct responses. The 



5 
 

differences in results between these developmental studies are most likely based on task differences as 

Watanabe, Matsuda, Nishioka, and Namatame (2011) investigated emotional valence, whereas Jones, 

Gutierrez and Ludlow (2017) investigated emotion recognition. However, similar emotion recognition 

tests with adult populations have not revealed any differences in recognition between deaf and hearing 

observers (Grossman and Kegl, 2007). The absence of differences in the adult population could reflect 

the possibility that the mental representations used to decode facial expressions of emotion are similar 

in both deaf and hearing adults; or the measures used in previous studies could lack sufficient 

sensitivity to uncover any differences, at least within the adult population.  

To obtain a sensitive measure of facial expression recognition performance, we introduce a 

psychophysical approach. This approach provides a precise measure of recognition performance as 

the quantity of signal (a facial expression of emotion at its fullest intensity modified with random 

image noise) or intensity (a neutral expression to full intensity emotional expression) is parametrically 

manipulated. We predicted that in the absence of auditory information, it is possible that there is a 

difference in the sensitivity to facial expressions between deaf and hearing individuals. Specifically, 

we predicted that deaf signers would have greater sensitivity to the facial expression visual stimuli 

used in the signal and intensity tasks and therefore show better recognition performance than the 

hearing non-signers. Finally, we tested recognition performance for what are commonly referred to as 

the six basic emotions. The basic emotions (i.e., anger, fear, disgust, happiness, sadness, and surprise) 

have been described as basic because they are thought to be universally recognised, however this 

belief has now been strongly contested (e.g. Crivelli, Russell, Jarillo, & Fernández-Dols, 2016; 

Gendron, Roberson, van der Vyver, &  Barrett, 2014; Jack, Garrod, Yu, Caldara & Schyns, 2012a; 

Jack, Sun, Delis, Garrod, & Schyns, 2016). Conventionally, these six expressions are most widely 

studied in facial expression recognition research and were therefore selected for this study. Due to the 

mixed results on recognition performance in deaf and hearing cohorts described in the literature 

earlier, we did not have a prediction that performance between these groups would be better for a 

specific emotion. We uniquely predicted, as described above, that deaf signers would have greater 

sensitivity to the facial expression visual stimuli used in the signal and intensity tasks and therefore 

show better recognition performance than the hearing non-signers. 
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Method and analysis 

Participants: 

We tested a total of 46 deaf signers (26 females), who all had severe to profound hearing loss 

(dB loss > 70) from birth or in the first years of their life, and who were all native or early ASL 

signers (before the age of 5 years old). Among the participants, 12 used cochlear implants (4 

occasionally, 8 all the time/every day) and 12 used a hearing aid (7 occasionally, 5 all the time/every 

day). In addition, 19 participants had a deaf family member (parents and/or siblings). The age range of 

the deaf participants was between 18 and 30 years (the mean age was 21.70 with a standard deviation 

of 2.35). In addition, 48 hearing participants (29 females) with no knowledge of any sign language 

were tested. The age range of the hearing participants was between 18 and 31 years (the mean age was 

21.44 with a standard deviation of 3.30). All participants had normal or corrected-to-normal vision. 

The participants were students from the Rochester Institute of Technology and the National Technical 

Institute for the Deaf and received $10 for their participation. The local Institutional Review Board at 

Rochester Institute of Technology approved this study, and all participants provided written informed 

consent.  

Materials 

The stimuli and paradigm were the same as those previously used to test recognition 

differences in typically developing children (Rodger, Lao, & Caldara, 2018). Facial stimuli expressing 

each of the six basic emotions (i.e., anger, fear, disgust, happiness, sadness, and surprise) and a 

neutral expression were selected from the Karolinska Directed Emotional Faces database (KDEF, 

Lundqvist, Flykt, & Öhman, 1998). Images were scaled to 256 x 256 pixels and mapped to grey scale. 

For the intensity condition, eight identities (4 females) were chosen. We used Abrosoft FantaMorph 

software to create morphs of 100 increments for each identity and emotional expression, ranging from 

a 1% morph of a neutral face to a 100% expressive face (original image). The total number of images 

used was 4800 (8 identities x 6 expressions x 100 increments). For the signal condition, the stimuli 

consisted of 252 images from the KDEF database comprising 36 distinct identities (18 females) each 

displaying six facial expressions and a neutral one. Example stimuli of different expression intensities 
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and signal strengths are shown in Figure 1. Participants only viewed images at the intensities or signal 

strengths calculated by the QUEST (Watson & Pelli, 1983) procedure. All images were cropped 

around the face to remove distinctive hairstyles using Adobe Photoshop, and were aligned along the 

eyes and mouth using Psychomorph software (Tiddeman, Burt & Perrett, 2001). Images were also 

normalized for contrast and luminance using the SHINE toolbox (Willenbockel, Sadr, Fiset, Horne, 

Gosselin, & Tanaka, 2010) in MATLAB 7.10.0 and displayed on an 800 x 600 grey background at a 

distance of 50 cm subtending 10
o
 x 14

o
 to simulate a natural viewing distance during social interaction 

(Hall, 1966). The stimuli were presented using the Psychophysics toolbox (PTB-3) with MATLAB 

7.10.0 and QUEST, a Bayesian adaptive psychometric method (described below) to estimate the level 

of stimuli strength (intensity or signal) for each trial.  

Procedure 

Participants were asked to label how the person in the picture was feeling by pressing a key 

on the keyboard corresponding to each of the emotions. We instructed the participants to respond as 

accurately as they could, as reaction time was not important for the current task. Participants could 

also press the space bar to indicate “I don’t know or uncertain”. Participants were given as much time 

as they needed to familiarise themselves with the response keys before beginning the experiment. 

Unknown to the participants, the first six trials were practice trials to familiarise the procedure and did 

not count towards the final threshold estimations. The experimental trials therefore followed 

seamlessly without distinction from the practice trials. Each trial began with a fixation cross for 500 

ms, followed by a face stimulus presented for 500 ms. The displayed intensity or signal strength was 

provided by the QUEST psychometric procedure (described below), and followed by a mask of 

random noise until a response was given (see Figure 2 for an illustrated example of a trial). The 

expressions were randomly displayed. Once the threshold of a specific expression was estimated by 

the QUEST procedure, that particular expression was no longer displayed and only the remaining 

expressions were presented to the participants. As a consequence, the number of trials for each 

participant varied as a function of the QUEST procedure. The intensity and signal conditions were 
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randomised for each participant and the whole experiment lasted about 30 minutes. For deaf 

participants, instructions were both written and signed by the experimenter. 

The QUEST Bayesian adaptive psychometric procedure  

We implemented the same QUEST procedure as previously used in Rodger, Vizioli, Ouyang, 

and Caldara (2015) and Rodger et al. (2018). It is an adaptive staircase procedure based on a 

psychometric function to establish an observer’s threshold sensitivity to some physical measure of a 

stimulus (e.g., stimulus strength, Watson & Pelli, 1983). The obtained threshold can be considered as 

a measure of how effectively an observer can discriminate a set of stimuli. Here, we tested threshold 

sensitivity for (1) intensity and (2) signal of emotional expressions between deaf signers and hearing 

non-signers. QUEST obtains thresholds by adaptively presenting a sequence of stimuli according to 

the observer’s previous responses. For example, if the observer incorrectly labels the expression of 

happiness, the subsequent presentation of happiness will contain more signal or intensity. Conversely, 

if the expression is correctly labelled, the next presentation of the same expression will contain less 

signal or intensity. Thus, this adaptive staircase method is an efficient way to determine the individual 

perceptual threshold for a type of stimulus (here facial expression), as the represented stimuli are 

adaptively narrowed to the true underlying threshold. 

The QUEST paradigm was implemented in MATLAB 7.10.0 with the Psychophysics 

Toolbox (PTB-3). We extended the original binary response in QUEST to parametrically determine 

an observer’s perceptual threshold for discriminating each of the six emotional expressions. The final 

estimated threshold is determined as the intensity or signal strength when the participant maintains 

performance at 75%. In this way, equal performance is maintained across observers. For the intensity 

condition, we implemented one QUEST procedure with an initial expression intensity of 30%. This 

intensity was selected since by nature, 50% intensity denotes an image morph of 50% neutral and 

50% expressive face stimuli, so the initial value should be below this level of morph. For the signal 

condition, we implemented three QUEST procedures with different initial stimulus strengths (60%, 

40%, and 20%) to prevent possible bias in the final estimation towards the direction of the initial 
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value. The QUEST procedure terminates for an expression after three consecutive correct or incorrect 

trials in which the intensity or signal strength standard deviations are less than 0.025. 

Threshold detection 

To calculate the individual thresholds obtained by the QUEST procedure, we computed the 

mean and the standard deviation of the estimated threshold from the QUEST posterior probability 

density function (pdf) using the QuestMean and QuestSd function from PTB3 (Pelli, 1987; King-

Smith et al. 1994). In the signal task where multiple QUEST procedures were employed, we 

computed the arithmetic mean to get the final threshold estimation, and the quadratic mean of the 

standard deviations to get the error of the estimated threshold (based on the Gaussian assumption of 

the estimation). In a previous paper (Rodger et al., 2015) we used the intensity of the last trial from 

the QUEST procedure as the threshold estimation. However, since some participants could not 

achieve 75% recognition performance even when intensity or signal was at the maximum (100%), the 

previous calculation returned a ceiling value of 100% (especially for some expressions, e.g., fear. See 

supplementary figure in Rodger et al., 2015). Using the new computation approach, the threshold 

instead returned values above 100%.  

Statistical Modelling 

Data analysis was performed in Python using Jupyter Notebook. Bayesian modelling was 

performed using PyMC3 version 3.2, and the results were displayed using Seaborn and Matplotlib. 

The full model parameterization is displayed below: 
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We modelled the estimated threshold along with the estimation uncertainty from the QUEST with a 

Bayesian Hierarchical Censored Model. The threshold of each expression and each task from one 

participant is modelled as a linear function of the full factorial of Group * Expression * Task, with the 

intercept of each subject as a random effect. It is equivalent to a linear mixed model with random 

intercept. Moreover, to account for the estimation error from the QUEST procedure, the estimated 

threshold is modelled as a realization of the latent (true) threshold with a standard deviation that is the 

same as the estimated standard deviation output from the QUEST procedure. Importantly, as 

explained above, since the presented intensity or signal information are limited to the range [0, 1], a 

threshold estimated above 1 is less reliable as we can never directly observe and test this estimate. 

Thus, to account for these limitations, we added a penalization to the model log-likelihood using a 

censored variable representing the threshold estimated above 1 or below 0. We implemented an 

imputed censored model, where estimated values outside of [0, 1] are modelled as a set of additional 

random values that would have been censored. Thus, each censored observation introduces a random 

variable that would be added to the model log-likelihood.  

A set of simpler alternative models were also tested: general linear model (no random effect, 

no latent parameters, and no additional censoring term), linear mixed model (no latent parameters and 
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no censoring term), linear mixed model with latent parameters (but no censoring term), and the full 

model as described above. It is worth noting that the estimation was highly similar across all models, 

but the full model yields the highest leave-one-out cross-validation score and the highest widely 

available information criterion (Vehtari et al., 2015; Spiegelhalter et al., 2002). All the tested models 

and model comparisons are shown in the supplementary notebook. 

The probabilistic model was built using PyMC3 and we sampled from the posterior 

distribution using NUTS. We ran four MCMC chains with 3000 samples each; the first 1000 samples 

were used for tuning the mass matrix and step size for NUTS, and were discarded following this. 

Model convergence was diagnosed by computing Gelman and Rubin's convergence diagnostic (R-hat, 

1992), examining the effective sample size, inspecting the mixing of the traces, and checking whether 

there is any divergent sample that has been returned from the sampler. Inferences were performed by 

computing directly on the posterior samples. 

Results 

The descriptive results are shown in Figure 3. Both groups of participants showed similar 

recognition threshold means for each of the emotions. For example, happy was the easiest to 

recognise, as the estimated threshold was the lowest across all expressions. The most difficult 

expression was fear, with an estimated threshold consistently over 1. The mean recognition threshold 

for each group and each expression can be found in supplementary table 1. 

Posterior distribution and estimation of the parameters of the Bayesian Hierarchical Censored 

Model are reported in supplementary figure 1 and supplementary table 2. The estimated threshold 

(i.e., overall intercept) is 0.642 [0.576, 0.706], in brackets is the 95% highest probability density 

interval (95% HPD). At the group level, the deaf signers require a similar level of intensity/signal 

overall compared to hearing non-signers, as the offset compared to the hearing non-signers is 

estimated at 0.002 [-0.090, 0.090]. There are non-zero estimates of the Group * Expression * Task 

interaction terms from the linear equation part of the model, which we further quantified by 

computing the posterior conditional mean and performing a group comparison within each expression. 
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The posterior distribution of the latent threshold for each group, task, and expression is shown 

in figure 4 and supplementary table 3. The two groups of observers do not show the same threshold 

estimation within each task and expression, as the posterior distributions are not completely 

overlapping with each other. To demonstrate this difference, we computed the posterior contrast 

between deaf and hearing observers for each expression and task (figure 5). We report the contrast of 

deaf minus hearing participants. Interestingly, we found that deaf observers require more intensity and 

signal than the hearing group to recognise the expression of Disgust accurately. The deaf observers 

need 0.130 [0.039, 0.219] more intensity and 0.115 [0.026, 0.198] more signal than the hearing 

participants. For the other expressions, the estimated thresholds for both tasks are similar for both 

groups of observers. Deaf observers also show a small increase of signal threshold for Sadness (0.051 

[-0.038, 0.136]) and Surprise (0.056 [-0.026, 0.137]). However, as these latter estimated differences 

overlap with zero, more information is needed to draw conclusions about these conditions. 

Discussion 

The aim of this study was to assess facial expression recognition in deaf signers and hearing 

non-signers using a psychophysical method to measure the quantity of intensity and signal needed to 

recognise an expression. The sensitivity of this method combined with a large sample enabled us to 

obtain interesting and reliable observations about facial expression coding in deaf signers.  

Overall, our results suggest that deaf signers’ facial expression coding does not differ from 

hearing non-signers in the quantity of signal and intensity required to recognise the basic expressions, 

with the exception of disgust. For both deaf and hearing participants, the expression of happiness had 

the lowest signal and intensity thresholds and was therefore the easiest expression to recognise, 

whereas fear had the highest thresholds. The same pattern of results for happiness and fear has been 

reported in previous developmental studies using the same paradigm, which also tested hearing adults 

(Rodger et al., 2015; Rodger et al., 2018). Further studies of emotion recognition in deaf children are 

necessary to further understand the developmental trajectory of emotion processing in the deaf 

population, and more specifically potential reasons for the difference found here in disgust 

recognition between deaf and hearing groups. Many studies report poorer performances in deaf 
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children compared to age-matched hearing children in the labelling and categorisation of facial 

expressions of emotion (e.g., Dyck, Farrugia, Shochet, and Homes-Brown, 2004; Ludlow, Heaton, 

Rosset, Hills, 2010; Most & Michaelis, 2012). These differences have been observed in young 

children from 6 years of age up to 18 years of age. However, other studies report no significant or 

subtle differences between deaf and hearing children in similar tasks involving facial emotion 

processing (e.g, Hosie et al., 1998, Jones et al., 2017, Ziv, Most and Cohen, 2013). The heterogeneity 

of these results could be linked to different factors related to the study design, or to the participants 

characteristics such as age, use of hearing aids, or language abilities (e.g. sign language as a primary 

language or not). They also suggest that more research is necessary to better understand the 

developmental trajectory of facial emotion processing in deaf children. Moreover, studies including 

both children and adults in the same experimental paradigm would be beneficial.  

Disgust was the unique expression showing differences in recognition thresholds between the 

deaf signing and hearing non-signing participants for both the signal and intensity conditions. Deaf 

signers had higher recognition thresholds than hearing non-signers for both conditions. Therefore, 

deaf signers needed more facial information than their hearing counterparts to recognise disgust in 

comparison to the other facial expressions of emotion at a level of 75% performance. Atypical 

performance for disgust recognition was similarly reported in deaf children in a recent study of deaf 

and hearing children’s recognition of the six basic emotions (Jones, Gutierrez & Ludlow, 2017). In 

this study both deaf and hearing children showed the poorest performance for disgust and fear 

recognition overall, however deaf children showed poorer performance for disgust recognition 

compared to hearing children for both moving faces and faces that varied in emotional intensity. Jones 

et al. (2017) posited that deaf children’s concepts of disgust in comparison to hearing children’s may 

be less developed as they have been less exposed to conversations about emotions which may impact 

emotion recognition ability. However, it is not clear why the recognition of disgust uniquely is 

affected within this context. Another possibility for this atypical performance in disgust recognition is 

that deaf people need more signal or intensity information because disgust may overlap with other 

facial expressions like confusion, frustration, or uncertainty. It is possible that deaf people experience 
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such expressions more frequently, so their perceptual categories for disgust and other expressions 

which are similar to them may be different to those of hearing people.  

Performance for disgust recognition in another developmental study of deaf and hearing 

children was again lowest across all six basic expressions for both deaf and hearing children (Hosie, 

Gray, Russell, Scott, and Hunter 1998). However, accuracy for disgust was higher for deaf children 

compared to hearing children. Nonetheless, this result is not a direct contradiction to our result with 

adult observers, as higher thresholds in our study were necessary to maintain a high level of 

performance (75% accuracy). Therefore, despite deaf children showing better scores than hearing 

children, accuracy overall was low in comparison to the 75% threshold in our study. High thresholds 

and accuracy are therefore not equivalent. In order to further address the question of atypical 

performance for disgust within deaf populations, a full parametric design is necessary to map out the 

complete psychometric function. While it is clear that the facial expression of disgust is special in 

deaf signers (both adults and children), the reason for this atypical coding remains unclear. Future 

studies are necessary to establish whether this difference relates to deafness or sign language 

experience. Further, now that this deficit for disgust recognition in the deaf population has been 

detected, clearly there is a need for training in disgust recognition. Emotion recognition training in 

typically developing children has been shown to improve recognition performance (Pollux, Hall, & 

Guo, 2014). One pilot study with deaf children showed training improvements in emotion 

understanding but not facial expression recognition, so further studies in this area are clearly 

necessary (Dyck & Denver, 2003). 

The absence of difference in recognition thresholds between deaf and hearing participants 

does not necessarily mean that the special status of faces for the deaf population has no impact on the 

coding of facial expressions. Indeed, the current study only explored the coding of emotional facial 

expressions and not other types of facial expressions. Since linguistic and emotional expressions are 

processed differently in deaf signers (Corina et al., 1999; McCullough et al., 2005), it is possible that 

only facial expressions used in sign language (i.e., linguistic facial expressions) are processed 

differently in deaf signers. It would therefore be necessary to extend research on facial expressions 
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with a larger variety of expressions, in particular with both emotional and linguistic expressions in 

both hearing and deaf signers. In addition, it would also be interesting to clarify whether deaf adults 

would benefit from the presentation of dynamic emotional expressions over static images. We very 

recently showed that the performance for the recognition of static as compared to dynamic 

expressions was notably less effective in fragile face processing systems, such as brain-damaged 

patients (Richoz, Jack, Garrod, Schyns, & Caldara, 2015), and elderly adults (Richoz, Lao, Pascalis, 

& Caldara, 2018) by using a database of stimuli controlled for the amount of low-level information 

carried over time (Gold et al.., 2014). As sign language is dynamic, we could expect similar results in 

the deaf population, a question that needs to be addressed in a future study. 

In the current study, we aimed to provide a benchmark for the recognition of facial 

expressions of emotion in deaf signers, using young adult hearing participants as a baseline. Thus, 

instead of performing a conventional series of t-tests for all possible combinations of each groups’ 

expression recognition measures corrected for multiple comparisons, we decided to improve the 

estimation of accuracy for each condition by properly accounting for measurement errors using 

weakly informative priors. With this novel threshold paradigm, we take advantage of the uncertainty 

of the individual threshold estimation output by the adaptive maximum likelihood procedure. By 

using a hierarchical mixed-effect model, we account for the individual differences and provide a more 

precise group estimation. Moreover, we account for the bias in the threshold estimations that are 

higher than 1 with a censoring likelihood as a penalty. We hope that future studies with similar 

paradigms can take advantage of the model estimation we provide here, to construct more informative 

models. 

To conclude, this study offers new insights into the coding of facial expressions of emotion in 

deaf signers. Despite the central importance of facial expressions in deaf communication, overall we 

observe similar intensity and signal thresholds for both deaf-signers and hearing non-signers for facial 

expression recognition. Further studies are necessary to examine potential differences in the 

recognition of both emotional and linguistic expressions, in both hearing and deaf signers. 

Exceptionally, recognition performance for disgust was poorer for deaf-signers compared to hearing 
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non-signers. The atypical processing of disgust expressions has similarly been reported in deaf 

children. Future studies should try to establish how the experience of deafness and sign language may 

interfere in the construction and understanding of expressions of disgust. One consideration is that the 

Action Units for sign language may overlap with the Action Units for emotions, but not uniformly. 

That is, the Action Units for disgust may incorporate effectors that are more similar to those employed 

in sign language than is the case for other emotional expressions. Our results provide a reliable 

benchmark for the intensity and signal thresholds used for expression recognition in young deaf 

adults. 
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Figure Captions 

Figure 1: Example stimuli from the signal and intensity conditions. In this image, the stimuli are 

shown in 5% increments, starting at 20% signal or intensity.  

Figure 2: Example trial from the signal condition. Each trial begins with a fixation cross for 500 ms, 

followed by a face stimulus presentation for 500 ms. The displayed signal or intensity strength is 

provided by the QUEST psychometric procedure, followed by a mask of random noise until a 

response is made. Depending on accuracy, the next trial was followed by a face containing more (in 

the case of an erroneous response) or less (in the case of an accurate response) signal or intensity. 

Figure 3: Descriptive statistics. Each subplot shows the threshold estimation for one facial expression 

of emotion. The scatter plots show the individual threshold estimations for one observer. Each group 
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is color coded: red for deaf signers and blue for hearing non-signers. The group mean is shown as a 

solid non-transparent dot on top of the scatter plot, the error bars show the 95% Bootstrap confidence 

interval of the mean. 

Figure 4: Posterior distribution of the thresholds for 75% recognition performance for each expression 

and task. Groups are color coded red for deaf signers and blue for hearing non-signers. 

Figure 5: Forest plot of the posterior contrast of the thresholds for each expression and task between 

deaf signers and hearing non-signers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Tables and Figures 

 

Supplementary Table 1 

Mean Expression Recognition Thresholds per group and task with 97.5% bootstrap-t Confidence 

Intervals 

  Mean Expression Recognition 

Thresholds 
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Express

ion 

Task 

Grou

p 

Mean SD 97.5% btCI 

  

Anger 

Intensit

y Deaf 0.619 0.224 (0.554, 0.685) 

  Hearing 0.637 0.234 (0.574, 0.705) 

 Signal Deaf 0.655 0.215 (0.598, 0.716) 

  Hearing 0.642 0.204 (0.587, 0.700) 

       

Disgust 

Intensit

y Deaf 0.676 0.273 (0.603, 0.757) 

  Hearing 0.581 0.206 (0.526, 0.641) 

 Signal Deaf 0.770 0.262 (0.691, 0.843) 

  Hearing 0.660 0.191 (0.609, 0.717) 

       

Fear 

Intensit

y Deaf 1.038 0.258 (0.962, 1.109) 

  Hearing 1.036 0.260 (0.951, 1.108) 

 Signal Deaf 1.139 0.148 (1.096, 1.180) 

  Hearing 1.116 0.187 (1.062, 1.161) 

       

Happin

ess 

Intensit

y Deaf 0.340 0.124 (0.305, 0.377) 

  Hearing 0.319 0.101 (0.291, 0.345) 

 Signal Deaf 0.316 0.093 (0.293, 0.347) 

  Hearing 0.288 0.055 (0.274, 0.304) 

       

Sadnes

s 

Intensit

y Deaf 0.471 0.297 (0.384, 0.558) 

  Hearing 0.479 0.208 (0.422, 0.540) 

 Signal Deaf 0.641 0.248 (0.571, 0.715) 

  Hearing 0.607 0.192 (0.556, 0.659) 

       

Surpris

e 

Intensit

y Deaf 0.657 0.270 (0.581, 0.736) 

  Hearing 0.657 0.255 (0.588, 0.727) 

 Signal Deaf 0.513 0.212 (0.456, 0.577) 

  Hearing 0.459 0.132 (0.425, 0.497) 
 

 

Supplementary Table 2 

Posterior distribution and estimation of the parameters of the Bayesian Hierarchical Censored Model. 

The estimated threshold (i.e., overall intercept) is 0.642 [0.576, 0.706], in brackets is the 95% highest 
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probability density interval (95% HPD).  

 

  Bayesian Hierarchical Censored Model   

 

 
 Mean 

SD 

Monte  

Carlo  

Error 

 

HPD Interval 

(Lower, Upper) 

Number of 

effective sample 

size 

 

Rhat 

Intercept 0.642 0.033 0.001 0.576 0.706 1139.0 1.002 
Group__0 0.002 0.046 0.001 -0.090 0.090 1175.0 1.005 
Task__0 0.017 0.041 0.001 -0.066 0.090 1109.0 1.002 
Expression_

_0 0.062 0.043 0.001 -0.022 0.147 1536.0 1.001 
Expression_

_1 0.516 0.040 0.001 0.435 0.591 1222.0 1.001 
Expression_

_2 -0.305 0.039 0.001 -0.380 -0.226 1565.0 1.001 
Expression_

_3 -0.162 0.042 0.001 -0.248 -0.082 1624.0 1.001 
Expression_

_4 0.041 0.043 0.001 -0.048 0.122 1618.0 1.002 
Group_Tas

k__0 -0.016 0.056 0.002 -0.122 0.093 1126.0 1.004 
Group_Exp

ression__0 -0.132 0.059 0.001 -0.247 -0.018 1571.0 1.002 
Group_Exp

ression__1 -0.026 0.055 0.002 -0.133 0.082 1362.0 1.003 
Group_Exp

ression__2 -0.022 0.056 0.001 -0.133 0.083 1630.0 1.003 
Group_Exp

ression__3 0.003 0.057 0.001 -0.110 0.111 1658.0 1.002 
Group_Exp

ression__4 -0.019 0.059 0.001 -0.132 0.099 1628.0 1.003 
Task_Expre

ssion__0 0.077 0.058 0.001 -0.038 0.189 1489.0 1.001 
Task_Expre

ssion__1 0.012 0.054 0.001 -0.089 0.120 1361.0 1.002 
Task_Expre

ssion__2 -0.036 0.054 0.001 -0.143 0.069 1465.0 1.001 
Task_Expre

ssion__3 0.152 0.057 0.001 0.041 0.265 1618.0 1.001 
Task_Expre

ssion__4 -0.189 0.057 0.001 -0.302 -0.080 1541.0 1.002 
Interaction_

_0 0.031 0.081 0.002 -0.130 0.185 1530.0 1.001 
Interaction_

_1 0.028 0.074 0.002 -0.109 0.178 1359.0 1.003 
Interaction_

_2 0.008 0.074 0.002 -0.137 0.147 1557.0 1.003 
Interaction_

_3 -0.040 0.078 0.002 -0.190 0.114 1715.0 1.002 
Interaction_ -0.024 0.079 0.002 -0.186 0.127 1570.0 1.003 



27 
 

_4 

 

 

 

 

 

 

 

Supplementary Table 3 

Posterior distribution of the latent threshold for each group, task, and expression. 

  Mean Recognition Accuracy 

(%) 

   

 
  Mean SD 

HPD Interval 

(Lower, 

Upper) 

  

Anger_

Deaf_I

ntensity 0.642 0.033 0.576 0.706 
Anger_

Hearing

_Intensi

ty 0.644 0.033 0.582 0.710 
Anger_

Deaf_S

ignal 0.659 0.032 0.597 0.723 
Anger_

Hearing

_Signal 0.645 0.031 0.583 0.704 
Disgust

_Deaf_

Intensit

y 0.704 0.035 0.633 0.768 
Disgust

_Hearin

g_Inten

sity 0.574 0.032 0.511 0.636 
Disgust

_Deaf_

Signal 0.797 0.032 0.731 0.859 
Disgust

_Hearin

g_Sign

al 0.683 0.031 0.620 0.740 
Fear_D

eaf_Int

ensity 1.158 0.031 1.095 1.216 
Fear_H

earing_ 1.134 0.030 1.077 1.196 
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Intensit

y 

Fear_D

eaf_Sig

nal 1.187 0.028 1.135 1.244 
Fear_H

earing_

Signal 1.175 0.028 1.120 1.228 
Happin

ess_De

af_Inte

nsity 0.337 0.031 0.279 0.398 
Happin

ess_He

aring_I

ntensity 0.317 0.030 0.259 0.379 
Happin

ess_De

af_Sign

al 0.317 0.028 0.263 0.372 
Happin

ess_He

aring_S

ignal 0.290 0.028 0.233 0.342 
Sadness

_Deaf_

Intensit

y 0.480 0.035 0.410 0.546 
Sadness

_Hearin

g_Inten

sity 0.485 0.032 0.424 0.549 
Sadness

_Deaf_

Signal 0.649 0.032 0.586 0.709 
Sadness

_Hearin

g_Sign

al 0.598 0.031 0.538 0.660 
Surpris

e_Deaf

_Intensi

ty 0.683 0.035 0.615 0.752 
Surpris

e_Heari

ng_Inte

nsity 0.666 0.036 0.594 0.737 
Surpris

e_Deaf

_Signal 0.510 0.031 0.451 0.571 
Surpris

e_Heari

ng_Sig

nal 0.454 0.029 0.401 0.515 
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Supplementary Figure 1 

Posterior distribution and estimation of the parameters of the Bayesian Hierarchical Censored Model 
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