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Towards a Sender-Based TCP Friendly Rate Control

(TFRC) Protocol
Guillaume Jourjon, Emmanuel Lochin and Patrick Sénac.

Abstract—Pervasive communications are increasingly sent over
mobile devices and personal digital assistants. This trend is
currently observed by mobile phone service providers which
have measured a significant increase in multimedia traffic. To
better carry multimedia traffic, the IETF standardized a new
TCP Friendly Rate Control (TFRC) protocol. However, the
current receiver-based TFRC design is not well suited to resource
limited end systems. In this paper, we propose a scheme to shift
resource allocation and computation to the sender. This sender-
based approach led us to develop a new algorithm for loss
notification and loss-rate computation. We detail the complete
implementation of a user-level prototype and demonstrate the
gain obtained in terms of memory requirements and CPU
processing compared to the current design. We also evaluate
the performance obtained in terms of throughtput smoothness
and fairness with TCP and we note this shifting solves security
issues raised by classical TFRC implementations.

Index Terms—Transport, TFRC, Protocol Implementation.

I. INTRODUCTION

THE recently standardized DCCP protocol [1] is perceived

as the most efficient mechanism to carry multimedia

traffic. DCCP can apply multiple congestion control mecha-

nisms, and identifies TCP-Friendly Rate Control (TFRC) as

congestion control ID #3 (DCCP/CCID3) [2]. TFRC is a

congestion control mechanism for unicast flows operating in

a best-effort Internet environment [3]. TFRC reproduces the

TCP window-based congestion control mechanism through an

equation model of the TCP equivalent throughput. The smooth

rate variation, induced by this congestion control mechanism,

makes it a good candidate for the delivery of an efficient

transport service to client-server multimedia and continuous

stream applications. However, in such a media streaming

scenario, if multimedia servers are powerful processing and

communication engines, this is not usually the case of mobile

clients. Indeed, these clients are resource-limited end-systems

and are much more sensitive to communication and system

processing while focusing on application layer.

Therefore the lightening of recurrent communication pro-

cessing is a critical issue for increasing the performance and

autonomy of mobile end systems. One of the main costs of

the TFRC mechanism comes from the periodic computation of

Part of the results was presented at IEEE ICC 2007, Glasgow, UK, 2007.
This paper extends this previous version and presents a significant contribution
in terms of performance evaluation of the algorithm proposed and in particular
concerning the efficiency, throughtput smoothness and intra-protocol fairness
of this proposal.
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Contacts: guillaume.jourjon@nicta.com.au, emmanuel.lochin@isae.fr,

patrick.senac@isae.fr

both the RTT and the loss rate of data carried by a connection.

In particular, RFC 3448 [3] proposes the loss rate estimation

to be done on the receiver side. A classical receiver-based

solution achieves a periodic estimation of the loss event rate

before sending it to the sender. This computation requires

maintenance of a loss event history data structure. Such a

receiver-based solution does not comply with the capacities

and resource constraints (i.e. in terms of energy consump-

tion and overall computational performance) of light mobile

receivers (e.g. PDAs, mobile phones) which are increasingly

populating the Internet.

RFC 3448 suggests that this computation could also be

done on the sender-side: “It would be possible to implement

a sender-based variant of TFRC where the receiver uses

reliable delivery to send information about packet losses and

the sender computes the packet-loss rate and the acceptable

transmit rate”. Indeed, a sender-based architecture would

allow to ease future enhancements of the TFRC protocol. For

instance, TCP, which is sender-based, allows to enable the

deployment of novel protocol variant (such as CUBIC inside

GNU/Linux kernel) as it concerns only a sender modification.

Thus, in a future deployment of TFRC, a sender-based variant

will ease the deployment of novel proposals.

In this paper, we develop this idea by specifying and

evaluating the design of a sender-based implementation of

the TFRC congestion control mechanism. In our proposal,

TFRC flow’s receiver just returns simple and light feedback

packets to the sender by using a SACK-oriented mechanism

[4] that insures the reliable transfer of theses feedback packets.

This scheme is known to be robust to lossy channels while

not entailing heavy and complex error control mechanisms

[4]. Moreover, the proposed sender-based approach is more

robust to selfish receivers as all the key operations are located

in the sender side. Some solutions to secure TFRC from

selfish receivers have been proposed in [5] using RTSP [6].

Another sender-based solution has been proposed in [2] where

the receiver sends back loss event intervals to the sender.

These two solutions, as it will be explained later, remain more

complex than our new proposal.

This paper is structured as follows: section II introduces

the context of this study and provides some background

information. Section III gives insights into the design of

the new congestion control protocol architecture. Section IV

compares the performance of the proposed congestion control

protocol with respect to the standard TFRC implementation.

We quantify the benefits of our proposal in terms of algorith-

mic processing and communication load in section V. Finally,

section VI provides some conclusions and future directions.
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II. CONTEXT AND RELATED WORK

TFRC estimates the equivalent TCP sending rate X from

equation (1). This equation depends on the mean packet size

s and two periodically processed parameters: the packet loss-

event rate p and the round trip time RTT . RTO refers to the

TCP retransmission time-out value which is usually a linear

function of the RTT.

X =
s

(RTT ·

√

p·2

3
+ RTO ·

√

p·27

8
· p · (1 + 32 · p2))

(1)

During the initialization phase, TFRC acts as TCP does

during the slow-start algorithm. This slow-start phase also

occurs during the transfer after the RTO time-out expires.

This phase is followed by a congestion avoidance phase as

soon as the receiver detects a loss. At this step, TFRC needs

to periodically estimate the loss event rate, p, in order to

compute the sending rate X . The receiver evaluates the packet

loss rate by a sliding window-based loss-history structure. This

structure stores the eight most recent loss-event intervals and

process the loss-event rate with a low path filter that smoothes

the loss event variation. A loss event and its related interval of

packets is defined as one or more lost packets during a duration

of at least one RTT [3]. In other words, several packets lost

during an RTT define a single loss event and the duration of a

loss interval is greater than or equal to the RTT. The algorithm

used at the receiver side is given in Fig. 1.

ReceivePacket() {
Add packet to packet history;
p_new = new value of packet loss rate;
if (p_new > p_old){

feedback timer expiration;
do CreateFeedback();

}
}
CreateFeedback() {
compute average packet loss rate;
calculate measured receive rate;
prepare and send feedback packet;
restart feedback timer;

}

Fig. 1. Original algorithm of the receiver

Two main issues can be identified in the receiver-based

algorithm. Firstly, the receiver must continuously maintain and

update the loss event history data structure. The management

of this data structure is an undesirable processing and memory

overhead for resource limited mobile receivers. Secondly, the

receiver has to continuously process the loss-event rate and

send it to the sender, at least once per RTT, and as soon as it

observes a loss-event rate increase. Once again, this processing

load squeezes the remaining processing capacity. Moreover,

such a receiver-based implementation cannot guarantee that

selfish receivers do not try to trick the sender by deliberately

sending a smaller loss event rate in an attempt to get higher

bandwidth [5]. Our solution requires fewer and simpler modi-

fications to the TFRC header and algorithm than the proposal

in [5]. Another sender-based solution has been proposed in [2]

where the receiver sends back loss event intervals to the sender.

To the best of our knowledge, this solution has never been

either tested or implemented. In comparison to our proposal,

this solution is supposed to be closer to the original algorithm

but the receiver remains more complex since it has to maintain

a structure able to distinguish a loss from a loss event.

III. DESIGN

This section presents the design of our sender-based TFRC

protocol named TFRClight. The design of this protocol is

based on the shifting of the loss-rate estimation to the sender

side. We identify and propose several changes entailed by

this shifting, mainly in the feedback packet structure and

in the data structures managed by the receiver. The aim

of our new TFRC protocol architecture and design is to

reduce the receiver load. We discuss in this section the design

of TFRClight by first presenting the problems that resulted

from shifting packet-loss-rate estimation. Then, we define and

experimentally validate efficient solutions to these problems.

A. Notification of packet loss

In the traditional receiver-based TFRC, the receiver has to

periodically send feedback information to the sender. These

feedback messages contain two parameters that allow the

sender to estimate the current RTT value. These parameters

are respectively (1) the timestamp of the last packet received

(Last Timestamp) and (2) the amount of time elapsed

between the receipt of the last packet and the generation of

the feedback (Processing Time). We present these fields

of the TFRC header in Fig. 2.

TFRC Data Packet

sequence
number

number
last sequence Packet Lost

Rate Rate
Receiving

Processing Time

proto ID

Last Timestamp

TFRC Feedback Packet

ty
p
e

ty
p
e

Timestamp current RTT Payload

proto ID

Fig. 2. TFRC headers for data and feedback packets

Moreover, feedback packets also contain information about

the packet loss rate (Packet Loss Rate) and the re-

ceived throughput (Receiving Rate) as processed by the

receiver. In TFRClight, the packet loss rate is no longer

processed and returned by the receiver. Nevertheless, the

receiver remains the only entity able to detect the loss of a

packet and to notify the sender about this loss.

In order to perform this notification, we propose the main-

tenance of a compact and light data structure at the receiver.

This data structure is a simple bits vector (i.e. a SACK vector)

that describes, from a given packet number, the distribution of

packets received and lost. In other words, if a given packet

is received, the bit is set to 0 otherwise 1. This vector is

periodically sent to flow source. Such a data structure leverage

on the SACK mechanism used when some degree of reliability

is needed, and gets the benefit of the redundancy offered

by successive SACK vectors. Therefore and in this case, our

approach does not entail any additional data structure at the

receiver. Thus, our approach delivers two services for the price

of one that are: congestion and error control.
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When the SACK vector sending period is lower than the

duration covered by the SACK vector, this vector offers

redundancy that contributes to the reliable delivery of loss

information. The value of the feedback packet sending period

will be discussed in the next section. The right vector length

can be chosen by considering that the sender-based and

receiver-based implementation should react similarly to packet

losses. Indeed, as defined in [3], the sender no-feedback timer

expires after 4 ∗ RTT . Where RTT , is the exponentially

weighted moving average of the round trip time processed by

the sender and sent in each packet. A SACK-based mechanism

is intrinsically robust to a maximum period of data losses

equivalent to the vector range. Then, the loss vector length

should cover at least:

4 ∗ RTT ∗ PacketSendingRate packets

Where PacketSendingRate, is the sending rate computed by
the receiver as the received packet rate. In order to reproduce

the no-feedback timer behaviour of the standard receiver based

version of TFRC, the loss information vector length must be

dynamically recomputed with a period of 4 ∗ RTT .
The data structure used to managed the SACK vector is

a circular buffer, with a pointer keeping track of the most

recently received packet. In the next section, we first consider

a simple initial scheme for managing this structure. Then, from

the issues raised by this scheme, we will propose a solution

that conforms to the standard TFRC behaviour.

The message headers for the simple initial scheme are given

in Fig. 3. Where in the feedback header, the SACK structure

replaces the packet loss rate and in the the data header, we

added the nbSeq sync in order to provide reliability in a

future work.

last sequence
Rate

Receiving

sequence
numberty

p
e

current RTT

proto ID

nbSeq sync PayloadTimestamp

ty
p
e

Last Timestamp Processing Time

proto ID

Length Offset SACK
number

TFRClight Feedback Packet

TFRClight Data Packet

Fig. 3. Data and Feedback packet headers for a first version of TFRClight

B. Loss event definition in TFRClight

Although the previously introduced data and protocol data

unit structures are necessary for implementing an efficient

sender-based TFRC protocol, they are not sufficient. Indeed,

the loss history structure is based on the loss event definition

given in section II. Let’s remind that a loss event is defined as

the detection of one or more lost packets during one RTT. For

keeping track of loss events, the receiver needs the receiving

time of each packet to detect if lost packets belong to the same

loss event interval.

Since the sender and the receiver cannot maintain a syn-

chronous behaviour, the simple SACK structure previously

introduced does not allow the sender to construct an accurate

loss event history structure even if feedback packets are sent

every RTT. Indeed, without a careful design, in certain cases,

a loss event may be falsely detected. In Fig. 4, we give an

illustration of such false detection. The time axis represents

the data-packet arrival time. We also show on this axis the

times, tn, when the receiver sends feedback. As an example,

below this axe, we show the SACK vectors associated to three

successive feedback messages. At t1, the feedback message

reports two losses represented by the two bits set in the SACK
field. The Offset is equal to 100.
In the original TFRC, a timer of RTT time units should

have been triggered at the estimated receiving time of the

lost packet with the sequence number of 106. This timer

range is represented in Fig. 4 by the two-way arrows. At

t2, when the receiver sends its second feedback packet, the

SACK vector Offset is now equal to 112 and as the RTT

period is expired, a loss event should have been detected. At

this time, the traditional TFRC algorithm closes the previous

loss interval and restarts a new one from packet number 119
(i.e. the first lost packet following the RTT duration). Finally

at t3, the losses reported for packets 125 and 127 belong to

the previous loss event as the RTT timer expired at packet

number 130. Since no other packet is lost after this expiration,
there is no new loss event. The problem of false detection can

potentially result from an interpretation as a loss event of this

third feedback with Offset field which is equal to 124 and

its two marked bits in the vector.

As shown in Fig. 4, the TFRC mechanism is supposed to

see two loss events associated with two successive loss event

intervals of at least one RTT duration. In TFRClight, if we

merely shift the packet loss rate estimation, and rely on a

simple and direct interpretation of SACK vector information,

since there is no information about the estimated time of the

packet loss, and the sender and receiver are not synchronous,

the TFRC mechanism will see three loss events. Indeed, it will

receive three disjoint feedback messages (one per RTT) with a

non-null SACK field. Therefore, a simple logical interpretation

of these feedbacks leads to the identification of three loss event

instead of only two.

packet received

time
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Tail of feedback message

1
0
6

1
1
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1
1
9

1
2
4

packet number

12

124 0 01 1 0 0 0 0 0 0 0 0

12

12

lenght Vector of Received/Lost PacketOffset

feedback sending time

packet lost

t0 t1 t2 t3

Feedback message at t1 :

Feedback message at t2 :

Feedback message at t3 :

tn

Fig. 4. Illustration of loss event misinterpretation issues

Fig. 5 presents the impact on the resulting sender behaviour

of such at false detection issue. We give in this figure
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the instantaneous throughput measured at the sender and at

the receiver. Fig. 5(a) shows the resulting throughputs of

a TFRClight with a bad interpretation of loss events. This

real experiments involve an architecture with two nodes that

generate traffic and are connected with wired link of 1Mbit/s
and RTT = 100ms. In Fig. 5(a), TFRClight detects five loss

events just after the slow-start phase (between t = [0, 10])1.
However a correct implementation of TFRC would have

detected four loss events only as illustrated in 5(b).
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(a) Behavior of TFRClight with a falsely detected loss event
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(b) Proper behaviour of TFRC

Fig. 5. Comparison of TFRClightwith a false detection and a traditional
TFRC implementation in a network with a bandwidth of 1Mbit/s, and an
RTT=100ms

As a result, when a new loss event occurs (i.e. t = 63s
and t = 137s), the sender will decrease its emission rate

more than needed. In Fig. 5(a), this behaviour induces the

two large rate dips. Such an important throughput decrease

is explained by the way the loss history structure is built.

Indeed, as the mechanism gets successive loss events, the

corresponding entries in the loss history structure will be filled

with loss intervals shorter than they should be. Resulting in

a reduction of the processed weighted average loss interval

length and increase the loss event rate. Then, this loss-event

rate increase causes an excessive reduction of the sending rate

as given by equation (1).

In order to solve this issue we propose the following

modifications.

1Observed by the addition of a memory variable inside the core protocol

1) New receiver algorithm: At the receiver side the struc-

ture remains similar to the one presented in the previous

section. The algorithm used by the receiver side is shown in

Fig. 6.

ReceivePacket(){
Add packet to received packet;

}
CreateFeedback(){

calculate measured receive rate;
prepare and send feedback packet;
restart feedback timer;

}

Fig. 6. Receiver algorithm

In this proposal, the receiver is no longer responsible for

computing the packet loss rate. This algorithm supposes the

existence of a new structure that records the arrival or loss of

packets in order to allow SACK vectors to be built.

2) Modification at the sender side: In order to detect a loss

event at the sender side, the server has to set up a structure that

stores a timestamp of the packet sent. This structure is identical

to the one that traditional receiver-based TFRC receivers use

to compute the packet-loss rate, except that instead of keeping

trace of the packet-arrival time, this new structure stores the

packet-sending time.

Based on this new structure the sender is now able to

detect loss events from a sender perspective by considering

the sending time of the packets reported as lost in the received

SACK vectors. Furthermore because the sender keeps track

of packets sending time, the TimeStamp field in both data

and feedback headers is no longer needed. Fig. 7 gives the

resulting new structure of the TFRClight headers associated

with the data and feedback packets.

number

number
last sequence

Rate
Receiving

ty
p
e

proto ID

Processing Time Length Offset SACK

ty
p
e

proto ID

current RTT nbSeq sync Payloadsequence

TFRClight Data Packet

TFRClight Feedback Packet

Fig. 7. Reconsidering TFRClightheaders once the false detection of loss
events problem is solved

3) Translation from Loss History to Loss Events: With the

new data structure managed by the sender, the sender is now

aware of the sending time of each packet. This information,

combined with the received SACK vectors, allows the sender

to process the packet loss rate as detailed in Fig. 8.

for(int i=0; i<lenghtACK; i++)
{
if(vector[i]==0)

add Packet(offset+i) loss History;
p_new=new value of packet loss rate;

else
process loss history to loss event;

}
compute average packet loss rate;

Fig. 8. Algorithm for the SACK vector analysis at the sender
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In section 5.2 of RFC 3448, the authors explain how to

build loss events from the loss history. This operation needs:

• Sloss: the sequence number of the lost packet;

• Sbefore: the sequence number of the last packet to arrive

such that Sbefore < Sloss;

• Safter: the sequence number of the first packet to arrive

such that Sloss < Safter;

• Tbefore: the reception time of Sbefore;

• Tafter: the reception time of Safter.

In the presented solution, the sender is not aware of Tbefore

and Tafter. Nevertheless, the sender must estimate the arrival

time of Sloss. In our proposal, we use sending times, instead

of arrival times, to build loss events. These sending times are

corrected by the following factor, which the sender evaluates

whenever it receives feedback packets from the flow’s receiver

(where Xsent and Xrecv are respectively the sending and

receiving rates):

α =
Xsent

Xrecv

The determination of the new event is accomplished in the

same way as in the original TFRC except that the time

reference is no longer the arrival time but is now the sending

corrected by the factor α. Based on this new loss event, a loss

interval is built and stored in the loss history structure managed

by the sender. Then, the sender uses the same weighted sliding

window algorithm as described in [3] in order to compute the

packet loss rate from a weighted moving average of the loss

event interval.

4) Discussion: As feedback messages are not systemat-

ically sent when a loss is detected, we recommend that

feedback messages be sent at least one per RTT .

IV. VALIDATION OF TFRClight

In this section, we present an evaluation of our proposal

from several experiments over an emulated network. We have

implemented a user level prototype of TFRClight in Java

and evaluated the TFRClight prototype over a simple testbed

composed of two end-systems and a network emulated by a

FreeBSD/Dummynet pipe [7]. The main interest to develop

such protocol in Java language is to easily port our imple-

mentation over Java compliant mobile devices and plug on

top of this framework a streaming application2.

We compare TFRClightwith TCP and TFRC. In the rest

of this section, we use metrics as proposed in [8], [9], [10]

to study through representative examples, the behaviour of

TFRClight.

A. Evaluation Strategy

The performance evaluation of TFRClight has been

achieved regarding four criteria:

• Efficiency (in terms of throughput obtained);

• Intra-protocol fairness;

• TCP-friendliness;

2These algorithms have been implemented inside the Chameleon protocol
available here http://nicta.com.au/people/jourjong/chameleon protocol/

• Stability (in terms of instantaneous throughput oscilla-

tions).

First, we provide the definitions of these metrics, then in

the next section, we evaluate TFRClight according to these

metrics. Finally we quantify our contribution in terms of CPU

and memory usage.

1) Efficiency (Throughput): In [8] the authors define the

efficiency of their protocol as the aggregate throughput of all

the concurrent flows. Here, we use a normalised definition to

our study.

E =

∑n

i=1
xi

C
(2)

Suppose there are n TFRClight flows in the network cross-

ing a bottleneck of C Mbit/s. We denote xi, the throughput of

the ith flow. Then, the equation (2) represents the percentage

of used bandwidth.

2) Intra-protocol fairness: The fairness metric represents

how flows share fairly the bandwidth. In order to quantify

this, the commonly used method is the max − min fairness

[9]. In this method the lowest throughput is maximised. In the

following part of this section, since there is only one bottleneck

in all experiments, we will use the Jain’s fairness criteria [10]

in order to measure this characteristic of TFRClight. Therefore,

this fairness is given by the equation (3).

F =
(
∑n

i=1
xi)

2

n
∑n

i=1
xi

2
(3)

where in this case xi is the average throughput of the ith

TFRClight flow and n is the number of flows competing for

the bandwidth. F is always less than or equal to 1. If F = 1,
then all flows have the same throughput.

3) TCP friendliness: TCP-friendliness is nowadays subject

to discussion among the networking community. In particular,

some researchers claim that, from different point of views,

this qualification for a flow is not a meaningful criterion for

the service providers [11]. In this study, we used a metric

following the axiom that a flow is TCP-friendly if the non-

TCP source obtains a long-run term average sending rate not

larger that the one TCP would have obtained under the same

circumstances. This results in evaluating the TCP-friendliness

with the equation (4):

T1(X) =
1

n

∑n

i=1
xi

1

m

∑m

i=1
yi

(4)

where X is the protocol being studied, xi the average through-

put of the ith X flow, n the number of X flows, yi the average

throughput of the ith TCP flow and m the number of TCP

flows. In this formula if T1 is less than 1 then the non-TCP

flow is TCP-friendly, if T1 is equal to 1 then we have an ideal

friendliness and finally if T1 if higher than 1 then the non-TCP
flow overruns TCP.

4) Stability (oscillations): The last metric in use in this sec-

tion is the throughtput smoothness criteria. TFRC is renowned

for being a good candidate for multimedia traffic due to the

smoothness of its delivered throughput.

In order to quantify this throughtput smoothness, we con-
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sider the average throughput for each time unit interval. For

each of these intervals, we compute the standard deviation of

the throughput for each flow [12] and obtain the following

metric equation (5). This index corresponds to the sample

standard deviation normalised by the average throughput.

S =
1

n

n
∑

i=1

(

1

xi

√

√

√

√

1

m − 1

m
∑

j=1

(xi(k) − xi)2

)

(5)

where xi is the average throughput of the ith TFRClight flow,

n is the number of flows, xi(k) is the throughput of the ith

TFRClight flow for the kth time interval and m is the number

of time intervals.

B. General Behaviour of the proposal

For all experiments, the bandwidth and the RTT were

respectively set to 1Mbit/s and 100ms. In both Figs. 9, we re-
port the sending/receiving instantaneous throughputs measured

respectively at the sender/receiver sides. The results of our

experiments show that our sender-based protocol has the same

behaviour as traditional receiver based TFRC implementations.

We made several measurements to validate this new archi-

tectural design and report in this section only a representative

sample. It is always difficult to compare the performance

of a real implementation and a simulated one since the

simulation reproduces an ideal case without the overhead

introduced by real measurements. Nevertheless, we show that

the TFRClight receiver throughput is as stable as the ns-

2 receiver throughput3. Concerning the sender throughput,

TFRClightoscillates more than ns-2 TFRC implementation.

This can be explained by the overhead introduced by our user

level TFRClight implementation.

In the experiment illustrated in Fig. 9, we introduced a

concurrent UDP flow with a rate of 500Kbits/s between

t = [30sec, 90sec]. This test aims to verify the responsiveness
of TFRClight compared to ns-2 TFRC. In Fig. 9, due to their

packets being multiplexed with a non-responsive UDP flow,

both TFRC and TFRClight brutally decrease their rate during

the UDP flood. Furthermore, both implementations react the

same way to the losses induced by the UDP flow. When

the UDP flow stops, both implementations respond similarly.

Eventually, we can conclude from this scenario that the

modifications proposed and implemented in TFRClight result

in a behaviour similar to ns-2 TFRC.

C. Efficiency, Fairness and Stability of the proposal

In the set of experiments discussed in this section, we

consider only TFRClight flows and measure different criteria.

The topology of the network is displayed on Fig. 10.

In this topology, we made the number of TFRClight flows

varying from 1 to 4 following two patterns. These two patterns
differ in terms of flows’ duration. Indeed, in the first pattern,

every flow starts together but does not have the same duration

3The ns-2 TFRC implementation is used as reference as *BSD and
GNU/Linux implementations are still experimentals at the time of this study.
These measurements are only use to verify that our prototype behaves as the
standard TFRC reference chosen.
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Fig. 9. TFRC and TFRClight with a network bandwidth of 1Mbit/s, an
RTT=100ms and introduction of an UDP flow at t = [30s, 90s]
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as depicted in Fig. 11. In the second pattern, the starting and

stopping time of each flow is the same. Thanks to these two

different patterns, we aim to study the long run behaviour

of our proposal and its reactiveness when flows leave the

network.

1) Different Stopping Times: Fig. 11 represents the per-

ceived throughput at the receiver side. This throughput is

computed using a time sliding window of one second as

explained in [13].

In Fig. 12, we show that our proposal equally shared the

bandwidth between flows. The difference observed during the

first period of the experiment can be explained by two main
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reasons. First, our implementation was in Java language, there-

fore the start of each flow is conditioned by the Java virtual

machine performance. As a result a slight shifting between

the start might occur. Second, all the flows experience their

first loss event at different times. Following the increase and

variance in buffering delay some flows have more difficulty in

reaching the throughput equilibrium.

The behaviours represented in Fig. 12 are confirmed by the

values of the previously introduced metrics displayed in Table

I. These results have to be compared to what TCP would

experience in the same condition as given in Table II.

TABLE I
PERFORMANCE METRICS OF TFRClight FLOW IN THE SCENARIO WITH

DIFFERENT STREAMING DURATION

0-200s 200-400s 400-600s 600-800s

Efficiency 0.949 0.974 0.961 0.958

Stability 0.137 0.043 0.031 0.035

(oscillations)

Intra-protocol 0.996 0.999 0.999 1

fairness

2) Long-term Behaviour: We present in this section the

characteristics of our proposal in the case of a long-run

communication. Indeed, as underlined in [14], studying TFRC

as to be accomplished in the case of long term behaviour since

TFRC models TCP once the connection is well established. In

order to process this analysis, we perform the same experiment

TABLE II
PERFORMANCE METRICS OF TCP FLOW IN THE SCENARIO WITH

DIFFERENT STREAMING DURATION

0-200s 200-400s 400-600s 600-800s

Efficiency 0.964 0.965 0.965 0.975

Stability 0.023 0.079 0.167 0.218

(oscillations)

Intra-protocol 0.993 0.999 0.999 1

fairness

as the previous one but without different stopping times.

TABLE III
RESULT OF THE LONG-RUN EXPERIMENT

TFRClight

Efficiency 0.965

Stability (oscillations) 0.058

Intra-protocol fairness 0.999

As expected, the results for the long run behaviour of

TFRClight were a stabilised adjustment of the first test-period

of the previous set of experiments. As a result, TFRClight is

more stable in the long-run experiments than in short-run

experiment. In the same way, TFRClight reached the equi-

librium and therefore the intra-fairness property was enforced.

Concerning the efficiency metric, TFRClight is more efficient

in the long term behaviour study than in the previous one due

to the fact that the equilibrium is reached compared to the time

period 0− 200s in the previous experiment. This is explained

by the nearly equal to one intra-fairness metric.

D. TCP-Friendliness

In the following experiments, we show that the proposed

sender-based TFRC remains TCP friendly. The results of the

TFRC friendliness property are given in Table IV. These

measurements give the average throughput observed at the

receiver after 200 seconds of transfer. We have driven the

first experiment with 5 TFRClight flows only. We also studied

the multiplexing behaviour of TFRClight flows with TCP

and TFRC flows. The results sum-up in Table IV show that

TFRClight flows occupied a fair share of the bandwidth when

multiplexed with TCP and TFRC flows. These results show

that our proposal is friendly with TCP as it did not obtain a

bandwidth higher than TCP. On the contrary, TFRClightis less

friendly with our TFRC user space implementation. This can

be explained by the fact that TFRClight, as explained in the

section III, does not react as quickly as the original TFRC

algorithm when losses occur in the network.

V. QUANTIFICATION OF THE SHIFTING SCHEME

In Table V, we summarize the benefits and drawbacks of

the proposed design compared to the original algorithm.

The main advantages of our solution are the removal of the

packet-history structure and the removal of the packet-loss rate

computation at the receiver. Conversely, we have introduced a
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TABLE IV
FAIRNESS INDEX FOR DIFFERENT FLOW MELTING

T(TFRClight) T(TCP) T(TFRC)

5TFRClight 1.05 N/A 0.95

and 5TFRC

5 TFRClight 0.92 1.08 N/A

and 10TCP

TABLE V
SUMMARY OF THE BENEFITS AND DRAWBACKS OF TFRClight

benefits • suppression of the loss history structure

• no processing of the packet-loss rate

• protection from misbehaving receivers

• simpler timer management

• simpler sender’s algorithm

drawbacks • new structure for Sack vectors management

• loss events built from sender point of view

• feedback sent periodically only

new light structure that allows the receiver to build the Sack

vector sent to the sender in feedback messages. This structure

has a size of the order of 4RTT ∗Bandwidth/(packetsize).
For instance, in the case of a transmission with a bandwidth of

1Mbit/s, an RTT of 100ms and a packet size of 1000Bytes,
the structure has a maximum size of 50bits. This structure

is actualized for each data packet received. In the original

receiver-based design of TFRC, the receiver had to manage

a complex structure that stores information concerning the

arrived or lost packets. The stored information includes:

• the packet timestamp (16bits);

• the packet size (8bits);

• the arrival time (16bits).

Therefore, the elementary size of an entry is 40bits. Fur-

thermore, this structure potentially entails an unbounded size.

Indeed, this structure is emptied after detecting a loss event

only. As an example in Fig. 5, there are no losses between

t = 63 and t = 137. During this entire period, the structure

has to be updated at a rate of 1Mbit/s which corresponds

to 125packet/s. This structure for the given example would

contain:

40 ∗ 125 ∗ (137 − 63) = 370Kbits

when it can be released. In this particular case, with

TFRClight, the memory use would decreases from 370Kbits
to 50bits. This comparison remains true in another sender-

based approach such as proposed in [2]. Indeed, in this

proposal, the receiver is still responsible for the differentiation

between a loss event and a packet lost. Therefore, it still needs

to maintain a structure storing information of the arrival time

of the packet as described above.

Nevertheless, the following CPU’s cycle comparison can

only be applied to the original TFRC if the sender-based option

is configured to compute the packet-loss rate at the sender side.

Indeed, this option can also be activated only to double check

the packet-loss rate field in the feedback header. Therefore,

the receiver still computes this estimation.

To estimate the computation benefit of our proposal, let

us consider how in normal TFRC [3] the loss rate estimate

is processed for every received packet as shown in Fig. 1.

The basic algorithmic sequence for computing the loss rate

estimate entails the following set of elementary arithmetic

operations: eight additions, eight multiplications, one division

and one maximum operation. For instance, at rate of 1Mbit/s
with a packet size of 1Kbyte, this estimation should be

computed 125 times per second. These elementary operations

can be translated into CPU cycles as follows4:

• division = 70 cycles

• multiplication = 15 cycles

• addition, maximum = 0.5 cycles

As a result, for the given example, in the original TFRC, the

receiver has to use 24312.5 cycles/s.
Furthermore, after a slow-start phase, the receiver has to

initiate its loss history. This initialization is done from the

inversion of equation (1) in order to find the packet loss rate

corresponding to the measured received rate. This initialization

is usually done with a binary search and uses the list of

elementary operations sum up in Table VI.

TABLE VI
LIST OF THE NUMBER OF ELEMENTARY OPERATIONS

(n = number of iterations)

+ ∗ / sqrt
binary search 4n + 4 8n + 8 2n + 2 n
CPU cycles 0.5 15 70 70

The worst case of this binary search can be observed when

this algorithm diverges, which can occur when the solution of

the inversion of (1) is outside the [0, 1] range. This potential of
divergence leads to an upper bound on the number of iterations

done during the binary search. Therefore, in order to compute

the inversion of (1) for most cases, the maximum number

of iterations is usually set to 50. Indeed, we implemented

the binary search of the inversion and found out that the

algorithm converges in 15 iterations for RTT = 400ms and

bandwidth = 1Mbit/s.
In conclusion, for the worst case it takes 16862 CPU

cycles for the initialization process. In our proposal, all of

this computational process is achieved at the sender side.

Moreover, we have shown in section IV that this simplification

entails a congestion-control behaviour that strictly conforms to

receiver-based TFRC implementations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented and evaluated the design

of a sender-based TFRC congestion control mechanism This

design is driven by the aim of shifting the computation

of the loss rate estimation from the receiver to the sender,

in order to alleviate the processing and memory needs of

“light” receivers. This shifting requires the sending of loss-

resilient feedbacks, and is accomplished through the use of a

SACK-like mechanism. This results in a significantly lightened

4According to Intel PIV documentation
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computational load on the receiver which is particularly useful

for mobile clients with computation and energy constraints.

We have shown that the proposed sender-based TFRC archi-

tecture behaves identically to the official ns-2 implementation

and remains friendly to TCP streams. This validation has been

accomplished through well accepted metrics which confirmed

that our architecture remains as efficient as the original TFRC.

We have also quantified the benefits of this shift from the

perspective of computations and memory.

Furthermore, the proposed solution allows the security is-

sues raised in [3] to be resolved. These security issues are

related to the forwarding of false loss event rates by the

receiver. Such misbehaviour is no longer possible with our

solution when associated with nonce mechanisms. We plan to

further validate our proposal by performing a large range of

experimental measurements on a multi-hop testbed.
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