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Prox-regular sets and Legendre-Fenchel transform

related to separation properties

Samir Adly∗, Florent Nacry†, Lionel Thibault‡

Abstract. This paper is devoted to nonconvex/prox-regular separations of sets in
Hilbert spaces. We introduce the Legendre-Fenchel r-conjugate of a prescribed function
and r-quadratic support functionals and points of a given set, all associated to a positive
constant r. By means of these concepts we obtain nonlinear functional separations for
points and prox-regular sets. In addition to such functional separations, we also establish
geometric separation results with balls for a prox-regular set and a strongly convex set.

Keywords. Prox-regular set, strongly convex set, Legendre-Fenchel transform, semicon-
vexity, quadratic support functional, geometric separation.

1 Introduction

The present paper is concerned with the interest of the use of the Legendre-Fenchel
transform in the study of certain other crucial features for prox-regular sets which al-
low us to provide fundamental separation results for such sets. By means of the usual
Legendre-Fenchel transform ([26, 21]), we define the concept of r-conjugate f?,r of a func-
tion f : X → R∪{−∞,+∞} as the Legendre-Fenchel conjugate of f+ 1

2r‖·‖
2, where X is

a Hilbert space and r ∈]0,+∞] is a positive extended-real number. We develop the study
of r-conjugates and we obtain diverse remarkable properties, especially for semiconvex
functions. A fixed point result is also obtained for the transform f 7→ f?,r. Considering
the fundamental case when f is the indicator function of a subset S of X gives rise to
the quadratic functional qx∗,r := 〈x∗, ·〉 − 1

2r‖ · ‖
2 on X for every x∗ ∈ X. Through this,

the usual notions of support linear functionals and support points in functional analysis
are extended to support quadratic functionals and quadratically supported points. We
study in details the properties of these new notions mainly for (uniformly) r-prox-regular
sets in X. We show in particular a Bishop-Phelps ([11]) type result for the density of r-
quadratically supported points of the set S in its boundary whenever S is r-prox-regular.
With the above concepts and their properties at hands, we establish functional separation
results for points outside prox-regular sets and also ball separation results (that is, sepa-
ration with balls) between an r-prox-regular set and an s-strongly convex set (see Section
5 for definition).

The paper is outlined as follows. Section 2 recalls the notions and results useful for
our analysis. Clarke tangent cones, normal cones and subdifferentials as well as proxi-
mal normals and proximal subdifferentials, as basic tools in our approach, are recalled in
Subsection 2.1. The definition and main results needed in the paper for prox-regular sets
are given in Subsection 2.2. The concepts of r-conjugate, quadratic support functional
and quadratically supported point are defined and analyzed in Section 4. Proposition
3.1 in this section shows properties of quadratic support functionals and points, Propo-
sition 3.4 illustrates particular features of f?,r when f is semiconvex, and Proposition
3.5 demonstrates the fixed point result for the transform f 7→ f?,r. In Section 4, for
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any r-prox-regular set in X we establish in Proposition 4.1 and Theorem 4.3, functional
separation type results for points at positive distances less than the radius r of prox-
regularity. Ball separation type results between prox-regular sets and strongly convex
sets are provided in Theorem 5.3 and Theorem 5.4 in the last Section 5.

2 Notation and preliminaries

As usual, N denotes the set of integers starting from 1 and R := R ∪ {−∞,+∞} is the
extended real-line. Throughout the paper, X stands for a (real) Hilbert space not reduced
to the trivial space {0} endowed with the inner product 〈·, ·〉 and its associated norm
‖·‖ :=

√
〈·, ·〉. The open (resp. closed) ball and the sphere of X centered at x ∈ X with

radius ρ > 0 are denoted by B(x, ρ) (resp. B[x, ρ]) and S(x, ρ). In the particular case
of the closed unit ball and the unit sphere of X centered at zero, we use the following
notation

B := B[0X , 1] and S := S(0X , 1).

Now, consider any nonempty subset S of X. The distance function dS from S is defined
as

dS(x) = d(x, S) := inf
y∈S
‖x− y‖ for all x ∈ S.

The multimapping ProjS : X ⇒ X of nearest points in S is defined by

ProjS(x) = Proj(S, x) := {y ∈ S : ‖x− y‖ = dS(x)} for all x ∈ X.

Whenever the latter set is reduced to a singleton for some x ∈ X, that is ProjS(x) = {y},
the vector y ∈ S is denoted by projS(x) or PS(x). Let r ∈]0,+∞] be an extended
real. Through the distance function, we can define the (open) r-tube of S as the set
Tuber(S) := Ur(S) \ S where Ur(S) is the (open) r-enlargement of S

Ur(S) := {x ∈ X : dS(x) < r} ,

the (closed) r-exterior of S as the set

Exter(S) := {x ∈ X : dS(x) ≥ r}

and the set of points at exact r-distance to S

Dr(S) := {x ∈ X : dS(x) = r} .

If r = +∞, such sets become

U∞(S) := X and Exte∞(S) = ∅ = D∞(S).

2.1 Tangent and normal cones

Throughout this paragraph, S is a subset of X which contains a vector x.

The Bouligand tangent cone TB(S;x) of S at x ∈ S is defined as the set of h ∈ X such
that there exist a sequence (tn)n∈N of positive reals with tn → 0 and a sequence (hn)n∈N
of X with hn → h such that

x+ tnhn ∈ S for all n ∈ N.

The Clarke tangent cone TC(S;x) of S at x ∈ S is the set of h ∈ X such that for every
sequence (xn)n∈N of S with xn → x, for every sequence (tn)n∈N of positive reals with
tn → 0, there is a sequence (hn)n∈N of X with hn → h satisfying

xn + tnhn ∈ S for all n ∈ N;
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the negative polar cone of TC(S;x) is the Clarke normal cone NC(S;x) of S at x, i.e,

NC(S;x) = {ζ ∈ X : 〈ζ, h〉 ≤ 0, ∀h ∈ TC(S;x)}.

Given a nonempty open set U in X and a function f : U → R, the Clarke subdifferential
∂Cf(x) of f at a point x ∈ U where f is finite is defined by

∂Cf(x) := {ζ ∈ X : (ζ,−1) ∈ NC
(
epi f ; (x, f(x))

)
},

where epi f := {(u, r) ∈ U×R : f(u) ≤ r} is the epigraph of f . By convention, ∂Cf(x) = ∅
when f(x) is not finite. Defining the indicator function ψS of the set S by

ψS(x′) :=

{
0 if x′ ∈ S,
+∞ if x′ ∈ X \ S,

one has ∂CψS(x′) = NC(S;x′) for all x′ ∈ S.
Besides the above notions of Clarke normal cone and subdifferential, let us introduce

the proximal normal ones. The proximal normal cone of S at x ∈ S, denoted by NP (S;x),
is defined as (see, e.g., [33])

NP (S;x) := {v ∈ X : ∃r > 0, x ∈ ProjS(x+ rv)} .

By convention, one puts

TC(S;x′) = ∅ and NC(S;x′) = NP (S;x′) = ∅ for all x′ ∈ X \ S.

It is not difficult to see that v ∈ NP (S;x) if and only if there is a real r > 0 such that

〈v, x′ − x〉 ≤ 1

2r
‖x′ − x‖2 for all x′ ∈ S; (2.1)

in such a case we will say that v is a proximal normal to S at x with constant r > 0. It is
known and not difficult to see that

NP (S;x) ⊂ NC(S;x).

According to the definition of the proximal normal cone, we notice that, for any v ∈ X
such that ProjS(v) 6= ∅, we have

v − w ∈ NP (S;w) for all w ∈ ProjS(v). (2.2)

Coming back to the above function f : U → R defined on the nonempty open set U
of X, a vector ζ ∈ X is said to be a proximal subgradient of f at a point x ∈ U with f(x)
finite, provided there are a real σ ≥ 0 and a real η > 0 with B(x, η) ⊂ U such that

〈ζ, y − x〉 ≤ f(y)− f(x) + σ ‖y − x‖2 for all y ∈ B(x, η),

which is known to be equivalent to (ζ,−1) ∈ NP
(
epi f ; (x, f(x))

)
. The set ∂P f(x) of all

proximal subgradients of f at x is the proximal subdifferential of f at x. Like for the
Clarke subdifferential, one sets ∂P f(x) = ∅ whenever f is not finite at x.

If S is convex, it is known (and easily seen) that the two normal cones NP (S;x) and
NC(S;x) coincide with the normal cone in the sense of convex analysis, that is,

NP (S;x) = NC(S;x) = {ζ ∈ X : 〈ζ, y − x〉 ≤ 0,∀y ∈ S} . (2.3)

If f : U → X is a convex function defined on a nonempty open convex subset U of X,
then the two above subdifferentials coincide on U with the subdifferential in the sense of
convex analysis, i.e., for every x ∈ U ,

∂P f(x) = ∂Cf(x) = {ζ ∈ X : 〈ζ, y − x〉 ≤ f(y)− f(x),∀y ∈ U} =: ∂f(x).
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2.2 Prox-regular sets in the Hilbert setting

This succinct paragraph is devoted to the needed basic features on prox-regularity which
is at the heart of the present paper. Prox-regular sets (a term coined in [31]) has a long
history which goes back to the famous work [20] by H. Federer with the class of positively
reached sets in Rn. Over the years, various names have been introduced in different
contexts to refer to such sets: weakly convex ([37]) or proximally smooth sets ([16]) are
commonly used in Hilbert setting; for other names we refer to the work [17]. Studies of
prox-regular sets in Banach spaces can be found in [9, 10, 6]. Besides those theoretical
developments, let us mention that prox-regular sets have also been sucessfully involved
in many concrete problems as the celebrated Moreau’s sweeping process (see, e.g., the
survey [29] and the references therein). For more details, in both theoretical and concrete
approaches, one can refer for instance to [31], the survey [17] and the book [34] along with
the references therein. We also refer to [1, 2, 35] for various stability properties.

Definition 2.1 Let S be a nonempty closed subset of X and r ∈]0,+∞]. One says that
S is r-prox-regular (or uniformly prox-regular with constant r) whenever, for every x ∈ S,
for every v ∈ NP (S;x) ∩ B and for every real t ∈]0, r], one has

x ∈ ProjS(x+ tv).

Given a closed subset S ⊂ X, x ∈ S and v ∈ NP (S;x) with ‖v‖ = 1, it is known and
easily seen that for every real t > 0 one has

x ∈ ProjS(x+ tv)⇔ S ∩B(x+ tv, t) = ∅. (2.4)

In such a case, one says that the unit normal proximal vector v to S at x is realized by
the t-ball B(x+ tv, t).

The following theorem provides some useful characterizations and properties of uniform
prox-regular sets for which we refer to [31, 17, 34].

Theorem 2.1 Let S be a nonempty closed subset of X and let r ∈]0,+∞]. Consider the
following assertions.
(a) The set S is r-prox-regular.
(b) For all x, x′ ∈ S, for all v ∈ NP (S;x), one has

〈v, x′ − x〉 ≤ 1

2r
‖v‖ ‖x− x′‖2 .

(c) On the open set Ur(S) the mapping projS is well-defined, and for every real s ∈]0, r[,
for all x, x′ ∈ Us(S),

‖projS(x)− projS(x′)‖ ≤ 1

1− (s/r)
‖x− x′‖ .

(d) For any u ∈ Tuber(S) such that projS(u) exists, one has

projS(u) = projS

(
projS(u) + t

u− projS(u)

‖u− projS(u)‖

)
for all t ∈ [0, r[.

(e) The function d2
S is C1,1 on Ur(S) and

∇d2
S(x) = 2

(
x− projS(x)

)
for all x ∈ Ur(S).

(f) The set S is tangentially regular as well as normally regular in the sense that

TB(S;x) = TC(S;x) and NP (S;x) = NC(S;x) for all x ∈ X.

Further, one has
∂P dS(x) = ∂CdS(x) for all x ∈ Ur(S).

Then, the assertions (a), (b), (c), (d), (e) are pairwise equivalent and each one implies
the assertion (f).
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When S is r-prox-regular, according to the above assertion (f) we will just write
N(S; ·) in place of any of NP (S; ·) and NC(S; ·), except when we need to precise the type
of normal cone we are working with. If C is ∞-prox-regular in X (i.e., nonempty closed
and convex) then N(C; ·) coincides with the normal cone in the sense of convex analysis,
that is,

N(C;x) = {ζ ∈ X : 〈ζ, y − x〉 ≤ 0,∀y ∈ C} for all x ∈ C.

Remark 2.1 In addition to (d) in the above theorem, it is worth noticing that for an
r-prox-regular subset of X with r ∈]0,+∞[, we have the crucial inclusion

projS(u) ∈ ProjS

(
projS(u) + r

u− projS(u)

‖u− projS(u)‖

)
for all u ∈ Tuber(S).

�

3 Quadratic support functional and Legendre-Fenchel
r-conjugate

Consider for a moment a nonempty closed convex set C of X and x ∈ bdryC. When the
non-nullity property

N(C;x) 6= {0}

holds, we can see that it translates a geometrical separation between the set C and the
vector x. Indeed, with the definition of the normal cone in the sense of convex analysis at
hands (see (2.3)), we observe that for any x? ∈ N(C;x) \ {0},

〈x?, c〉 ≤ 〈x?, x〉 for all c ∈ C,

and this can be rewritten with the help of the support function σ(·, C) := sup
c∈C
〈·, c〉 as

C ⊂ {〈x?, ·〉 ≤ σ(x?, C)} and 〈x?, x〉 ≥ σ(x?, C).

It should be noted that the latter inequality is in fact an equality, that is

〈x?, x〉 = σ(x?, C). (3.1)

Coming back to an r-prox-regular set S of X for some real r > 0, let us take a look at
the meaning of the non-nullity similar property

NP (S;x) 6= {0} for some x ∈ bdryS.

Fix any x? ∈ NP (S;x) \ {0} with ‖x?‖ = 1. According to the r-prox-regularity property
(see Theorem 2.1), we have

〈x?, u− x〉 ≤ 1

2r
‖u− x‖2 for all u ∈ S,

or equivalently,〈
x? +

x

r
, u

〉
− ‖u‖

2

2r
≤
〈
x? +

x

r
, x

〉
− ‖x‖

2

2r
for all u ∈ S.

Setting y? := x? + x
r 6=

x
r and ϕS,r(y

?) := sup
u∈S

(
〈y?, u〉 − ‖u‖

2

2r

)
, we arrive to

S ⊂

{
〈y?, ·〉 − ‖·‖

2

2r
≤ ϕS,r(y?)

}
and 〈y?, x〉 − ‖x‖

2

2r
≥ ϕS,r(y?).
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Defining the quadratic functional qy∗,r : X → R by

qy?,r(x) := 〈y?, x〉 − ‖x‖
2

2r
for all x ∈ X,

we observe in the same line as (3.1) that

qy?,r(x) = ϕS,r(y
?).

This leads to introduce the following definition.

Definition 3.1 Let S be a nonempty closed subset of X and r ∈]0,+∞] be an extended
real. Given u? ∈ X, we say that qu?,r is an r-quadratic support functional of S whenever
there exists x ∈ S such that

qu?,r(x) := 〈u?, x〉 − 1

2r
‖x‖2 = sup

x∈S
(〈u?, x〉 − 1

2r
‖x‖2) = sup

x∈S
qu?,r(x) =: ϕS,r(u

?).

In such a case, u? is said to quadratically support S at x. We say that x ∈ S is an
r-quadratic support point of S whenever there exists u? ∈ X with u? 6= x

r such that qu?,r
supports S at x. The set of all r-quadratic support points of S is denoted by suppr(S).

Whenever r = +∞, the above definition is reduced to saying that 〈u∗, ·〉 (resp. x)
is a support linear functional (resp. support point) of S in the usual sense of functional
analysis. Recall that 〈u?, ·〉 with u? ∈ X is a support linear functional to a nonempty
closed subset S of X provided there is some x ∈ S such that

〈u?, x〉 = sup
x∈S
〈u?, x〉 =: σ(u?, S),

and if u? 6= 0, such a point x ∈ S is said to be a support point of S. If in addition S is
convex, it is readily seen that the latter equality is equivalent to the following inclusion

u? ∈ N(S;x).

Through the next proposition, we see that the notions of r-quadratic support func-
tionals and points are related to the proximal normal cone of S.

Proposition 3.1 Let S be a closed subset of X, u? ∈ X, x ∈ S, r ∈]0,+∞]. The
following hold.
(a) The functional qu?,r is an r-quadratic support functional of S if and only if there exists
z ∈ S such that 〈

u? − z

r
, x− z

〉
≤ 1

2r
‖x− z‖2 for all x ∈ S.

(a′) The vector x is an r-quadratic support point of S supported by qu?,r if and only if
u? 6= x

r and 〈
u? − x

r
, x− x

〉
≤ 1

2r
‖x− x‖2 for all x ∈ S.

(b) If qu?,r is an r-quadratic support functional of S, then there exists z ∈ S such that

u? − z

r
is a proximal normal to S at z with constant r.

(b′) If x is an r-quadratic support point of S supported by the quadratic functional qu?,r,
then there exists a nonzero proximal normal v? to S at x with constant r such that

u? = v? +
x

r
.

(c) If qu?,r is an r-quadratic support functional of S, then for every real α > 0, qαu?,r/α
is an r

α -quadratic support functional of S.
(c′) If x is an r-quadratic support point of S supported by the quadratic functional qu?,r,
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then x is an r
α -quadratic support point of S supported by the quadratic functional qαu?,r/α.

If in addition the set S is r-prox-regular, one has:
(d) qu?,r is an r-quadratic support functional of S whenever there exists z ∈ S such that

u? ∈ N(S; z) ∩ B +
z

r
.

(d′) The vector x is an r-quadratic support point of S supported by the r-quadratic func-
tional qu?,r whenever u? 6= x

r and

u? ∈ N(S;x) ∩ B +
x

r
.

(e) One has the equality

suppr(S) = {x ∈ bdryXS : N(S;x) 6= {0}} .

Proof. (a) and (a′): To establish (a), it suffices to fix any z ∈ S and to note that for
every x ∈ S,

〈u?, x〉 − 1

2r
‖x‖2 ≤ 〈u?, z〉 − 1

2r
‖z‖2 ⇔ 〈u?, x− z〉 ≤ 1

2r

(
‖x‖2 − ‖z‖2

)
⇔ 〈u?, x− z〉 ≤ 1

2r

(
‖x− z‖2 + 2 〈x− z, z〉

)
⇔
〈
u? − z

r
, x− z

〉
≤ 1

2r
‖x− z‖2 .

The equivalence provided by (a′) is a direct consequence of what precedes.
(b) and (b′): The implication claimed by (b) is a direct consequence of (a) and of the
characterization (2.1) of proximal normal vectors. Similarly, (b′) follows from both (a′)
and (2.1).
(c) and (c′): These assertions follows from (a) and (a′) respectively.

Now, assume that the set S is r-prox-regular.
(d) and (d′): It is enough to establish (d). If there is z ∈ S such that

u? ∈ N(S; z) ∩ B +
z

r
,

then Theorem 2.1 ensures that〈
u? − z

r
, x− z

〉
≤ 1

2r
‖x− z‖2 for all x ∈ S.

Applying (a) yields that qu?,r is an r-quadratic support functional of S.
(e) The inclusion

suppr(S) ⊂ {x ∈ bdryXS : N(S;x) 6= {0}}
is a direct consequence of (b′). In order to establish the converse inclusion, fix any x ∈
bdryXS such that N(S;x) 6= {0}. Let any v? ∈ N(S;x) with ‖v?‖ = 1. We have

u? := v? +
x

r
∈ N(S;x) ∩ B +

x

r

and u? 6= x
r (otherwise v? = 0). It follows from (d′) that x is an r-quadratic support point

of the set S.

Remark 3.1 Consider any nonempty closed set S of X with S 6= X. According to [27,
Theorem 2.10 and Proposition 2.6], we know that the set{

x ∈ bdryS : NF (S;x) 6= {0}
}

is dense in bdryS, where NF (S; ·) denotes the Fréchet normal cone of S (see, e.g., [27]).
Taking into account the property (e) in the above proposition and assuming in addition
that S is r-prox-regular for some r ∈]0,+∞], we arrive to the density of suppr(S) in the
boundary of S. This can be seen as an prox-regular extension of the celebrated Bishop-
Phelps theorem (see [11]). �
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Let S be an r-prox-regular subset of X and x ∈ Tuber(S). Thanks to the inclusion

R+(x− projS(x)) ⊂ N(S; projS(x))

we have
x− projS(x)

dS(x)
+

projS(x)

r
∈ N(S; projS(x)) ∩ B +

projS(x)

r
.

Denoting

ΓS,r(x) := (
1

r
− 1

dS(x)
)projS(x) +

x

dS(x)
, (3.2)

we see that qΓS,r(x),r-quadratically supports S at projS(x) according to (d) in Proposition

3.1 above. Since x ∈ Tuber(S), we must have ΓS,r(x) 6= projS(x)
r (otherwise, x = projS(x)

which is a contradiction), and then (d′) above says that projS(x) is an r-quadratic support
point of S quadratically supported by qΓS,r(x),r.

We summarize those features in the following proposition.

Proposition 3.2 Let S be an r-prox-regular set of X with r ∈]0,+∞] and x ∈ Tuber(S).
The following hold:

(a) qΓS,r(x),r-quadratically supports S at projS(x);
(b) projS(x) is an r-quadratic support point of S supported by qΓS,r(x),r.

The quantity in Definition 3.1

ϕS,r(x
?) := sup

x∈S

(
〈x?, x〉 − ‖x‖

2

2r

)
can be seen as a particular Legendre-Fenchel conjugate since

ϕS,r =

(
ψS +

‖·‖2

2r

)?
.

Let us point out here that ϕS,1 (which is sometimes called Asplund function) is greatly
involved in convex analysis and approximation theory (see, e.g., [4, 8, 24, 25]). Various
and numerous properties of ϕS,r are given in our paper [3]. In particular, it is shown that
such a function is the right tool to extend fundamental metric properties known in Convex
Analysis to the framework of Variational Analysis of prox-regular sets. The important
role of ϕS,r leads us to introduce the following definition for any function.

Definition 3.2 Given a function f : X → R and an extended real r ∈]0,+∞], one defines
the Legendre-Fenchel r-conjugate f?,r : X → R ∪ {−∞,+∞} by

f?,r(x?) :=
(
f +

1

2r
‖·‖2

)?
(x?) = sup

x∈X

(
〈x?, x〉 − 1

2r
‖x‖2 − f(x)

)
for all x? ∈ X. (3.3)

The following proposition states a list of properties which can be verified in a straight-
forward way.

Proposition 3.3 Let f : X → R be a function and r > 0 be an extended real. The
following hold.
(a) One has the equality f?,r(0) = − inf

X
(f + 1

2r ‖·‖
2
).

(b) One has the equivalences

−∞ ∈ f?,r(X)⇔ f ≡ +∞⇔ f?,r ≡ −∞.

(c) If the function f?,r is proper, then f is proper.
(d) For every (x?, t) ∈ X × R, one has the equivalence

(x?, t) ∈ epi f?,r ⇔ 〈x?, ·〉 − 1

2r
‖·‖2 − t ≤ f(·).
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(e) The function f has no continuous r-quadratic minorants if and only if f?,r ≡ +∞.
(f) If dom f?,r 6= ∅, then f is bounded from below on each bounded subset of X.
(g) The function f?,r is convex and lower semicontinuous.
(h) For all x? ∈ X, one has

f?,r(x?) = sup
x∈dom f

(〈x?, x〉 − 1

2r
‖x‖2 − f(x))

= sup
(x,t)∈epi f

(〈x?, x〉 − 1

2r
‖x‖2 − t).

(i) If f is a proper function, then one has the following Fenchel-Young inequality

f(x) + f?,r(x?) ≥ 〈x?, x〉 − 1

2r
‖x‖2 for all x?, x ∈ X.

The following example will be crucial in order to get fixed points of for the r-conjugate
transforms f 7→ f?,r with r > 0 (see Proposition 3.5).

Example 1 Let S be a nonempty subset of X and let r > 0 be a positive real. Fix any
real α > − 1

2r and set f := ψS + α ‖·‖2. From the very definition of r-conjugate , we see
with ρ := r

2αr+1 > 0

f?,r(x?) = ϕS,ρ(x
?) =

ρ

2
‖x?‖2 − 1

2ρ
d2
S(ρx?) for all x? ∈ X. (3.4)

In particular, with S = X we obtain

(α‖ · ‖2)?,r =
r

2(2rα+ 1)
‖ · ‖2. (3.5)

�

As usual, a function f : X → R is said to be proper if its effective domain domf :=
{x ∈ X : f(x) < +∞} is nonempty (i.e., f 6≡ +∞) along with f(X) ⊂ R ∪ {+∞}. Recall
that if f is proper then the celebrated Fenchel-Moreau theorem (see, e.g., [12, 28, 34])
asserts that f is lower semicontinuous and convex if and only if f = f∗∗.

In the statement of the next proposition, the concepts of infimal convolution and
semiconvexity will be involved. Taking two functions f, g : X → R∪{+∞}, we recall (see
[28]) that the infimal convolution f�g : X → R of f and g is defined by

(f�g)(x) := inf
y∈X

(
f(x− y) + g(y)

)
for all x ∈ X.

The following definition concerns the second concept of semiconvexity (see,e.g., [14]).

Definition 3.3 A function f : C → R ∪ {+∞} defined on a nonempty convex subset C
of X is said to be σ-semiconvex (on C) for some σ ∈ R+ := [0,+∞[ if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) +
σ

2
t(1− t) ‖x− y‖2 ,

for all x, y ∈ C and for all t ∈]0, 1[, or equivalently if f + σ
2 ‖·‖

2
is convex on C. The

function f is said to be semiconvex near a point if it is semiconvex on a ball centered at
that point.

Recall that if f is σ-semiconvex near a point x, then for some real η > 0

∂P f(x) = ∂Cf(x) =
{
ζ ∈ H : 〈ζ, h〉 ≤ f(x+ h)− f(x) +

σ

2
‖h‖2 ∀h ∈ B(x, η)

}
.

Related to the semiconvexity property we also have.
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Proposition 3.4 Let f : X → R be a function and r > 0 be an extended real.
(j) If f is r−1-semiconvex and lower semicontinuous on X with f(X) ⊂ R∪ {+∞}, then
one has

f(x) = sup
x?∈X

(
qx?,r(x)− f?,r(x?)

)
for all x ∈ X.

(k) If f is proper, then f is r−1-semiconvex and lower semicontinuous on X if and only

if f = (f?,r)? − 1
2r ‖·‖

2
.

(l) If f is proper, r−1-semiconvex and lower semicontinuous on X, then one has

(x, u− 1

r
x) ∈ gph ∂Cf ⇔ (u, x) ∈ gph ∂f?,r.

(m) (f?,r)? = (f + 1
2r ‖·‖

2
)??.

(n) (f?,r)? = f + 1
2r ‖·‖

2
if and only if f is proper, r−1-semiconvex and lower semicon-

tinuous.
(o) (f?)?,r = (f� r

2 ‖·‖
2
)??.

(p) (f?,r)? = (f� r
2 ‖·‖

2
) if and only if (f� r

2 ‖·‖
2
) is proper, convex and lower semicon-

tinuous.

Proof. (j) Under the assumption in (j) the function g(·) := f(·)+ 1
2r ‖·‖

2
is proper, lower

semicontinuous and convex. Fix any x ∈ X. According to the Fenchel-Moreau theorem,
we may write

g(x) = sup
x?∈X

(〈x?, x〉 − g?(x?)),

or equivalently

f(x) +
1

2r
‖x‖2 = sup

x?∈X
(〈x?, x〉 − (f +

1

2r
‖·‖2)?(x?)).

Consequently, we derive

f(x) = sup
x?∈X

(〈x?, x〉 − 1

2r
‖x‖2 − f?,r(x?))

which is the desired equality.
(k) It suffices to apply again the Fenchel-Moreau theorem.
(l) It suffices to use the fact that for a proper convex lower semicontinuous function
h : X → R, we have (see, e.g., [28, Proposition 10.1]) for every x, u ∈ X

(x, u) ∈ gph ∂h⇔ (u, x) ∈ gph ∂h?.

It remains to establish assertions (m) − (p). Note that (n) (resp. (p)) is a direct con-
sequence of the Fenchel-Moreau theorem and the equality provided by (m) (resp. (o)).
According to (3.3), we can write

(f?,r)? = [(f +
1

2r
‖·‖2)?]? = (f +

1

2r
‖·‖2)??,

which is (m). Invoking again (3.3), we have

(f?)?,r = (f? +
1

2r
‖·‖2)? = (f? + g?)?,

where g(·) := r
2 ‖·‖

2
. It remains to apply the equality f? + g? = (f�g)? (see, e.g., [28,

(6.15), p. 45], [34]) to get the desired equality in (o). This finishes the proof of the
proposition.

We establish now the fixed point result for the r-conjugate transform.

Proposition 3.5 Given a function f : X → R and a real r > 0, one has

f?,r(·) = f(·)⇔ f(·) =
−1 +

√
1 + 4r2

4r
‖·‖2 .
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Proof. Fix any real r > 0. Let us consider the function g : R→ R defined by

g(t) := 4rt2 + 2t− r for all t ∈ R.

It is a routine to observe that g has exactly two zeros, namely

α :=
−1 +

√
1 + 4r2

4r
≥ 0 and β :=

−1−
√

1 + 4r2

4r
.

⇐, Assume that f(·) = α ‖·‖2. Observe first that the equality g(α) = 0 entails ρ
2 = α

with ρ := r
2αr+1 . Then, using the formulae (3.4) provided by Example 1 furnishes

f?,r(·) =
ρ

2
‖·‖2 = α ‖·‖2 = f(·).

⇒, Assume that f?,r(·) = f(·). According to Proposition 3.3(b), −∞ /∈ f?,r(X) = f(X)
(otherwise f 6= f?,r) and then f 6≡ +∞. Thus, f is a proper function and this allows us
to apply the extended Fenchel-Young inequality in Proposition 3.4(i) above to obtain

f(x) ≥ 2r − 1

4r
‖x‖2 for all x ∈ X. (3.6)

Now, let us consider the function h : I :=]− 1
2r ,+∞[→ R given by

h(t) :=
r

2

1

2rt+ 1
for all t ∈ I.

Note that α is the only one fixed point for h. Further, it is clear that h is decreasing on
I along with h(I) ⊂ I. Hence, with u0 := 2r−1

4r ∈ I, we can set

un := h(un−1) for all n ∈ N.

Rewriting (3.6) as u0‖ · ‖2 ≤ f , we see through the equality (3.5) that f = f?,r ≤
h(u0)‖ · ‖2 = u1‖ · ‖2, so u0‖ · ‖2 ≤ f ≤ u1‖ · ‖2. By induction we derive that

u2n ‖x‖2 ≤ f(x) ≤ u2n+1 ‖x‖2 for all n ∈ N, x ∈ X. (3.7)

Observe that for all t ∈ I,

(h ◦ h)(t)− t = − g(t)

2r2 + 4rt+ 2
.

Thanks to the inclusion u0 ∈]β, α[∩I, we have g(u0) ≤ 0, and hence

0 ≤ (h ◦ h)(u0)− u0 = u2 − u0.

Consequently, the sequence (u2n)n≥0 is nondecreasing, and then (see the definition of
(un)n≥0) we have the fact that (u2n+1)n≥0 is nonincreasing. Coming back to (3.7), we get
that (u2n)n≥0 (resp. (u2n+1)n≥0) is bounded from above (resp. below). We deduce that
u2n → α and u2n+1 → α as n → +∞. It remains to let n → ∞ in (3.7) to complete the
proof of the proposition.

Remark 3.2 Let S be an r-prox-regular subset of X with r > 0. Let also C be any
nonempty closed convex subset of X with C ⊂ Us(S) for some real 0 < s < r. It is
known (see, e.g., [5, 34]) that the distance function dS(·) is (r − s)−1-semiconvex on C,
or equivalently dS +ψC is semiconvex on X. This along with Proposition 3.4(j) allows us
to write

(dS + ψC)(x) = sup
x?∈X

(qx?,r−s(x)− (dS + ψC)?,r−s(x?)) for all x ∈ X.

11



Consequently, for any x ∈ C we have

dS(x) = sup
x?∈X

(
qx?,r−s(x)− sup

y∈X

(
〈x?, y〉 − ‖y‖2

2(r − s)
− (dS + ψC)(y)

))
= sup
x?∈X

(
qx?,r−s(x)− sup

y∈C

(
〈x?, y〉 − ‖y‖2

2(r − s)
− dS(y)

))
= sup
x?∈X

inf
y∈C

(
qx?,r−s(x)− qx?,r−s(y) + dS(y)

)
.

Now, assume for a moment that the nonempty closed set S is convex and take any x ∈ X.
The latter equalities with C := X give

dS(x) = sup
x?∈X

inf
y∈X

(
〈x?, x− y〉+ dS(y)

)
.

Writting

inf
y∈X

(
〈x?, x− y〉+ dS(y)

)
= inf
u∈S

(
〈x?, x− u〉 − sup

y∈X
[〈x∗, y − u〉 − ‖y − u‖]

)
= inf
u∈S

(
〈x∗, x− u〉 − ψBX (x∗)

)
,

we then obtain the known formula (see, e.g., [18, Remarks 7.2,p.126])

dS(x) = sup
x?∈BX

inf
y∈S
〈x?, x− y〉 = max

x?∈BX
inf
y∈S
〈x?, x− y〉,

where the latter equality is due to the weak upper semicontinuity of x? 7→ 〈x?, x− y〉. We
mention here that an extension of the latter inf-sup formula to the context of prox-regular
sets is established in our paper [3]. �

4 Prox-regularity and functional separation

It has been well-recognized that the geometric Hahn-Banach theorems are among of the
most important and powerful principles of functional analysis (see, e.g., [19, 18, 27, 33]
and the references therein). Roughly speaking, the geometric Hahn-Banach theorem for
closed convex sets asserts that a compact convex set A and a closed convex set B of X
(or more generally of a locally convex space) with A ∩ B = ∅ can be separated by a
hyperplane/half-space. The case where A is reduced to a singleton (so A is an exterior
point of B) is of a great interest and can be stated as follows (see also [18, Theorem 6.23]).

Theorem 4.1 Let S be a nonempty closed convex set of X, x ∈ X \ S. Then, one has
with x? := dS(x)−1(x− projS(x)) ∈ S the following separation property for some α ∈ R,

S ⊂ {〈x?, ·〉 < α} ⊂ H≤(x?, α) := {〈x?, ·〉 ≤ α}.

and
〈x?, x〉 > α ≥ sup

y∈S
〈x?, y〉 =: σ(x?, S).

Applying the latter theorem with S := B − A for two subsets A,B ⊂ X and x := 0
leads to the following general convex separation result:

Theorem 4.2 Let A and B be two nonempty disjoint closed and convex sets in X with
A + B closed (which holds if B is weakly compact). Then, there exist x? ∈ X and a real
α > 0 such that

sup
a∈A
〈x?, a〉+ α ≤ inf

b∈B
〈x?, b〉 ,

in particular
σ(x?, A) ≤ −σ(x?,−B) = −σ(−x?, B).
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It is worth noticing that, to argue the two above results, Zorn lemma is not needed
because of the Hilbertian structure of X.

Our aim in this section is to extend such separation results to the context of r-prox-
regular sets. As expected, the (classical) support function σS(·) = ϕS,∞(·) (resp. the
linear form qx?,∞(·) = 〈x?, ·〉) will be replaced by ϕS,r(·) (resp. the quadratic function
qx?,r(·)). Let us mention that going beyond convexity in separation theory is a very
challenging issue which has been (apparently) developed in a very few number of works.
General nonconvex separation lies at the heart of the construction of Mordukhovich’s
generalized differentiation with the so-called extremal variational principle (see, e.g., [27,
Chapter 2] and the references therein). To the best of our knowledge, the first separation
result for prox-regular sets is due to J.P. Vial. In his paper, Vial shows ([37, Theorem
5.1]) in the finite dimensional setting that a weakly convex set of constant r (a concept
equivalent to the r-prox-regularity in Hilbert spaces) and an R-strongly convex set can
always be separated by a ball whenever a certain condition holds between the radii r,R.
Vial also provides an estimate for the radius of the involved ball, depending on r and R.
Such a result has been successfuly extended to the Hilbert framework by G.E. Ivanov [23]
(see also the survey [22]) and by M.V. Balashov and G.E. Ivanov ([6]) with separation
result in the context of uniformly convex and smooth Banach spaces. In this section and
the next one, we provide other additional separation properties.

Let us start by extending Theorem 4.1 to the context of prox-regular sets. The fol-
lowing easy result will be needed.

Lemma 4.1 Let S be a nonempty closed subset of X, x ∈ X \ S. Assume that p ∈
ProjS(x) 6= ∅ and let ρ be an extended real such that ρ > dS(x). The following hold with
x? := dS(x)−1(p− x).
(a) One has the estimate

〈x?, x〉+
1

ρ
d2
S(x) < 〈x?, x〉+ dS(x) = 〈x?, p〉 . (4.1)

(b) If in addition the set S is r-prox-regular for some r ∈]0,+∞], then for all y ∈ S,

〈x?, x〉+
1

ρ
d2
S(x) < 〈x?, p〉 ≤ 〈x?, y〉+

1

2r
‖p− y‖2 .

Proof. The assertion (a) is a direct consequence of the inequality ρ−1dS(x) < 1. Let us
show (b). Assume that S is r-prox-regular for some extended real r > 0 and fix any y ∈ S.
Noting that −x? ∈ NP (S; p) (see (2.2)), we can apply Theorem 2.1 to get

〈−x?, y − p〉 ≤ ‖x
?‖

2r
‖y − p‖2 ,

or equivalently

〈x?, p〉 ≤ 〈x?, y〉+
1

2r
‖y − p‖2 . (4.2)

Combining (4.1) and (4.2), we arrive to

〈x?, x〉+
d2
S(x)

ρ
< 〈x?, p〉 ≤ 〈x?, y〉+

1

2r
‖p− y‖2 .

The proof is complete.

We derive from the particular case when S is r-prox-regular and r ≥ ρ the following
separation type result.

Proposition 4.1 Let S be an r-prox-regular subset of X with r ∈]0,+∞]. Let x ∈
Tuber(S) and x? := dS(x)−1

(
projS(x)− x

)
, and let ρ > dS(x). Then, for all y ∈ S

〈x?, x〉+
d2
S(x)

ρ
< 〈x?,projS(x)〉 ≤ 〈x?, y〉+

1

2r
‖projS(x)− y‖2 ,
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so there exists α ∈ R such that for all y ∈ S,

〈x?, x〉+
d2
S(x)

ρ
< α < 〈x?, y〉+

1

2r
‖projS(x)− y‖2 .

Remark 4.1 In addition to the above result, diverse intrinsic metric characterizations of
prox-regular sets can be found in [5, 13, 30, 31, 34]. �

In Theorem 4.1, the separation property holds thanks to the vector x? = dS(x)−1(x−
projS(x)) ∈ X \ {0}. In the context of r-prox-regular sets, the vector x? will be replaced
by ΓS,r(x) := ( 1

r−
1

dS(x) )projS(x)+ 1
dS(x)x (see (3.2)). The next lemma shows in particular

that ΓS,r(x) ∈ X \ 1
rS. For x, y ∈ X, we denote as usual ]x, y[:= {(1− t)x+ ty : t ∈]0, 1[}.

Lemma 4.2 Let S be an r-prox-regular subset of X with r ∈]0,+∞[ and let x ∈ Tuber(S).

The following hold with t := dS(x)
r ∈]0, 1[.

(a) One has

x = trΓS,r(x) + (1− t)projS(x) and
∥∥∥ΓS,r(x)− x

r

∥∥∥ = 1− t,

in particular x ∈]projS(x), rΓS,r(x)[.
(b) One has the inclusions

rΓS,r(x) = (1− t−1)projS(x) + t−1x ∈ Dr(S) and projS(x) ∈ ProjS(rΓS,r(x)).

(c) One has

Tuber(S) =
⋃

u∈Tuber(S)

]projS(u), rΓS,r(u)[.

(d) For all y ∈]projS(x), rΓS,r(x)[, one has

ΓS,r(x) = ΓS,r(y).

(e) For every s ∈]0, r[, one has

Λr(S) := rΓS,r
(
Tuber(S)

)
=
{

(1− r

s
)projS(y) +

r

s
y : y ∈ Ds(S)

}
.

(f) For every s ∈]0, r[, one has

Tuber(S) =
⋃

u∈Ds(S)

]projS(u), rΓS,r(u)[.

Proof. (a) It can be checked in a straightforward way.
(b) Observe from Remark 2.1 that with p := projS(x) and d := dS(x)

p ∈ ProjS
(
p+ r

x− p
d

)
= ProjS

(
rΓS,r(x)

)
.

Consequently, we have dS
(
rΓS,r(x)

)
= ‖rΓS,r(x)− p‖ = t−1 ‖x− p‖ = r.

(c) According to the assertion (a) above, we know that

Tuber(S) ⊂
⋃

u∈Tuber(S)

]projS(u), rΓS,r(u)[.

Let us show the converse inclusion. Fix any u ∈ Tuber(S) and any y ∈]projS(u), rΓS,r(u)[.
Set d := dS(u) and p := projS(u). Let λ ∈]0, 1[ such that y = λp + (1 − λ)rΓS,r(u). We
obviously have

y =
(
λ+ (1− λ)(1− r

d
)
)
p+ (1− λ)

r

d
u =

(
1− (1− λ)

r

d

)
p+ (1− λ)

r

d
u,
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hence

dS(y) = dS

((
1− (1− λ)

r

d

)
p+ (1− λ)

r

d
u
)

≤
∥∥∥(1− λ)

r

d

(
u− p

)∥∥∥ = (1− λ)
r

d
d < r,

where the first inequality is due to p ∈ S. By contradiction, suppose that y ∈ S. Then,
obviously projS(y) is well defined and satisfies projS(y) = y. On the other hand, the
inclusions y ∈]p, rΓS,r(u)[ and p ∈ ProjS

(
rΓS,r(u)

)
give projS(y) = p. It follows that

y = p and this is the desired contradiction.
(d) Fix any y ∈]projS(x), rΓS,r(x)[. According to (c) above, we have y ∈ Tuber(S), in
particular ΓS,r(y) is well defined. Further, the second inclusion provided by (b) above
guarantees that projS(y) = projS(x) =: p. Through elementary computations, we see
that

ω := ΓS,r(x)− ΓS,r(y) = (
1

dS(y)
− 1

dS(x)
)(p− x) +

1

dS(y)
(x− y),

hence

‖ω‖2 =
(dS(x)− dS(y))2

d2
S(y)

+
‖x− y‖2

d2
S(y)

+ 2

〈
(

1

dS(y)
− 1

dS(x)
)(p− x),

x− y
dS(y)

〉
. (4.3)

Now, let us distinguish two cases:
Case 1: y ∈]p, x[. In such a case, we have

p− x =
dS(x)

‖x− y‖
(y − x) and dS(x) = dS(y) + ‖x− y‖. (4.4)

Then, it is not difficult to check that〈
(

1

dS(y)
− 1

dS(x)
)(p− x),

x− y
dS(y)

〉
= −‖x− y‖

2

d2
S(y)

. (4.5)

Putting together (4.3), (4.4) and (4.5), we arrive to

‖ω‖2 =
‖x− y‖2

d2
S(y)

+
‖x− y‖2

d2
S(y)

− 2
‖x− y‖2

d2
S(y)

= 0,

i.e., ΓS,r(y) = ΓS,r(x).
Case 2: y ∈]x, rΓS,r(x)[. It is clear that

p− x =
dS(x)

‖x− y‖
(x− y) and dS(y) = dS(x) + ‖x− y‖.

Proceeding as in Case 1, we obtain ω = 0, which is the desired equality.
(e) Fix any s ∈]0, r[. Observe first that we obviously have with px := projS(x) and
py := projS(y)

{(1− r

s
)py +

r

s
y : y ∈ Ds(S)} ⊂ Λr(S) := {(1− r

dS(x)
)px +

r

s
x : x ∈ Tubes(S)}.

Let us show the converse inclusion. Let x ∈ Tuber(S). Set vx := rΓS,r(x). Thanks to the
continuity of θ : [0, 1]→ R+ defined by

θ(t) := dS
(
px + t(vx − px)

)
for all t ∈ [0, 1],

we can choose some t0 ∈ [0, 1] such that

y0 := px + t0(vx − px) ∈ Ds(S).
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It remains to apply (d) above to get vx = rΓS,r(y0).
(f) In view of (c), there is only one inclusion to justify. Fix any x ∈ Tuber(S). By (a)
above, we know that x ∈]projS(x), rΓS,r(x)[. Defining the function θ : [0, 1]→ R by

θ(t) := dS

(
projS(x) + t

(
rΓS,r(x)− projS(x)

))
for all t ∈ [0, 1]

and noticing by (b) above that θ(1) = r, the intermediate value theorem gives some

y ∈ Ds(S)∩]projS(x), rΓS,r(x)[.

We derive from (d) that ΓS,r(y) = ΓS,r(x). On the other hand, we have projS(x) =
projS(y) because ProjS(rΓS,r(x)) 3 projS(x). The inclusion x ∈]projS(x), rΓS,r(x)[ in
(a) can then be rewritten as

x ∈]projS(y), rΓS,r(y)[.

The proof is complete.

With the above results at hands, we are ready to establish a separation theorem by
means of ΓS,r(·). In order to state the theorem, let us denote for any x? ∈ X, ρ, α ∈ R

Qx?,ρ,α := {qx?,ρ ≤ α} :=

{
x ∈ X : 〈x?, x〉 − ‖x‖

2

2ρ
≤ α

}
.

Theorem 4.3 Let S be an r-prox-regular subset of X with r ∈]0,+∞], x ∈ Tuber(S).
Then, one has with x? := ΓS,r(x) = ( 1

r −
1

dS(x) )projS(x) + 1
dS(x)x the following separation

property for some α ∈ R

S ⊂

{
〈x?, ·〉 − ‖·‖

2

2r
< α

}
⊂ Qx?,r,α (4.6)

and

qx?,r(x) := 〈x?, x〉 − ‖x‖
2

2r
> α ≥ sup qx?,r(S) =: ϕS,r(x

?). (4.7)

Proof. Set p := projS(x), d := dS(x) and u? := d−1(p − x). Applying Proposition 4.1
with ρ := 2r > d gives some β ∈ R such that for every y ∈ S,

〈u?, x〉+
d2

2r
< β < 〈u?, y〉+

1

2r
‖p− y‖2 . (4.8)

Now, observe that for all y ∈ X,

〈u?, y〉+
1

2r
‖y − p‖2 =

〈
u? − 1

r
p, y

〉
+

1

2r
(‖y‖2 + ‖p‖2). (4.9)

Putting the second inequality of (4.8) and the equality (4.9) together gives for all y ∈ S,〈
1

r
p− u?, y

〉
− ‖y‖

2

2r
<
‖p‖2

2r
− β.

On the other hand, the first inequality of (4.8) and the equality (4.9) yield〈
1

r
p− u?, x

〉
− ‖x‖

2

2r
>
‖p‖2

2r
− β.

Then, x? := 1
rp− u

? = ΓS,r(x) and α := ‖p‖2
2r − β fulfill the inclusion in (4.6) along with

the estimates (4.7). The proof is complete.
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Remark 4.2 It should be noted that we have a similar separation property as (4.6) with
reversed inequalities. Indeed, consider any r-prox-regular subset S of X with r ∈]0,+∞]
and x ∈ Ur(S) \ S. It is straightforward to check that −S is also r-prox-regular and that
the inclusion −x ∈ Ur(−S) \ −S holds. Hence, according to Theorem 4.3, we can write
for some u? ∈ X and some real β

−S ⊂

{
〈u?, ·〉 − ‖·‖

2

2r
< β

}
and 〈u?,−x〉 − ‖x‖

2

2r
> β.

Setting x? := −u? and α := −β, we obtain

S ⊂

{
〈x?, ·〉+

‖·‖2

2r
> α

}
and 〈x?, x〉+

‖x‖2

2r
< α.

�

As a direct application, we can extend the classical fact that a lower semicontinuous
convex function has continuous affine minorants.

Theorem 4.4 Let f : X → R ∪ {+∞} be a function with an r-prox-regular epigraph for
some r ∈]0,+∞[. Then, there exist x? ∈ X, α, θ ∈ R with θ < sup

X

1
rf such that

〈x?, x〉 − ‖x‖
2

2r
+ α ≤ f(x)

(f(x)

2r
− θ
)

for all x ∈ X.

Proof. We endow X × R with the canonical inner product and we still denote the
associated norm by ‖ · ‖. If f ≡ +∞ there is nothing to establish, so we may assume that
f 6≡ +∞. Fix any u ∈ X with f(u) < +∞ and choose any real 0 < ε < r. Note that
(u, f(u)) ∈ epi f , (u, f(u)− ε) /∈ epi f and

depi f (u, f(u)− ε) ≤ ε < r.

Consequently, we have Tuber(epif)∩ (domf ×R) 6= ∅. Fix any (x, c) ∈ Tuber(epif) with
f(x) < +∞. According to Theorem 4.3, there are (u?, θ) ∈ X × R and α ∈ R such that

epi f ⊂ {ϕ ≤ α} and (x, c) ∈ {ϕ > α}

with ϕ : X × R→ R defined by

ϕ(x, t) := 〈u?, x〉+ θt− 1

2r
‖(x, t)‖2 for all (x, t) ∈ X × R.

This says that

〈u?, x〉+ θt− 1

2r
‖(x, t)‖2 ≤ α for all (x, t) ∈ epi f (4.10)

and

〈u?, x〉+ θc− 1

2r
‖(x, c)‖2 > α. (4.11)

Combining (4.10) and the inclusion (x, f(x)) ∈ epi f , we obtain

〈u?, x〉+ θf(x)− 1

2r
‖(x, f(x))‖2 ≤ α.

From this and (4.11), we get

〈u?, x〉+ θf(x) ≤ 1

2r
‖(x, f(x))‖2 + α

<
1

2r
‖(x, f(x))‖2 + 〈u?, x〉+ θc− 1

2r
‖(x, c)‖2 ,
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hence

θf(x) < θc+
1

2r
(f(x)2 − c2).

On the other hand, using the inequality f(x) > c, we arrive to

θ <
1

2r
(f(x) + c) <

1

r
f(x) ≤ sup

X

1

r
f.

Finally, taking any x ∈ X with f(x) 6= +∞ (otherwise, the desired inequality is obvious),
it remains to apply (4.10) with the inclusion (x, f(x)) ∈ epi f to obtain

〈u?, x〉 − 1

2r
‖x‖2 ≤ α+ f(x)(

1

2r
f(x)− θ).

The proof is complete.

Remark 4.3 Any r−1-semiconvex continuous function f : X → R has its epigraph uni-
formly prox-regular with constant r. Indeed, since g := f + 1

2r ‖·‖
2

is a continuous convex
function, it is locally Lipschitz on int(dom f) = X as well as the function h : X → R
defined by

h(x, t) := g(x)− ‖x‖
2

2r
− t for all (x, t) ∈ X × R.

From the definition of h it can be checked in a straightforward way that

{h ≤ 0} = epi f.

On the other hand, we see that

∂Ch(x, t) =
{

(x? − x

r
,−1) : x? ∈ ∂Cg(x)

}
for all x ∈ X.

Since g is convex, its Clarke subdifferential ∂Cg is monotone, hence ∂Ch is 1
r -hypomonotone.

It remains to see that for every (x?, x) ∈ X2,〈
(x? − x

r
,−1), (0, 1)

〉
= −1

to apply [1, Theorem 4.1] and get the r-prox-regularity of {h ≤ 0} as desired.
�

Theorem 4.3 makes clear the important role played by sublevel sets (Qx?,r,α)α of the
function qx?,r. Such sets are in general nothing but complement of suitable open balls.
Indeed, fix any x? ∈ X, α ∈ R and r ∈]0,+∞[. Let x ∈ X. Thanks to the elementary
equality

‖x− rx?‖2 = r2 ‖x?‖2 − 2r 〈x?, x〉+ ‖x‖2

it is easy to observe that

x ∈ Qx?,r,α ⇔ ‖x− rx?‖2 ≥ r2 ‖x?‖2 − 2rα.

Hence, we get the following equivalence

x ∈ Qx?,r,α ⇐⇒

{
x 6∈ B(rx?,

√
r2 ‖x?‖2 − 2rα) if r2 ‖x?‖2 − 2rα > 0

x ∈ X otherwise.

If α = ϕS,r(x
?) for some closed subset S of X, the above equivalence along with the

following equalities

r2 ‖x?‖2 − 2rα = r2 ‖x?‖2 − 2r sup
x∈S

(〈x?, x〉 − ‖x‖
2

2r
)

= − sup
x∈S

(−r2 ‖x?‖2 + 2r 〈x?, x〉 − ‖x‖
2

2r
)

= inf
x∈S
‖rx? − x‖2 = d2

S(rx?) ≥ 0
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ensure that

Qx?,r,α =

{
X \B(rx?, dS(rx?)) if rx? /∈ S,
X otherwise.

We state the above descriptions of Qx?,r,α in the following proposition.

Proposition 4.2 Let x? ∈ X, α ∈ R and r ∈]0,+∞[. One has

Qx?,r,α =

{
X \B(rx?,

√
r2 ‖x?‖2 − 2rα) if r2 ‖x?‖2 − 2rα > 0,

X otherwise.

In particular, if ϕS,r(x
?) = α ∈ R for some closed subset S of X, one has

r2 ‖x?‖2 − 2rα = d2
S(rx?)

and

Qx?,r,α =

{
X \B(rx?, dS(rx?)) if rx? /∈ S,
X otherwise.

Remark 4.4 Let S be an r-prox-regular subset of X with r ∈]0,+∞[. Fix x ∈ bdryXS
and choose any x? ∈ N(S;x). According to Theorem 2.1, for every x ∈ S, we have

〈x?, x− x〉 ≤ ‖x
?‖

2r
‖x− x‖2 ,

which can be rewritten as

S ⊂
{
x ∈ X : 〈x?, x− x〉 ≤ ‖x

?‖
2r
‖x− x‖2

}
.

If x? = 0, the latter inclusion is reduced to the evident one S ⊂ X, so assume that x? 6= 0.

Set u? := x?

‖x?‖ + x
r and α :=

〈
x?

‖x?‖ , x
〉

+ ‖x‖2
2r and note that for each x ∈ S

〈x?, x− x〉 ≤ ‖x
?‖

2r
‖x− x‖2 ⇔ 〈x?, x〉 ≤ 〈x?, x〉+

‖x?‖
2r

(‖x‖2 − 2 〈x, x〉+ ‖x‖2)

⇔ 〈u?, x〉 − ‖x‖
2

2r
≤ α,

hence
S ⊂ Qu?,r,α.

On the other hand, it is easy to check that

ρ := r2 ‖u?‖2 − 2rα = r2 > 0.

Then, by virtue of Proposition 4.2

S ⊂ X \B(r
x?

‖x?‖
+ x, r).

Hence, the set X \ Qu?,r,α is nothing but an r-ball which realizes the proximal normal

vector x?

‖x?‖ to S at x. �

Given x? ∈ X, r ∈]0,+∞[ and α ∈ R such that ρ = r2 ‖x?‖2 − 2rα > 0, from the
above description of the closed set Qx?,r,α in Proposition 4.2 says that

Qx?,r,α = X \B(rx?,
√
ρ),

hence Qx?,r,α is
√
ρ-prox-regular,

d(x,Qx?,r,α) = (
√
ρ− ‖x− rx?‖)+ for all x ∈ X
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Figure 1: An r-prox-regular set with its r-open enlargement and some r-balls associated
to proximal normals. For the point x2, the complement of the ball B2 illustrates the
separation property provided by Theorem 4.3.

and for every x ∈ X \Qx?,r,α

ProjQx?,r,α(x) =

{
S(rx?,

√
ρ) if x = rx?,{ √

ρ

‖x−rx?‖ (x− rx
?) + rx?

}
otherwise.

It is worth noticing that the above uniformly prox-regular sets Qx?,r,α are never weakly
sequentially closed and never weakly ball-compact whenever the Hilbert spaceX is infinite-
dimensional.

Remark 4.5 The
√
ρ-prox-regularity of Qx?,r,α can also be seen through [1, Theorem

4.1]. Indeed, keep the assumption ρ > 0 and define the function f : X → R by setting

f(u) := 〈x?, u〉 − ‖u‖
2

2r
− α for all u ∈ X,

so S = {f ≤ 0}. Set δ :=
√
ρ

r > 0 and consider any x ∈ bdry Qx?,r,α. Choose w ∈ B such
that

sup
v∈B
〈rx? − x, v〉 = 〈rx? − x,w〉 = ‖rx? − x‖ .

According to Proposition 4.2, we have ‖rx? − x‖ =
√
ρ, hence with v := −w ∈ B

〈∇f(x), v〉 = 〈x? − x, v〉 = −
√
ρ

r
= −δ.

A direct application of [1, Theorem 4.1] gives the r′-prox-regularity of S = Qx?,r,α with
r′ := rδ =

√
ρ. �
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Remark 4.6 There is no hope for a kind of Mazur’s lemma for prox-regular sets. Besides
the non-sequential weak closedness observed above for the uniformly prox-regular sets
Qx?,r,α, let us mention that there exist uniformly prox-regular sets which are weakly
sequentially closed but not weakly closed. Indeed, with (en)n∈N the natural hilbertian
basis of l2R(N), the set

S := {
√
nen : n ∈ N}

is weakly sequentially closed (in particular, strongly closed), not weakly closed [7, Example
3.31] and uniformly prox-regular thanks to the equality

‖√pep −
√
qeq‖ =

√
p+ q ≥

√
3 for all p, q ∈ N with p 6= q.

�

5 Ball separation

This section is devoted to a ball separation for a prox-regular set and a strongly convex
set in X.

Definition 5.1 Let C be a nonempty closed subset of X and s ∈]0,+∞[. One says that C
is s-strongly convex (or strongly convex with constant s) provided that it is an intersection
of closed balls with radius s > 0, otherwise stated there exists a nonempty set L such that

C =
⋂
x∈L

B[x, s].

Let us recall some basic features for such sets.

Theorem 5.1 Let C be a nonempty closed bounded convex subset of X with C 6= X and
let s ∈]0,+∞[. The following assertions are equivalent:
(a) The set C is s-strongly convex.
(b) For all (x, v) ∈ X2 with x ∈ bdryC and v ∈ N(C;x) ∩ S, one has

C ⊂ B[x− sv, s].

(c) For all x′ ∈ bdryC and for all (x, v) ∈ X2 with x ∈ bdryC and v ∈ N(C;x) ∩ S, one
has

〈v, x′ − x〉 ≤ − 1

2s
‖x′ − x‖2 .

(d) For all x, x′ ∈ C and for all v ∈ N(C;x), one has

〈v, x′ − x〉 ≤ −‖v‖
2s
‖x′ − x‖2 .

Furthermore, any non-singleton strongly closed set has nonempty interior.

The equivalence (a)⇔ (b) in the above theorem was proved by J.-P. Vial [36, Theorem
1] and by E.S. Polovinkin and M.V. Balashov [32, Theorem 4.1.2], and (c) is a translation
of (b).

We will need another property which can be found in G.E. Ivanov’s book [23, Theorem
1.12.3].

Theorem 5.2 Let S1 and S2 be nonempty sets in X. If S1 is r-prox-regular with r ∈
]0,+∞] and S2 is s-strongly convex with 0 < s < r. Then the set S1 + S2 is closed.

The result in the next proposition is known (see G.E. Ivanov [23, Theorem 1.12. 4]).
We provide a simple proof different from that in [23]. Observe first that, given two sets
S1, S2 in X and x∗ ∈ NP (S1 + S2;x), for any xi ∈ Si with x = x1 + x2 it directly results
from the definition of proximal normal that x∗ ∈ NP (S1;x1) ∩NP (S2;x2).
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Proposition 5.1 Let S1 be an r-prox-regular set in X and S2 be a strongly convex set in
X with constant s ∈]0, r[. Then, the set S1 + S2 is (r − s)-prox-regular.

Proof. We know by Theorem 5.2 that S1 + S2 is closed. Fix any x ∈ S1 + S2, so
there are xi ∈ Si, with i = 1, 2, such that x = x1 + x2. Take any x∗ ∈ NP (S1 + S2;x)
and any y ∈ S1 + S2. Choose yi ∈ Si, with i = 1, 2, such that y = y1 + y2. We have
x∗ ∈ N(S2;x2) ∩NP (S1;x1). Using both (d) in Theorem 5.1 and (b) in Theorem 2.1 we
obtain

〈x∗, y1 + y2 − x〉 ≤
‖x∗‖

2

(
1

r
‖y1 − x1‖2 −

1

s
‖y2 − x2‖2

)
. (5.1)

Set a := y1 − x1 and b := y2 − x2 and note that

−2〈
√
s

r
a,

√
r

s
b〉 ≤ s

r
‖a‖2 +

r

s
‖b‖2, −s

r
‖a‖2 − r

s
‖b‖2 ≤ 2〈a, b〉,

which entails that(
1− s

r

)
‖a‖2 +

(
1− r

s

)
‖b‖2 ≤ ‖a‖2 + ‖b‖2 + 2〈a, b〉 = ‖a+ b‖2.

The latter inequality means that

1

r
‖a‖2 − 1

s
‖b‖2 ≤ 1

r − s
‖a+ b‖2.

This combined with (5.1) yields 〈x∗, y1 + y2 − x〉 ≤ ‖x∗‖
2(r−s)‖y1 + y2 − x‖2, which ensures

the (r − s)-prox-regularity of S1 + S2 by (b) in Theorem 2.1 again.

We can now give two ball separation results in the next two theorems between a prox-
regular set and a strongly convex set. Similar results were also established by J.-P. Vial
[37, Theorem 5.1] in finite-dimensional Euclidean spaces and by G.E. Ivanov [23, Theorem
1.18.2] in Hilbert spaces.

Theorem 5.3 Let S be an r-prox-regular set of the Hilbert space X with r > 0 and C be a
non-singleton closed set in X which is r-strongly convex with C∩S = {x̄} and x̄ ∈ bdryC.
Then one has the ball separation property

C ⊂ B[x̄− rv, r] and B(x̄− rv, r) ∩ S = ∅.

Proof. By Theorem 5.1 we know that intC 6= ∅. Let us first show that (−x̄ + intC) ∩
TB(S; x̄) = ∅. Indeed, suppose there is some h in the latter intersection. There are
sequences (tn)n tending to 0 with 0 < tn < 1 and (hn)n converging to h in X such that
x̄ + tnhn ∈ S for all n ∈ N. For n large enough, say n ≥ N , we have hn ∈ −x̄ + intC,
hence (since 0 ∈ cl (−x̄+intC)) we see that tnhn ∈ −x̄+intC. It ensues that x̄+ tNhN ∈
S ∩ intC, which is a contradiction.

By the emptiness of the above intersection and the Hahn-Banach separation property
there is some v ∈ X with ‖v‖ = 1 such that

〈v,−x̄+ z〉 < 0 ∀z ∈ intC and 〈v, h〉 ≥ 0 ∀h ∈ TB(S; x̄) = TC(S; x̄),

keep in mind that TC(S; x̄) is a closed convex cone and 0 ∈ cl (−x̄+C). Using the equalities(
TC(S; x̄)

)◦
= NC(S; x̄) = NP (S; x̄), it results that v ∈ N(C; x̄) and −v ∈ NP (S; x̄),

thus by (b) in Theorem 5.1 and by Definition 2.1 combined with (2.4) we have

C ⊂ B[x̄− rv, r] and S ∩B(x̄− rv, r) = ∅,

which is the desired separation property.

Theorem 5.4 Let S be an r-prox-regular set of the Hilbert space X with r > 0 and C be
a closed set in X which is s-strongly convex with 0 < s < r. For g := gap(S,C), where
gap(S,C) := inf{‖x − y‖ : x ∈ S, y ∈ C}, assume that 0 < g < r − s. Then there exists
a ∈ X such that

C ⊂ B[a, s] and S ∩B(a, s+ g) = ∅,
and the latter equality entails in particular S ∩B[a, s] = ∅.
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Proof. By Proposition 5.1 the set S − C is (r − s)-prox-regular and 0 6∈ S − C with
d(0, S − C) = g < r − s. The point 0 then admits a (unique) nearest point z̄ ∈ S − C.
Write z̄ = x̄− ȳ with x̄ ∈ S and ȳ ∈ C, so g = ‖x̄− ȳ‖. Note that x̄ (resp. ȳ) is a nearest
point of ȳ (resp. x̄) in S (resp. C). Setting v := (ȳ− x̄)/‖ȳ− x̄‖, we see that v belongs to
N(C; ȳ) and NP (S; x̄). By (b) in Theorem 5.1 and by Definition 2.1 combined with (2.4)
we have

C ⊂ B[ȳ + sv, s] and S ∩B(x̄+ rv, r) = ∅.

It remains to prove the inclusionB(ȳ+sv, s+g) ⊂ B(x̄+rv, r). Take any y ∈ B(ȳ+sv, s+g)
and note that

‖y − (x̄+ rv)‖ = ‖
(
y − (ȳ + sv)

)
+ (ȳ − x̄+ sv − rv)‖

< s+ g +

∥∥∥∥(ȳ − x̄)

(
1− r − s

g

)∥∥∥∥ ,
then ‖y − (x̄ + rv)‖ < s + g + g

(
r−s
g − 1

)
= r, which confirms that B(ȳ + sv, s + g) ⊂

B(x̄+ rv, r). This finishes the proof of the theorem.

Acknowledgement. The second author has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-
Curie Grant Agreement No 823731 CONMECH.

References

[1] S. Adly, F. Nacry, L. Thibault, Preservation of Prox-Regularity of Sets with Applica-
tions to Constrained Optimization, SIAM J. Optim. 26 (2016), 448-473.

[2] S. Adly, F. Nacry, L. Thibault, Prox-regularity approach to generalized equations and
image projection, ESAIM: COCV, 24 (2018), 677-708.

[3] S. Adly, F. Nacry, L. Thibault, New metric properties for prox-regular sets, submitted.

[4] E. Asplund, C̆ebys̆ev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235-
240.

[5] M.V. Balashov, Weak convexity of the distance function, J. Convex Anal, 20 (2013),
93-106.

[6] M.V. Balashov, G.E. Ivanov, Weakly convex and proximally smooth sets in Banach
spaces, Izv. Math. 73 (2009), 455-499.

[7] H.H Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer New-York, 2011.

[8] H. Berens, Best approximation in Hilbert space, in Approximation Theory III (Proc.
Conf., Univ. Texas, Austin, Tex., 1980) (E. W. Cheney, ed.), Academic Press, New
York (1980), 1-20.

[9] F. Bernard, L. Thibault, N. Zlateva Characterizations of prox-regular sets in uniformly
convex Banach spaces, J. Convex Anal. 13 (2006), 525-559.

[10] F. Bernard, L. Thibault, N. Zlateva, Prox-regular sets and epigraphs in uniformly
convex Banach spaces: various regularities and other properties, Trans. Amer. Math.
Soc. 363 (2011), 2211-2247.

[11] E. Bishop, R.R. Phelps, The support functionals of convex sets, in Convexity, edited
by V. Klee, vol. VII of Proceedings of Symposia in Pure Mathematics, pp. 27-35,
American Mathematical Society, Providence, Rhode Island, 1963.

23



[12] J.M. Borwein, J.D. Vanderwerff, Convex Functions: constructions, characterizations
and counterexamples, Encyclopedia of Mathematics and its Applications, 109. Cam-
bridge University Press, Cambridge, 2010.

[13] M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert
space, Journal of Nonlinear and Convex Analysis, 6 (2005), 359-374.

[14] P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton–Jacobi Equations, and
Optimal Control, Birkhäuser, Boston (2004).
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matics/Ouvrages de Mathématiques de la SMC, 7, Springer-Verlag, New-York, 2001.

[19] M. Fabian, P. Habala, P. Hajek, V. Montesinos, V. Zizler, Banach Space Theory. The
Basis for Linear and Nonlinear Analysis., CMS Books in Mathematics/Ouvrages de
Mathmatiques de la SMC. Springer, New York, 2011.

[20] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

[21] W. Fenchel, On conjugate convex functions, Canad. J. Math. 1 (1949), 73-77.

[22] V.V. Goncharov, G. E. Ivanov, Strong and weak convexity of closed sets in a Hilbert
space, Operations research, engineering, and cyber security, 259-297, Springer Optim.
Appl., 113, Springer, Cham, 2017).

[23] G.E. Ivanov, Weakly Convex Sets and Functions: Theory and Applications, Fizmatlit,
Moscow, 2006 (in Russian).

[24] J.-B. Hiriart-Urruty, Ensembles de Tchebychev vs ensembles convexes : l’état de la
situation vu via l’analyse convexe non lisse, Ann. Sci. Math. Québec 22 (1998), 47-62.

[25] J.-B. Hiriart-Urruty, La conjecture des points les plus éloignés revisités, Ann. Sci.
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