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Abstract— In this short paper we bridge two seemingly unre-
lated sparse approximation topics: continuous sparse coding and
low-rank approximations. We show that for a specific choice of
continuous dictionary, linear systems with nuclear-norm regular-
ization have the same solutions as a BLasso problem. Although
this fact was already partially understood in the matrix case, we
further show that for tensor data, using BLasso solvers for the low-
rank approximation problem leads to a new branch of optimiza-
tion methods yet vastly unexplored. In particular, the proposed
Frank-Wolfe algorithm is showcased on an automatic tensor rank
selection problem.

1 Sparse and low-rank reconstructions
Sparse decompositions. The “k-sparse representation prob-
lem” consists in finding an accurate representation of some vec-
tor y ∈ Rm as the linear combination of k elements from some
set D ⊂ Rm, commonly called dictionary. Finding the best
k-sparse representation of y ∈ Rm in D is known to be an NP-
hard problem for most dictionaries, see [1, Section 2.3]. Hence,
the design of tractable methods to find (provably) good sparse
representations of certain families of signals y has been a very
active area of research during the last decades.

Although most contributions focus on the case where D
contains a finite number of elements, several authors have re-
cently placed the sparse-representation problem in the context
of “continuous” dictionaries. In this framework, D is made up
of an infinite (uncountable) number of elements continuously
indexed by some parameter θ:

D = {d(θ) ∈ Rm : θ ∈ Θ} (1)

where d : Θ→ Rm is a continuous function and Θ ⊆ Rd. The
generalization of the well-kwown Lasso problem to context of
continuous dictionaries (1) was considered in [2]. It involves
the optimization with respect to a measure µ belonging to the
space of Radon measures over Θ, sayM(Θ):

µ? ∈ arg min
µ∈M(Θ)

1
2‖y −Dµ‖22 + λ‖µ‖TV, (2)

where Dµ ,
∫
d(θ)dµ(θ), and ‖·‖TV is the so-called “total

variation” norm, see e.g., [3, Eq (7)]. We note that, despite of its
apparent complexity (optimization over a space of measures),
efficient procedures based on the conditional gradient method
[4, Section 2.2] have been proposed that operate on measures
with finite support, see e.g., [5, 6].

Low-rank approximation of matrices. Inspired by the suc-
cess of the sparse model, several authors proposed to tackle
inverse problems involving different types of low-dimensional
structures. One striking example is the reconstruction of low-
rank matrices considered by Candès et al in [7]. More specif-
ically, the authors addressed the problem of reconstructing a

low-rank matrix X ∈ Rn1×n2 from partial observations y ∈
Rm as the solution of the following optimization problem:

X? ∈ arg min
X∈Rn1×n2

1
2‖y −A X‖22 + λ‖X‖∗. (3)

Here A : Rn1×n2 → Rm plays the role of some linear obser-
vation operator and ‖·‖∗ is the so-called “nuclear” norm defined
as:

‖X‖∗ =

min(n1,n2)∑
`=1

σ`(X), (4)

where σ`(X) denotes the `th singular value of X. It can be
shown that the rank of solutions to (3) is related to λ, i.e. the
nuclear norm induces low-rank solutions. The success of the
method proposed by Candès et al. revolves around: (i) theoret-
ical guarantees that the solution to (3) may be the solution of the
NP-hard low-rank approximation problem; (ii) efficient solvers
such as FISTA [8] which rely on the closed-form expression of
the proximal operator of the matrix nuclear norm.

Low-rank approximation of tensors. Given the success of
convex-relaxation methods for the reconstruction of low-rank
matrices, it is tempting to extend the ingredients of problem (3)
to the low-rank decomposition of t-dimensional tensors. To
this end, following [9], the tensor nuclear norm is defined as
the gauge function of the convex hull of normalized rank-one
tensors:

‖X‖∗ = inf

{∑
`<∞

|c`| : X =
∑
`<∞

c` u
(1)
` ⊗ . . .⊗ u

(t)
` ,u

(i)
` ∈ Sni

}
.

where ⊗ denotes the tensor product and Sni is the ni-
dimensional unit-sphere. Indexation ` <∞ means the number
of summands must be finite. It is well-known that this defini-
tion is equivalent to (4) when t = 2 [10].

With this generalized definition (and a proper definition
of A ), problem (3) straightforwardly extends to the multi-
dimensional tensorial case. Unfortunately, as shown in [10],
the evaluation of the nuclear norm is NP-difficult as soon as
t > 2. Although this seems to mean that (convex) nuclear norm
regularized approximation (3) is not easier to solve than (non-
convex) tensor low-rank approximation, in this contribution we
propose a Frank-Wolfe algorithm working on a related BLasso
problem that tries to solve (3) globally. We discuss research
directions to hopefully provide appropriate assumptions for the
global convergence of the algorithm, and show practical results
for tensor rank selection.

2 From low rank to sparsity
The idea underlying the reformulation of the low-rank approx-
imation problem as a sparse-representation problem is as fol-
lows: any rank-k tensor can be rewritten as the sum of k rank-1



tensors; hence, rank-k tensors have k-sparse representations in
the (continuous) dictionary of rank-1 tensors. In the framework
of sparse representations in continuous dictionaries, one may
define the parameter set Θ as

Θ =
{

(u(1), . . . ,u(t)) : u(i) ∈ Sni

}
(5)

and the “atom function” as

d : Θ → Rm
(u(1), . . . ,u(t)) 7→ A

(
u(1) ⊗ . . .⊗ u(t)

)
. (6)

With these definitions, the continuous dictionary D in (1)
corresponds to the image of the set of unit-norm rank-1 t-
dimensional tensors seen through operator A . A sparse de-
composition of y in D can then be searched via the resolution
of problem (2). The pertinence of this approach with respect
to our initial regularized tensor-approximation problem (3) is
given in Proposition 1 below.

Before stating our result, we note that any solution µ? of
(2) defines a t-dimensional tensor as Dµ?, where D is defined
from (5)-(6). Conversely, any solution X? of (3) defines a dis-
crete measure inM(Θ) with mass σ`(X?) located at the cor-
responding singular vector, say (u

(1)
` , . . . ,u

(t)
` ). Keeping this

remark in mind, our result reads:

Proposition 1. Consider problem (2) with D defined from (5)-
(6). Any solution X? of (3) defines a discrete solution of (2).
Conversely, any discrete measure µ? which is solution of (2)
defines a solution of (3).

In other other words, Proposition 1 states that all the solutions
of (3) can be found by identifying the discrete solutions of (2).
Our proof revolves around the fact that the infimum in the nu-
clear norm is attained [10, Prop. 3.1]. In particular, it implies
that there must exist discrete measures that are solutions to
the BLasso problem. We can therefore exploit the algorithmic
strategies available for solving the BLasso problem to search
for the solutions of (3).

3 Algorithms
A popular algorithm to solve the BLasso problem is the so-
called “ Frank-Wolfe” algorithm [4, Section 2.2]. We consider
hereafter a generalized version of this procedure called “Sliding
Frank-Wolfe (SFW)”, see [6, Chapter 4, Alg. 3]. It consists of
three steps repeated until convergence. First, identify the best
normalized atom by maximizing correlation with the residual.
Second, compute the optimal coefficients with fixed selected
atoms. Finally, optimize both coefficients and atom parameters
for a fixed sparsity level s. In the tensor framework, this means
alternately solving problems of the following form:

arg max
u(i)∈Sni

〈A ∗r,u(1) ⊗ . . .⊗ u(t)〉 (7)

arg min
c∈Rs

1
2‖y −Dc‖22 + λ‖c‖1 (8)

arg min
c∈Rs,u

(i)
` ∈Sni

1
2‖y −A

s∑
`=1

c`u
(1)
` ⊗ . . .⊗ u

(t)
` ‖

2
2 + λ‖c‖1(9)

where r ∈ Rm is the residual vector after a given number of
iterations, matrix D is computed straightforwardly from the set
of identified atoms, and A ∗ is the adjoint of A , often easy to
compute in practice.
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Figure 1: Tensor rank of the output of the proposed Sliding Frank-Wolfe al-
gorithm, with λ varying from 0 to λmax as defined in [6]. Red crosses are
bad estimates, that might be improved by a better implementation of steps (7)
and (9) of the FW algorithm.

These three steps have very different levels of difficulty.
Problem (8) is a simple Lasso problem, for which efficient
solvers already exist. Problem (9) is in principle as difficult
as the original tensor factorization problem with low-rank con-
straint. Nevertheless, it can be shown that convergence of SFW
is still ensured as soon as the output of step (9) does not in-
crease the BLasso cost function. Hence, problem (9) can be
substituted by a few iterations of some local optimization pro-
cedures, see, e.g., [11].

Finally, solving (7) means finding the best rank-one approx-
imation of a tensor A ∗r, which is an NP-hard problem in gen-
eral [12]. To the best of the author’s knowledge, no method
is even proved to produce an estimate positively correlated
with the optimal solution in general [13]. On the other hand,
practical algorithms exist that empirically perform extremely
well [10, 14]. Moreover the Higher-Order Singular Value De-
composition [15] provides an initialization which guarantees
quasi-optimality of the fitting error in Frobenius norm. We
are currently working on linking existing results on tensor best
rank-one approximation with sufficient conditions for the FW
algorithm to converge globally. Practically, we compute (7)
using the Alternating Least Squares algorithm, initialized ran-
domly ten times and picking the best result.

4 Experiments
Let us showcase the proposed SFW algorithm on a rank de-
tection problem. Given a noised 3-dimensional data tensor
T = X + σN with X of rank k = 5, we try to find the value
of k by solving the tensor version of (3) for several values of λ.
We set A as the vectorization operator. The noise tensor has
entries drawn from i.i.d. Gaussian distributions. Ground truth
tensor X is generated using factors drawn from i.i.d. Gaussian
distributions with dimensions 20 × 21 × 22, and ground-truth
c` are drawn from the absolute value of i.i.d. Gaussian distri-
butions with mean 0.5. The noise level σ is set to 0.005.

Figure 1 shows the results for various values of λ. We clearly
observe proper rank detection, although there is a spurious error
around λ = 0.25λmax. Moreover, we observed that the atoms
selected with various λ values are very closely related, which
would confirm some kind of global convergence behavior, de-
spite our implementation behind largely improvable. Note that
within the proposed framework, we may also, among others,
tackle missing data imputation or directly low-rank approxi-
mation.
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