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Abstract—5G will serve heterogeneous demands in terms of
data-rate, reliability, latency, and efficiency. Mobile operators
shall be able to serve all of these requirements using shared
network infrastructure’s resources. To this end, we propose in this
paper a framework for resource orchestration for 5G network
slices implementing four Quality of Service pillars. Starting from
traffic classification, demands are marked so that they are best
served by dedicated logical virtual networks called Network Slices
(NSs). To optimally serve multiple NSs over the same physical
network, we then implement a new dynamic slicing approach of
network resources exploiting Machine Learning (ML). Indeed,
as demands change dynamically, a mere recursive optimization
leading to progressive convergence towards an optimum slice is
not sufficient. Consequently, we need an initial well-informed
slicing decision of physical resources from a total available
resource pool. Moreover, we formalize both admission control
and slice scheduler modules as Knapsack problems. Using our
5G experimental prototype based on OpenAirInterface (OAI),
we generate a realistic dataset for evaluating ML based ap-
proaches as well as two baselines solutions (i.e. static slicing
and uninformed random slicing-decisions). Simulation results
show that using regression trees as an ML based approach for
both classification and prediction, outperform other alternative
solutions in terms of prediction accuracy and throughput.

Index Terms—Network Slicing, Machine-Learning, Resource
Orchestration, 5G, OAI

I. INTRODUCTION

5G will not only feature increased throughput and higher-
mobility that is known as extreme Mobile Broadband (xMBB)
but also, it will support Machine to Machine communications.
Multiple reports predict exponential inflation of Internet of
Things (IoT) communication in its two facets (Massive and
Critical), that are known as Massive Machine Type Communi-
cations (mMTC) and Ultra-Reliable Low-Latency Communi-
cations (URLLC) [1]. Each class (xMBB, mMTC and URLLC)
has its own requirements in terms of throughput, mobility,
reliability, latency, energy efficiency, and has different charac-
teristics when it comes to connection and traffic densities [1].
Accordingly, network infrastructure has to serve heterogeneous
demands. Although demands are heterogeneous, the same
ultimate objective is shared, which is to guarantee Quality of
Service (QoS).

For cost-effectiveness, mobile network operators shall op-
timize resources’ supply to meet demands. This is especially
interesting because of continuously pushing economic reasons

due to natural scarcity of resources (spectrum and power) or
even infrastructure resources (Compute, Network, and Stor-
age). Leveraging two enablers, namely Software-Defined Net-
working (SDN) and Network Function Virtualization (NFV),
a solution consists of provisioning dedicated logical networks,
also known as Network Slices (NSs) [2]. To ensure QoS, the
first pillar consists of classifying and marking traffic based
on QoS Class Identifiers (QCIs) [3], so that each type of
traffic is associated to an adequate architecture implemented
by a tailor-made NS. The former “one-size-fits-all” scheme
shall be replaced by fine-tuned slices that are optimized to
secure objectives, while meeting stipulated constraints. To
provide End-To-End (E2E) QoS, four QoS pillars need to be
implemented [3].

After classification and marking, we consider a case of
several NSs sharing an initial resource allocation from a unique
resource pool that is typically imposed by a particular radio
design. Accordingly, different slices with different bandwidth
ratios from the total available resource pool can be observed.
However, as demands change with time, a dynamic optimiza-
tion is necessary. On top of this, initial well-informed slicing
ratios are needed. To answer the question of how to get such
optimal ratio, we propose, in this paper, employing Machine
Learning (ML) and particularly, Regression Trees (RTs) to
do traffic trend forecasting and throughput maximization.
Specifically, we use multiple predictor variables extracted from
the traffic profile (such as, time, day-of-the-week, planned-
event existence, and other environmental factors) to predict
an optimal value of bandwidth ratio. We use our 5G exper-
imental prototype [5, 6] based on OpenAirInterface™ (OAI)
to generate a realistic dataset and benchmark the performance
of several ML based approaches as well as two baselines solu-
tions: static slicing and un-informed random slicing-decisions.
Our contributions can be thus summarized as follows:

• We design a framework consisting of several building
blocks integrating four QoS pillars for resource orches-
tration in 5G network slices.

• We provide formulation, mathematical models and an
algorithm to implement these building blocks using i) ML
based approaches for “Classification and Marking” along
with ii) Predictions using RTs, iii) Knapsack problems
for admission control and scheduling optimization and



iv) Agile elasticity algorithms for resource provisioning.
• We show the effectiveness of our proposal compared

to other alternative solutions using our 5G experimental
prototype based on OAI.

The remainder of this paper is organized as follows. In
section II, we present an overview of related work. Section
III describes our system design and details our proposed
models for implementing the building blocks of our frame-
work. Section IV presents the performance evaluation starting
by describing our prototype, used dataset, and ending by
simulation results discussion. We finally conclude this paper
in section V.

II. RELATED WORK

In this section, we discuss a selection of relevant approaches
for radio resource management in 5G networks: static/random
slicing ones [7, 8], time-series based predictions ones [9–11],
and ML based ones using random forests [12], Support Vec-
tor Machines (SVM) [13], and Gaussian Process Regression
(GPR) [14].

Authors in [7] detailed a framework on the configuration of
Radio Resource Management (RRM) in a sliced Radio Access
Network (RAN) using static slicing ratios and evaluated the
blocking rate and the throughput per Data Radio Bearer (DRB)
of different types of slices. However, to achieve efficient
resource allocation, we need a dynamic slicing ratio based on
traffic load predictions. Authors in [8] used feature-selection
based prioritization to predict mobile traffic and they used
data from an open dataset used in a big-data challenge. They
compared their approach to random-based predictions.

Authors in [9] conceptualized three key building blocks for
network slicing. Precisely, they designed a forecasting module,
an admission control agent and a scheduler. They used Holt-
Winters (HW) method to do traffic prediction. Little details
were provided on used dataset and its characteristics. They
sacrificed some violation of Service Level Agreement (SLA)
for an increase of resource utilization. Differently from them,
we included in our design an elastic “Resource Manager” to
avoid SLA violation to sustain isolation principle in NS.

Authors in [10] used Seasonal Auto-Regressive Moving-
Average (SARIMA) to do predictions. Although, SARIMA
is not complex as it does not rely on predictor variables, it
fails when there is an unusual growth or slowdown in the
time series, unlike predictor-based approaches where predictor
variables reflect such unusual change.

Authors in [11] used a stochastic model to represent time
series data using Markov Chains (MCs). Although MCs are
stochastic processes, but they lack any “memory” by design.

Unlike the aforementioned approaches (HW, SARIMA and
MC), we propose an ML based framework for resource orches-
tration in 5G networks. ML based approaches are expected
to be competitive in accuracy due to data abundance that is
exploited in continuous training and re-training of models.
In addition, differently from such related works, to prove the
effectiveness of our proposal, we generated a realistic dataset
using our 5G experimental prototype presented in [5, 6].

Finally, authors in [12], [13], [14] used Machine-Learning
approaches, namely Random Forests, SVM and GPR, respec-
tively in different contexts. We compare our approach with
these ones and discuss the associated results.

III. SYSTEM DESIGN

Our Network Slices’ Orchestrator, shown in Fig. 1, is built
upon the concept of resource sharing elaborated in 3GPP
technical specification detailing the concept and requirements
for network sharing and management architecture [15].

As depicted in Fig. 1, after classification and marking, traffic
trends forecasting is introduced to predict the ratio of slices
and maximize system’s throughput, accordingly. The starting
point is getting NSs requirements blueprints that encompass
network characteristics (spectral efficiency, latency, reliability,
and energy efficiency) required by a service instance [16]. Our
designed “Gatekeeper” building block is used to implement
two fundamentals roles that are “Classification and Marking”
based on received blueprints in order to form the first QoS
pillar [3]. We propose to use supervised ML for implementing
the classification [4]. Initial data labeling is done according to
the details found in the blueprints, which include the SLA.

The “Decision Maker” building block is composed of two
sub-modules that are “Forecast Aware Slicer” using ML based
regression and an “Admission Controller” that either grants or
denies resource’s requests according to current and predicted
loads. The “Admission Controller” makes decision according
to preset policies. Two outcomes are derived from this sub-
module. Granted requests are forwarded to the “Slice Sched-
uler” so that they are served in the nearest time window.
This latter implements the third QoS pillar. If admission is
not possible, denied requests are forwarded to the “Resource
Manager” implementing the fourth QoS pillar on how to
proceed in case of high resource’s utilization. An Auto-scaler
is an example of an agile “Resource Manager” that revokes
denied requests by dynamically instantiating, whenever pos-
sible, additional workers to serve these requests. It is worth
noting that the “Slice Scheduler” plays an interesting role in
providing feedback to the “Decision Maker” to reinforce the
learning experience.

In what follows, we present in details the aforementioned
building blocks by formulating the problem of each block and
describing how to solve it.

A. Gatekeeper

To do traffic forecasting based on trends, an initial phase
of classification and marking is needed so that aggregation of
traffic per slice takes place. Indeed, each use case requires a
network slice that is tailor-made to fit its particular service
requirements. Table I resumes our assumptions on some QoS
Classes of traffic according to SLAs blueprints [17]. As an
example, for l = 3, QCI = 65 with Guaranteed Bit Rate (GBR)
resource type, delay budget of 10 ms, packet loss tolerance of
10−2, and a priority of 0.7, it is suitable for the Mission Critical
Push To Talk (MCPTT) service [17]. We assume that every
instance (or event) of a point process ξ can be represented by



Fig. 1: Block Diagram of 5G Network Slice Orchestrator

ξ
(l)
i =

∑T
t=0 δtr

(l)
i (t), where δt denotes the Dirac measure for

time sample t. Variable r(l)i (t) denotes requests of tenant i for
a traffic class l over the time t.

B. Decision Maker

1) Forecast Aware Slicer: To predict slices’ ratios, we
use multiple predictor variables, extracted from the traffic
profile, that are level, trend, seasonality, time, day-of-the-week,
planned-event existence, and cloudy-conditions. Note that for
the sake of simplicity, predictors variables are binarized where
possible. Cloudy-conditions are fetched through an on-line
Application Programming Interface (API) made available by
DarkSky [18].

2) Problem Formulation: We formulate our regression
model as follows.

y = f(X,β) + e (1)

where y ∈ R is a continuous valued scalar output denoting the
response variable; e is an independent random noise involved
in the statistical relationship between response variable y
and predictor variables xi instead of a perfect deterministic
relation; X ≡ (x1, x2, . . . ) is a vector of predictors variables.
Parameters vector β ≡ (β1, β2, . . . ) is unknown and its
variables are evaluated during the simulation based on the
chosen regression model. Denoting by c a particular leaf, and
by T our tree, our proposed objective function for tree growing,
expressed in (2), consists of minimizing the sum S of squared
errors of our Tree T [19]:

S =
∑

c∈leaves(T )

∑
i∈c

(yi −mc)
2 (2)

where mc = 1
nc

∑
i∈c yi, the prediction for leaf c with nc

points in it.
3) Proposed Algorithm for growing regression trees: We

propose the following simple yet efficient algorithm (elabo-
rated in Algorithm 1) for growing regression trees by progres-
sive elaboration. Starting initially with all nodes and based
on iterations that end according to some predefined criteria,
we split points to different branches. To express these criteria,
we define a parameter q denoting the minimum leaf size for

the sought tree. We also define parameter ε as the minimum
change threshold for continuing with iterations.

Algorithm 1: ML based Regression Tree Growing
Data: Records of predictors and the optimum response
Result: Grown Tree for responses
do

Initialize a single node containing all points;
Calculate mc and S;
if ∀ points in node, predictors are same then

stop;
else

search over all binary splits of all variables for
the one which reduces S

end
if (Max(∆(S)) < ε or ∃ cardinal(node) < q) then

stop;
else

Take that split and create 2 nodes
end

while no more new nodes;

C. Admission Controller

An “Admission Controller” receives requests that need to
be scheduled. Based on the current system load and supported
by data generated by the “Forecast Aware Slicer”, it decides
whether to grant or deny each individual request. In case of
denial, it forwards the request to the “Resource Manager” so
that a possible resource pool re-dimensioning takes place in
order to decrease the chances of service denial as possible,
depending on the capabilities of underlying physical system
or whenever additional pooled infrastructure resources are
available.

Problem Formulation and Resolution: Based on our pre-
vious work in [20], we formalize the “Admission Control”
problem as D-dimensional Multiple-Choice Knapsack problem
that is constrained by multiple limits stipulated by each slice
type. The problem can be formalized as follows.

max
x

z =

m∑
i=1

n∑
j=1

vjxij (3a)

s.t.
n∑

j=1

w
(d)
j xij ≤ C(d)

i , d ∈ {1, . . . , D}, i ∈ {1, . . . ,m} (3b)

m∑
i=1

xij ≤ 1, j ∈ {1, . . . , n} (3c)

xij ∈ {0, 1}, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (3d)

The objective function in (3a) aims to maximize the value of
network resources utilization v, while serving network slices
requests as per contracted SLA. The set of D constraints (3b)
specifies the stipulations on computing resources among the
required demands in terms of Virtual Central Processing Units
(vCPUs), and virtual Memory. These resources cannot bypass



an upper bound as imposed by underlying system capabilities
denoted by Cd

i . Assuming no duplication, constraint (3c)
enforces exclusivity, so that each resource request is served
by at most one slice.

The solution of this problem is a set of xij that are binary
values indicating whether a request j is served by slice i and
thus admitted into the system or not. Index variables n and
m denote the number of requests and the number of slices,
respectively. Each admitted request j is valued as vj .

To solve this NP-hard problem, we can use our polynomial
time heuristic algorithm proposed in our previous work in [20].

D. Slice Scheduler

Once “Admission Controller” has warranted grants to a
network slice, such demand is adressed to the “Slice Sched-
uler” to properly serve its corresponding traffic with minimal
time duration. We denote by pj the processing time of a
transmission request j, out of n requests, such that its timespan
is cj,t. Our problem consists in finding a schedule minimizing
the total time duration. We define a binary decision variable
xjt to indicate if a request j is scheduled in time period t. Our
slice scheduler can be formalized as an optimization problem
expressed as follows.

min
x

z =

n∑
j=1

T∑
t=1

cjtxjt (4a)

s.t.
n∑

j=1

t∑
s=max{0;t−pj+1}

xjs ≤ N, t ∈ {1, . . . , T} (4b)

T∑
t=1

xjt ≤ 1, j ∈ {1, . . . , n} (4c)

xjt ∈ {0, 1}, j ∈ {1, . . . , n}, t ∈ {1, . . . , T} (4d)

Knowing that the host implementing a slice has finite capacity
and can handle maximum up to N requests concurrently,
constraint (4b) stipulates that during time period t, N requests
can be executed, at most. Constraint (4c) means that each
request has to be scheduled only once. Finally, constraint (4d)
stipulates that each request should be either served at time
period t or deferred.

It is worth noting that the formulated problem in (4) is
NP-hard and corresponds to a Knapsack problem, which is a
particular case of a D-dimensional Multiple-Choice Knapsack
problem. A general heuristic has been proposed in our previous
work in [20] and can be thus used as well to solve such
particular case in a polynomial time.

E. Resource Manager

Our “Resource Manager” exploits the usage of microser-
vices to auto-scale infrastructure resources and thus provides
elastic resources to decrease requests’ rejection ratio.

According to predictions made by the “Forecast Aware
Slicer”, the “Admission Controller” sub-module of “Decision
Maker” might request some additional elastic resources from

Fig. 2: Our 5G experimental prototype block diagram [6]

“Resource Manager” so that it does not violate the SLAs. Such
observation is sent back by the “Slice Scheduler” to the “Deci-
sion Maker” as feedback. Reinforcement Learning (RL) can be
used here to enable the “Decision Maker” acting as an agent to
learn how to perform its decisions for elastic resources, while
interacting with an unknown changing environment. Indeed,
RL aims to maximize the cumulative reward autonomously [9].
As predictions might be wrong, the “Decision Maker” agent
can learn the optimal behavior through repeated trial-and-error
interactions with the environment.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
network slice orchestrator framework using our 5G experimen-
tal prototype. We start by presenting our prototype. Then, we
present our methodology to generate the dataset used in our
simulations, followed by a presentation of the obtained results.

A. 5G Experimental Prototype Overview

Fig. 2 depicts our 5G experimental prototype based on OAI.
Top rectangle (in Orange) hosts our proposed orchestrator
and its building blocks. It interacts with a Software-Defined
RAN, namely, FlexRAN [21] through a northbound interface
to manage sub-jacent RAN nodes implemented using OAI.
It interfaces with open-source Software-Defined Controllers
for both Transport Network (TN) and Data centers (DC).
We implement Operation Support Subsystem/Business Support
Subsystem (OSS/BSS) using open-source software to collect
infrastructure metrics (Telegraf), store it in time-series database
(InfluxDB) and visualize it using a dashboard (Grafana) [2].

B. Dataset Generation and Simulation Environment

A dataset is generated using our 5G experimental prototype
by running, for 24 hours, a background script interacting
with FlexRAN to collect the Medium Access Control (MAC)
layer statistics of our Commercial Off-The Shelf (COTS)
User Equipments (UEs) and IoT devices (i.e., temperature and
humidity sensors, light and motion sensors, Intelligent Switch
and Smart lamp). The collected statistics include provisioned
slicing ratios, priority, QCI, power measurements, among oth-
ers. With background processes requiring internet connection,
UEs are periodically moving in our laboratory space to change
radio conditions. IoT devices’ traffic is aggregated through two
IoT Gateways implemented on Raspberry Pies and sent to the



TABLE I: Standardized QCI characteristics [17]

l QCI Resource
Type

Delay
Budget

Loss
Rate Priority

0 1 GBR 100 ms 10−2 2
1 3 GBR 50 ms 10−3 3
2 6 non-GBR 300 ms 10−6 6
3 65 GBR 10 ms 10−2 0.7
4 66 GBR 100 ms 10−2 2

TABLE II: Simulation Parameters

Parameter Value Parameter Value

C(1)

C(2)
2 vCPUs

1 GB RAM

q (Complex)
q (Medium)
q (Simple)

36
12
4

D (Knapsack) 2 q (ensemble) 8
# Slices 3 N (PRBs) 100
# UEs. 3 Bandwidth 20 MHz

# IoT Devices 6 ε 0.05
S (Complex) 160 K (Fine KNN) 1
S (Medium) 20 K (Coarse KNN) 100
S (Simple) 4 K (Other KNN) 10

Cloud using our 5G prototype. ML models are implemented
using MATLAB® on Dual Intel Core i7, 2.4 GHz, 4-Cores 7th
Gen. with 16 GB of RAM. Afterwards, RTs model is compiled
as standalone application for Linux so that it is re-used in our
5G experimentation prototype. Several ML based models are
implemented to classify different blueprints (QCI, Resource
Type, Loss Rate, Priority Level) corresponding to three con-
ventional types of 5G slices: xMBB, URLLC and mMTC, as
summarized in Table I. Simulation parameters are summarized
in Table II. Note that we used 20 MHz channel bandwidth for
our Universal Software Radio Peripheral (USRP) B210 [22].

C. Simulation Results

Table III reports the prediction’s accuracy, speed and train-
ing time of different classification models of 150 tenants’
requests with corresponding blueprints. We can notice that the
majority of model types provides an accuracy of more than
90% except for coarse K-Nearest Neighbor (KNN), cosine
KNN, boosted trees and RUSBoosted trees. Linear Discrimi-
nant provides the highest accuracy.

Table IV reports different performance metrics including the
Root Mean Square Error (RMSE), Mean Squared Error (MSE),
Mean Absolute Error (MAE), and coefficient of determination
(R2) [19] for the used prediction models. We can see that trees
(complex, medium, simple and even boosted trees) perform
the best. However, this comes at the expense of an increased
training time, as shown in Fig. 3. Indeed, from that figure,
we can clearly see that, although RTs provide the lowest
RMSE and highest prediction speed, their training time is high
compared to the others. However, this can be acceptable since
the training’s need is not as frequent as the prediction’s need.

To further show the benefit of ML-based RTs, we compare
in Fig. 4(a) the predicted values of slicing ratios with the Op-
timum, Static and Random-slicing approaches. The boxplots
of average gap to the optimum values are shown in Fig. 4(b).
Note that Optimum values are calculated using a bottom-up

TABLE III: Classification Benchmarking

Class Classification
Model

Prediction
Accuracy

Prediction
Speed
(obs/sec)

Train.
Time
(sec)

Trees Complex tree 94.7 6000 1.1487
Medium Tree 94.7 5800 0.7825
Simple Tree 95.3 9200 0.6463

KNN Fine KNN 94.7 2200 1.6188
Medium KNN 94.7 2000 1.5302
Coarse KNN 64.7 3600 1.4441
Cosine KNN 84.7 2700 1.7042
Cubic KNN 94 3500 1.6235
Weighted KNN 95.3 4400 1.8926

SVM [13] Linear 96.7 1700 3.234
Quadratic 96 1900 2.941
Cubic 94.7 2800 3.8789
Fine Gaussian 92 2800 3.792
Medium Gaussian 96.7 2900 3.6911
Coarse Gaussian 95.3 2500 3.5455

Ensemble Boosted Trees 33.3 3100 2.1866
[12] Bagged Trees 94 480 4.7621

Subspace Discrim. 95.3 410 6.8598
Subspace KNN 93.3 320 7.4715
RUSBoosted Tree 33.3 8200 6.4955

Discriminant Linear 98 6200 1.2942
Quadratic 96.7 3700 1.9226

TABLE IV: Prediction Benchmarking

Class Regression RMSE R2 MSE MAE
Linear Basic 28.77 0.16 827.66 25.61

Interactions Linear 29.34 0.12 860.91 25.52
Robust Linear 29.1 0.14 846.59 24
Stepwise Linear 29.41 0.12 864.82 25.82

Trees Complex Tree 5 0.97 25.03 3.07
Medium Tree 5.17 0.97 26.77 3.15
Simple Tree 5.76 0.97 33.18 3.77

SVM [13] Linear 31.48 0.01 990.92 21.74
Quadratic 18.21 0.66 331.7 14.25
Cubic 16.82 0.71 282.79 13.4
Fine Gaussian 23.69 0.43 561.09 19.51
Medium Gaussian 17.48 0.69 305.47 14.12
Coarse Gaussian 29.06 0.14 844.43 20.32

Ensemble Boosted Trees 5.41 0.97 29.23 3.24
[12] Bagged Trees 12.52 0.84 156.74 10.13
GPR [14] Squared Exponential 16.87 0.71 284.54 13.62

Matern 5/2 17.05 0.7 290.66 13.73
Exponential 17.91 0.67 320.81 13.6
Rational Quadratic 16.87 0.71 284.54 13.62

estimation by aggregating demands of each slice and deducing
the ratios. For the static approach, we assume a ratio of 50%
for the xMBB slice. We repeated this benchmarking using 1000
observations. We can see that the random approach performs
the worst with an average gap of 30% to the optimal slicing
ratio. On the other hand, ML-based RTs outperforms both
static and random approaches with an average gap of 5%
only to the optimal approach. This is related to its prediction
accuracy, which is the highest among the remaining schemes.

Finally, we compare our RTs based “Forecast Aware Slicer”
with a realistic case where no traffic profile information
exist or where such sub-module is left-out for complexity
reduction. We ran our prototype in two modes by activating
and then deactivating the “Forecast Aware Slicer” sub-module.
Fig. 5 depicts the obtained throughput for the xMBB Slice
during five hours of simulation. Interestingly, we can see that



Fig. 3: Performance comparison of Regression Models

Fig. 4: Optimum, ML, Static, Random and Boxplots

the forecasting process allows to increase the throughput by
approximately 30% compared to the case where the “Forecast
Aware Slicer” sub-module is deactivated. This is interesting
for operators who seek to maximize end-users experienced
throughput by reusing available resources where possible.

V. CONCLUSION

In this paper, we have presented a novel framework based on
Machine-Learning (ML) to address the network slice orches-
tration in 5G networks. Specifically, we have designed and
implemented four building blocks, namely, “Gatekeeper” for
classification and marking, “Decision Maker” with “Forecast
Aware Slicer” and “Admission Controller” sub-modules, “Slice
Scheduler”, and “Resource Manager”, in a 5G prototype using
OAI. From our experiments, we have observed that Regression
Trees (RTs) outperform other ML models in term of prediction
accuracy. In particular, compared to linear based regressions,
RMSE is divided by six, prediction speed almost quadrupled
but training time has slightly increased. We also showed that
the average gap between RTs and the Optimum approach is
only 5%. In addition, RTs allow to increase the throughput by
approximately 30% compared to the case where the forecasting
process is disabled.

In the future, we plan to further exploit ML techniques using
deep reinforcement learning and evaluate the performance of
our “Decision Maker” building block using neural networks.
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