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Optimization of Virtualization Cost,
Processing Power and Network Load of

5G Software-Defined Data Centers
Nazih Salhab, Rana Rahim, and Rami Langar

Abstract—Virtualization is getting unprecedented attention
from Mobile Network Operators (MNOs) as it provides agility in
deployment, especially when coupled with the Cloud that offers
inherent elasticity and load-balancing of resources. MNOs have
to ensure operational excellence by meeting several objectives.
In this context, we propose in this paper, a framework for
optimizing the mapping of next Generation Node-Bs (gNBs)
to Software-Defined 5G Core (5GC) delay tolerant Network
Functions (NFs). These NFs are considered to be deployed as a
Virtual Machine (VM) pool, or containers, in order to minimize
cloud computing cost, processing power and at the same time
maximize network load. First, we formulate this problem as
an integer linear program, while taking into account multiple
constraints including Virtual Central Processing Unit (vCPU)
capacity, central processing load limits and integrality of mapping
relations between gNBs and 5GC NFs. Then, we propose an
algorithm to solve large problem instances based on Branch,
Cut and Price (BCP) combining all of “Branch and Price”,
“Branch and Cut” and “Branch and Bound” frameworks. We
present several schemes reflecting different optimization goals
that the MNO can foster: virtualization cost, power minimization,
network load or all. Simulation results demonstrate the good
performance of our proposed algorithm to solve the gNBs-VM
pool mapping for all evaluated schemes, while also emphasizing
the advantages of a particular one (EWoS-333 for Equal Weight
optimization Scheme) that can decrease virtualization cost by
almost one order of magnitude compared to a static selection
scheme, while considering the other two objectives.

Index Terms—Multi-objective optimization, Branch, Cut and
Price (BCP), 5G, Mobile Network Operator (MNO), Virtualized
Network Functions.

I. INTRODUCTION

Costs breakdown for Mobile Network Operators (MNOs)
shows that a large portion of their direct expenses is accounted
as cost of goods to deploy their infrastructure as part of capital
expenditures. Another significant part is accounted to some
indirect cost resulting from operational expenditures of their
network, and particularly energy costs.

On top of that, external driving forces stipulate the necessity
to abide by green initiatives to minimize power consumption
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and Carbon Dioxide emissions in data-centers. Accordingly,
MNOs have to cut costs, minimize power and maximize their
efficiency. Interesting transformation tactics include sharing
some of the network’s infrastructure and leveraging Software-
Defined Infrastructures (SDIs) by deploying network functions
on software-defined service centers [1].

Cloud Computing (CC) is gaining momentum among MNOs
[2, 3]. Cloud Computing (CC) is getting popularity among
Telephone Companies (telcos). For instance, American Tele-
phone and Telegraph (AT&T), the world’s largest provider
of mobile telephone services, announced that it is becoming
a ‘public cloud first’ company by migrating its workloads
to Microsoft public cloud by 2024. They advocate that the
clouds allow them to focus on core network capabilities,
accelerate their innovation cycle, and empower their workforce
while optimizing costs [4]. Furthermore, a leading research
and consulting business mandates that in order to be able to
compete in the digital world, the adoption of public cloud by
telcos is inevitable [5]. They also predicted that telcos will be
one of the fastest-growing users of public cloud computing
in 2020 as they look to accelerate their new service delivery
plan [5]. Cloud Service Providers (CSPs) provide worldwide
CC services. Usage of CC allows MNOs to move faster,
focus on their business, minimize their hardware footprints,
and keep pace with increasing demands in terms of resources.
However, costs have to be maintained to a minimum level
to maximize profitability [6]. One way to achieve this goal
is by exploiting Software-Defined Data Centers (SD-DCs)
[6]. Not only, does SD-DC allow to cut costs, but also, it
serves as a driver for new business models, provided that
it satisfies the latency, bandwidth and distance constraints.
MNOs can provision cloud Compute services to implement
SDIs of Fifth Generation of Core Network (5GC) virtualized
Network Functions (NFs), using Virtual Machines (VMs)
offering Virtual Central Processing Units (vCPUs) and Virtual
Memory expressed in Gigabytes (GB).

The 5G architecture employs control and user plane sep-
aration to have user plane functions and control plane func-
tions and interconnects the Radio Access Network (RAN) to
the 5GC through the transport network with next generation
interfaces (N1-N4) as depicted in Fig 1. The minimum re-
quirements for control plane latency is 20 ms [7]. Futhermore,
according to the requirement R48 of the Next Generation Mo-
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bile Networks (NGMN) alliance [8], the maximum guarantee
of end-to-end latency of 10 milliseconds is fine for most critical
applications such as voice over IP and video over IP.

5GC is envisioned to be built using NF-based approach
(Access and Mobility Function (AMF), Session Management
Function (SMF), and so on) in a Cloud-native architecture [9]
and deployed using a service-based design [10]. Such reference
architecture for 5G is backed-up by major standards developing
organizations [10–12]. However, MNOs have to dynamically
provision their resources to meet several objectives. Knowing
that an activation of a VM implementing a 5GC NF is atomic
(either active or inactive) and the mapping of new Generation
Node-Bs (gNBs) to a VM pool is also binary (connected or
not connected), we observe the constraints. A VM pool is a
group of VMs that are all clones of the same template and
that can be used on demand by any user in a given group.
Same concept applies to microservices, where a service is
deployed as a container, and pooled over multiple replicas.
Pooling Network Functions in the core is not new, it was
seen in 4G Evolved Packet Core (EPC) with the Mobility
Management Entity (MME-in-pool), and the Serving Gateway
(SGw-in-pool) and also in 5G [10].

In this context, we address, in this paper, the problem of
dynamic mapping of gNBs to a VM pool in 5G implementing
a 5G network function, for example Network Data Analytics
Function (NWDAF) for offline, delay tolerant, batch process-
ing, while minimizing the CC cost, the processing power and
at the same time maximizing the network load. We refer
to this problem as Multi-Performance objective Data Center
(MPDC). We first formulate the mapping problem as an Integer
Linear Program (ILP). Then, we propose an algorithm to
solve it based on Branch, Cut and Price (BCP) combining
all of “Branch and Price” (BP), “Branch and Cut” (BC) and
“Branch and Bound” (BB) frameworks. We analyze several
gNBs clustering strategies and provide guidelines that could
be used by MNOs to help them decide on their preferred
strategy according to their ultimate goal. We show that an
adequate selection of parameters allows reaching multiple
objectives and specifically, the Equal Weight optimization
Scheme (EWoS-333) provides gains on different levels (power,
CC cost and network load) and particularly, performs very
close to a pure cost minimization scheme, while addressing
power and throughput objectives.
In summary, our key contributions are the following:

• We formulate the dynamic mapping of gNBs and VM
pools in the 5G context as an Integer Linear Program
(ILP), while minimizing CC costs, processing power and
maximizing the grouping of low-loaded gNBs to reduce
the complexity and the power consumption.

• We propose an algorithm for solving this problem us-
ing BCP framework, which is a combination of the
Branch-and-Bound, Branch-and-cut and Column Gen-
eration methods for efficiently solving large-scale ILP
problems.

• We validate proposed algorithm by means of simulation

Fig. 1: Simplified 5G Architecture

and show the effectiveness of our proposal compared to
other solutions using pricing data extracted from Google
Cloud Platform (GCP) price-list [13].

The remainder of this paper is organized as follows. In
section II, we present an overview of related work. Section
III describes the system model and formulates the problem
as a generic weighted optimization one. Section IV details
the proposed algorithm. We elaborate the performance of our
proposal and discuss the obtained results in section V. Finally,
we conclude our paper and provide some perspectives in
Section VI .

II. RELATED WORK

Optimizing cost, power and load for a SDIs has triggered
considerable interest among researchers in the past few years.
In what follows, we discuss a selection of pertaining papers
classified by research areas.

A. Cloud Computing Cost minimization based on storage

Authors in [14] proposed a cost-based placement of virtu-
alized deep packet inspection function in Network Function
Virtualization (NFV) infrastructures using ILP formulation.
They expressed the placement optimization as a cost minimiza-
tion problem. They presented the situation as multi-commodity
flow problem and solved it using a centrality-based greedy
algorithm that is based on graph theory.
Authors in [15] proposed a solution, namely DAR for Data
storage, request Allocation and resource Reservation, minimiz-
ing the cost, while meeting multiple Service Level Objectives
(SLOs) across multiple CSPs. They modeled the cost mini-
mization problem under SLO constraints using Integer Pro-
gramming and proposed a dominant cost based data allocation
algorithm and an optimal resource reservation algorithm. They
formulated the SLO as constraints not as objectives.
In [16], the authors propose SPANStore (Storage Provider Ag-
gregating Networked Store) to minimize cloud storage costs,
while answering latency and availability objectives across
multiple CSPs. They combined three objectives to minimize
costs consisting of i) increasing distribution of data centers
exploiting pricing differences among CSPs, ii) fetching work-
load metrics at adequate granularity to trade-off replication
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versus latency while meeting fault-tolerance and consistency
constraints and iii) minimizing resources’ usage during two-
phase locking and data propagation. It is worth noting that
all of these papers [14–16] treated the cost optimization by
minimizing “Storage” resources unlike our approach, which
targets minimization of “Compute” resources, making it more
suitable to stateless applications.

B. Cloud Computing cost saving through prediction

In [17], the authors modeled the VM deployment and clas-
sified them as reserved and on-demand instances to optimize
their CC costs in an IaaS. They proposed a strategy that is
based on large deviation principle which calculates a number
of VMs responding to demands taking overload probability
into consideration. Also, aiming to further reduce the total
cost, authors of [17], added a dynamic approach to predict
the load using auto-regressive model calculating the number
of instances to be reserved for the computation requirements.
In [18], CC costs saving were achieved by exploiting the
discounts resulting from scheduling reservation of resources
on recurring basis in advance. These two latter approaches
rely on prediction to save costs as opposed to our approach,
where we propose a dynamic mapping of gNBs and VM pools
based on a generic weighted optimization problem.

C. Savings as results of virtualization

Authors in [19] addressed a virtualization scheme of VM
pool aiming to minimize power consumption constrained by
processing capacity. They used a heuristic that is based on
simulated annealing that is a well-known method for solving
unconstrained and bound-constrained optimization allowing
getting near-optimal result at minimum time.
Authors in [20] focused on the setup of service chains driven
by the emergence of NFV. They proposed a directed acyclic
graph to map chain topology of services onto a physical path
between source and sink nodes. However, the dynamic link
optimized placement was not considered.
Authors in [21] designed a multi-tier ecosystem of stream
applications. They modeled the energy of the target ecosys-
tem by accounting the virtualized and multi-core nature of
the Fog/cloud servers. They approached such problem using
gradient-based adaptive iterations and genetic algorithms.

Authors in [22] discussed a joint optimization of data-center
selection and video streaming rendering in a geo-distributed
Cloud platform. They proposed an online algorithm to save
operational costs by dynamically choosing right data centers
for both broadcasters and viewers at the same time.

D. Optimized placement of Network Functions

Authors in [23] proposed an online algorithm for dynamic
Software-Defined Network (SDN) controller assignment in
Data center networks aiming to minimize total cost caused by
response time and maintenance on the cluster of controllers.

They considered only one objective without considering addi-
tional competing objectives.
Authors in [24] proposed a scalable resource allocation
scheme, namely, ClusPR that addresses multiple objectives
on NFs which are clusters formation, placement of NFs and
routing of related flows. They modeled such problem as an ILP
aiming to find end-to-end route of flows, while maintaining
the precedence constraint among such NFs of a service chain.
They proposed two algorithms for offline and online processing
of such resource allocation problem aiming to minimize path
stretch and NFs load and maximize overall network utilization.
Authors in [25] proposed three optimization models aiming
to address cost minimization of Core Network virtualization
in 5G data center based on SDN and NFV. They found out
a trade-off between centralized and distributed data centers
deployments. They proposed a pareto optimal multi-objective
model that balances network and data center cost.
Authors in [26] presented a cloud resource allocation problem
targeting cost minimization and quality of service maximiza-
tion when deploying applications in the cloud. They evaluated
the performance of their proposed algorithm using pricing data
from Amazon web service [27] and Rackspace [28].

Authors in [29] proposed a dynamic energy-saving model
with NFV using an M/M/c queuing network to increase the
utilization of the machines. They formulated an energy-cost
optimization problem with capacity and delay constraints.

E. Generalized assignments heuristics and exact solutions

Authors in [30] considered cost minimization of a schedul-
ing problem and proposed a heuristic using BB named NMSP
(Node Migration Scheduling Problem). They conducted a
simulation on 4G network consisting of 40 nodes and found-
out that optimality is guaranteed for small networks of up to
40 nodes.

Authors in [31] considered assignment problems and pro-
posed a heuristic named MGAP (Multilevel Generalized As-
signment Problem) using BC to minimize assignment cost of
jobs to machines with capacity constraint.

Authors in [32] proposed a framework for the BBU selection
based on resiliency and price using BP framework that relies
on Column Generation (CG) and BB.

Authors in [33] studied the generic Branch, Cut and Price
approach from analytical point of view and proved its ability
in providing exact solutions in large scale problems.

Based on these works, we propose here a new approach for
mapping dynamically gNBs to a VM pool in the 5G context,
while minimizing the CC cost, the processing power and at the
same time maximizing the network load. Our approach relies
on a combination of the Branch-and-Bound [30], Branch-
and-Cut [31] and Column Generation (CG) [34] methods for
efficiently solving large problem instances. In addition, we
conduct simulations using real up-to-date pricing data from
GCP [13] and show the effectiveness of our proposal compared
to alternative solutions.
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III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a 5G simplified architecture consisting of three
components, which are: gNBs, VM pools (or containers) and
a backhaul transport network for interconnecting the gNBs to
the 5GC [35]. We assume that the latency imposed by hosting
the 5GC delay tolerant services on the Cloud is acceptable
when backhauling the gNBs. We will verify this assumption
in the performance evaluation (Section V). We consider an
area hierarchy that is composed of a cluster of S gNBs. The
VM pool is denoted by V with i as index such that V = {i |1 ≤
i ≤ N}. The set of gNBs is denoted by G with j as index such
that G = { j |1 ≤ j ≤ S}. We define a binary decision variable
denoted by ri j to express the VM pool i to gNB j mapping
relation. Accordingly, ri j is equal to 1 if gNB j is mapped to
VM pool i and 0, otherwise. The average utilization ui of a
VM pool i is expressed as follows:

ui =
1
Li

S∑
j=1

ri j .lj (1)

where lj denotes the traffic load on the gNB j and Li denotes
the maximum capacity of the VM pool i. To account for the
backhaul load of the different gNBs and their impact of the VM
pool, knowing that each VM pool i has a limited capacity Li ,
we consider that this maximum throughput imposes a Central
Processing (CP) load to the VM. To take this constraint into
consideration, we define parameter mi to denote the CP load
on VMs resulting from each gNB according to its load and
stipulate that a maximum CP load of B expressed in percent.
On the other hand, we denote by Ci the cost of instantiating
a VM i to implement a 5G Service. To normalize the costs,
we denote by max(C) the maximum value of the VMs costs
in the CSP pricing list. We consider two sets of gNBs, formed
according to the traffic load of these gNBs [36]. We denote
them as SL for low-loaded set of gNBs and SH for high-loaded
set of gNBs. We propose this segregation of gNBs based on
traffic load, since asymmetrical traffic between day and night
in addition to differences among business and residential areas
in term of processing capacity requirement for services are
observed. For the sake of clarity, we define a binary decision
variable xi as summation of ri j over j as follows.

xi =
S∑
j=1

ri j (2)

This latter variable expresses the active state of a VMi such
that xi is 0 when

∑S
j=1 ri j = 0, meaning that not a single gNBj

is mapped to a VMi. We denote by Pi the consumed power
and we model it as a function of the VM average utilization
ui with a linearity slope of λ.Pmax, provided that Pmax denotes
the maximum consumed power by the VM when fully loaded.
Coefficient λ is normalized to have values between 0 and
1. P0 denotes the consumed power during idle mode, that

is the residual power when there is no utilization (ui=0).
Accordingly, Pi is expressed as follows.

Pi = P0 + λ.Pmax.ui (3)

Tables I and II report the notations used in our system model
as decision variables and parameters.

B. Problem Formulation

We formulate our gNBs-VM pool Mapping Problem for
SD-DC (P) as an Integer Linear Program (ILP) with the
following generic weighted objective function composed of
three homogenized terms.

(P) min
r

α

N∑
i=1

xi .P0 + λPmaxui
Pmax

+ β

N∑
i=1

xi
Ci

max(C)

− γ

N∑
i=1

∑
j∈SL ri j lj∑
j∈SL lj

(4a)

s.t.
N∑
i=1

∑
j∈SH

ri j lj =
∑
j∈SH

lj (4b)

S∑
j=1

ri j lj ≤ Li,∀i ∈ {1, . . . ,N} (4c)

N∑
i=1

ri j ≤ 1,∀ j ∈ {1, . . . ,S} (4d)

N∑
i=1

mi

∑
j∈SH

ri j lj ≤ B,∀i ∈ {1, . . . ,N} (4e)

xi =
S∑
j=1

ri j,∀i ∈ {1, . . . ,N} (4f)

xi ∈ {0,1},∀i ∈ {1, . . . ,N} (4g)
ri j ∈ {0,1},∀i ∈ {1, . . . ,N}, j ∈ {1, . . . ,S} (4h)

The proposed objective function in (4a) consists of minimiz-
ing the total VM pool power consumption, in addition to
minimizing CC cost, while maximizing the traffic load that
could be processed by the VM pool from the low-loaded
gNBs. The three unit-less weights denoted as α, β and γ
are the coefficients of these normalized objective terms with
values ranging between 0 and 1 and having a sum equal
to 1 (α + β + γ = 1). We assume that these parameters
are set by the MNOs to reflect their optimization strategy
according to a choice of prevailing factors (prioritization of
Power minimization over CC cost or load maximization from
low-loaded gNBs).
Constraint (4b) specifies that the traffic of high-loaded gNBs
is exactly handled in total by the VM pool.
Constraint (4c) ensures that the sum of load of gNBs associated
to a VM pool does not exceed the capacity (Li) of such VM
pool.
Constraint (4d) stipulates that no gNB could be associated to



5

TABLE I: Decision Variables Notations

Variable Description
ri j decision variable of mapping gNB j to VM pool i
vi j extreme point: result of transformation of r ij
wi j extreme ray: result of transformation of r ij
xi Active state of VM i
zi
k

decision variable of feasibility of selected solution
Ûzi
k

First dimension of zi
k

Üzi
k

Second dimension of zi
k

more that one VM pool. Indeed, having the summation of all
ri j binary variables less or equal to one is only satisfied if at
most one particular ri0 j0 is equal to one.
Constraint (4e) stipulates that the CP load imposed by the
formed gNBs cluster associated to a VM pool do not exceed
the maximum allowed CP load B. The parameter mi represents
the accrued amount in term of CP load percentage per served
load in Mbps.
Constraint (4f) specifies the relation between the two decisions
variables xi and ri j as per the definition of xi itself as
elaborated in equation (2).
Constraints (4g) and (4h) stipulate that the decision variables
are binary as a VM pool can only be active or inactive (xi=0
or 1) and an gNB j can be either associated to a VM pool i
or not (ri j=0 or 1).

IV. PROPOSED BCP ALGORITHM

Our multi-objective mapping problem formalized in (P) is an
ILP and cannot be solved directly using convex optimization
techniques. Integrality constraints (4g), (4h) make it harder
to solve compared to Linear Programs (LPs) where, in the
latter, the decision variables can take any arbitrary real value.
Problem (P) is NP-hard [24, 26, 32]. A naive method to
generate optimum solution, is by exhaustively evaluating all
NS possible combinations of gNB-VM pool assignments.
However, it is impractical for large-scale networks as the
computation time, for such approach, increases exponentially
with the number of gNBs. To find a solution to our problem,
we propose an algorithm based on the Branch, Cut and Price
(BCP) framework which combines column generation, cuts
and branch-and-bound approaches to find a optimal solution
at minimum time. After relaxing the integrality constraints at
a first stage, BCP algorithm consists in using Column Gener-
ation to progressively and dynamically generating promising
solutions for the Master Problem detailed here-after. We then
use valid inequalities to cut feasible region and to strengthen
the linear relaxation so that a solution come closer to integers.
We finally use branch-and-bound to systematically search for
the solution. Column generation iteration consists in solving
the linear relaxation of the Master Problem and deciding which
column will be added. In such case, the ILP is simplified to an
LP. Accordingly, a sub-problem called the “Pricing Problem”
is created to identify which columns should enter the basis in
order to increase the objective function. If such columns are
found, the LP is then re-optimized. In column generation, each
iteration consists of (1) optimizing a restricted master problem

(RMP) to determine current optimal objective function and (2)
finding a variable with reduced cost influencing the behavior
of the dual variables. Cuts are constraints that are dynamically
added to our model to restrict non integer solutions. Using
cuts, we eliminate a non-integer solution that results from the
linear relaxation. We detail, next, the steps to have the Master
and Pricing problems for the proposed BCP algorithm.

A. Problem Reformulation

Based on the structure of our original problem (P) and using
Minkowski-Weyl’s representation theorem [37] that states that
every polyhedron P can be represented in the form of a convex
linear expression of extreme points and extreme rays of such
polyhedron, we transform our original problem using P = {r ∈
Rn : r =

∑
ρ.v +

∑
µ.w} where v are the extreme points, w

are the extreme rays and ρ, µ are linear coefficients. We use
two binary variables vi j and wi j instead of the initial decision
variable ri j for the low-traffic load lLj and high-traffic load lHj
gNBs assignments, respectively. Same definition remains for
xi , as xi = 0 if VMi is inactive (

∑
j∈SL vi j +

∑
j∈SH wi j = 0)

and xi = 1 otherwise. Developing and simplifying our original
mapping problem (P), we get our Transformed Problem (TP),
as follows.

(TP) min
v,w

N∑
i=1
Φi .xi +

N∑
i=1

∑
j∈SL

Ωivi j lLj +
N∑
i=1

∑
j∈SH

Ψiwi j lHj

(5a)
s.t.
N∑
i=1

∑
j∈SH

wi j lHj =
∑
j∈SH

lHj (5b)∑
j∈SL

vi j .lLj +
∑
j∈SH

wi j .lHj ≤ Li, ∀i ∈ {1, . . . ,N} (5c)

N∑
i=1

vi j ≤ 1, ∀ j ∈ SL (5d)

N∑
i=1

wi j ≤ 1, ∀ j ∈ SH (5e)

N∑
i=1

mi(
∑
j∈SL

vi j lLj +
∑
j∈SH

wi j lHj ) ≤ B (5f)

xi =
∑
j∈SL

vi j +
∑
j∈SH

wi j, ∀i ∈ {1, . . . ,N} (5g)

vi j ∈ {0,1}, ∀i ∈ {1, . . . ,N},∀ j ∈ SL (5h)
wi j ∈ {0,1}, ∀i ∈ {1, . . . ,N},∀ j ∈ SH (5i)

where Φi =
αP0
Pmax

+ β Ci

max(C) , Ωi =
αλ
Li
−

γ∑
j∈SL

lLj
and Ψi =

αλ
Li

. Let the two sets of feasible possible assignments of low
and high-loaded gNBs to VM pool i be ΞLi = {v

i
1, v

i
2, . . . , v

i
ki
}

and ΞHi = {w
i
1,w

i
2, . . . ,w

i
ki
}. Two particular variables of ΞLi

and ΞHi , vi
k
= {vi1k, v

i
2k, . . . , v

i
Sk
} and wi

k
= {wi

1k,w
i
2k, . . . ,w

i
Sk
}

are a valid solution to our transformed problem formulated in
(5a). According to Dantzig-Wolfe’s decomposition [38] that
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TABLE II: Parameters Notations

Parameter Description
α coefficient of processing power
β coefficient of virtualization cost
γ coefficient of low-loaded gNB
λ normalization coefficient
B Maximum allowed CP Load
Ci CC cost of VM i
Li Max capacity of VM i
lHj Load of j-th gNB with high-load
lLj Load of j-th gNB with low-load
ki count of feasible points
mi Delta CP load percentage per Mbps
Pmax Maximum Power consumed by VM
P0 Idle Residual Power of VM
ui Utilization of VM i
Max(c) Maximum cost of instantiating VM
N Maximum Number of VM
S Maximum Number of gNB
SH Set of high-loaded gNBs
SL Set of low-loaded gNBs

sub-divides the problem into a Master and Pricing Problem,
we define a new variable zi

k
= ( Ûzi

k
, Üzi

k
) as a two-dimensions

decision variable, that reflects the feasibility of the selected
solution. Accordingly, zi

k
= (1,1) when (vi

k
,wi

k
) is feasible and

(0,0) othwerwise. The count of feasible points is denoted by
ki . The Master Problem (MP) is a sub-version of the previous
TP, where we disregard the complicating (coupling) constraints
(5c). We express, in the following, our Master Problem (MP).

(MP) min
z

ki∑
k=1

N∑
i=1
(Φi xi

+Ωi

∑
j∈SL

vi j lLj Ûz
i
k + Ψi

∑
j∈SH

wi j lHj Üz
i
k) (6a)

s.t.
ki∑
k=1

N∑
i=1

∑
j∈SH

Üzikw
i
jk lHj =

∑
j∈SH

lHj (6b)

ki∑
k=1
Ûzik ≤ 1, ∀i ∈ {1, . . . ,N} (6c)

ki∑
k=1
Üzik ≤ 1, ∀i ∈ {1, . . . ,N} (6d)

ki∑
k=1

N∑
i=1
Ûzikvi j ≤ 1, ∀ j ∈ SL (6e)

ki∑
k=1

N∑
i=1
Üzikwi j ≤ 1, ∀ j ∈ SH (6f)

xi =
∑
j∈SL

Ûzikvi j +
∑
j∈SH

Üzikwi j, ∀i ∈ {1, . . . ,N} (6g)

Ûzik ∈ {0,1}, ∀i ∈ {1, . . . ,N}, k ∈ {1, . . . , ki} (6h)

Üzik ∈ {0,1}, ∀i ∈ {1, . . . ,N}, k ∈ {1, . . . , ki} (6i)

In the MP, zi
k

represents a feasible assignment of gNBs to
a VM i. Note that this decomposition is performed to obtain

a problem formulation that gives better bounds compared to
when the relaxation of the original formulation is solved.
However, as we get many variables, the MP cannot be solved
directly due to its big number of columns. Accordingly, We
define our Restricted Master Problem (RMP) that considers a
subset of the columns to be solved. In the RMP, the values
of variables that do not figure in the equations are padded as
zero. For the RMP, we consider z∗ as the corresponding dual
solution. We add a number of columns with positive reduced
cost that results from solving following sub-problems:

min
1≤i≤ N

{oi − z∗i} (7)

where oi = ( Ûoi, Üoi) is the optimal solution of our Pricing
Problem (PP), that is expressed as follows.

(PP) min
v,w

Φi xi +Ωi

∑
j∈SL

vij(l
L
j − v

∗
j ) + Ψi

∑
j∈SH

wi
j(l

H
j − w

∗
j )

(8a)
s.t.∑
j∈SL

vij l
L
j +

∑
j∈SH

wi
j l
H
j ≤ Li, ∀i ∈ {1, . . . ,N} (8b)

vi j ∈ {0,1}, ∀i ∈ {1, . . . ,N},∀ j ∈ {1, . . . ,S} (8c)
wi j ∈ {0,1}, ∀i ∈ {1, . . . ,N},∀ j ∈ {1, . . . ,S} (8d)

The two values v∗j and w∗j correspond to the optimal dual
price resulting from solving the RMP associated with the
partitioning constraints of low and high-loaded gNBj. Note
that, by solving PP, we get the optimal gNBs to VM pool i
associations. Solution to problem (7) would be the gNB-VM
pool mapping with minimum objective function.

B. Proposed BCP algorithm to solve the MPDC problem

To find a solution to our original problem (P), we propose
the code listed in Algorithm 1. We start by solving the
reference Linear Program with relaxed constraints to get the
ideal lower bound solution. Then, we solve the PP and RMP
and we begin the column generation process by evaluating new
nodes to enter the basis of RMP if they provide reduced value.
Then, we proceed to cut generation if some coefficients are not
integer to enforce integrality on next run. Finally, we branch
and update the list of unprocessed nodes. The processing keeps
on iterating as long as the stop criterion is not reached. Such
stop criterion could be either a time-limit or a relative gap
tolerance between the found value and lower bound value.

Note that the BCP is a combination of all of the branch-and-
cut, branch-and-price and branch-and-bound, and it is known
to be an exact algorithm providing the optimal solution, as
proved in [33]. Indeed, the first two stages (Column generation
and cuts) consist of shrinking the bounds of the interval
containing the optimal solution. The last stage of the BCP
is the Branch and Bound, and acts similarly to a brute force
search with some intelligence. Specifically, in the Branch and
Bound, we keep splitting the search space, and work on the
sub-problems. The bounding part of the algorithm stop us from
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exploring a particular branch only if it is confirmed that it does
not contain the optimal solution. Since, we do not discard any
potential global optimal, Branch and Bound will find one if it
exists.

Algorithm 1: BCP-based MPDC Listing
Data: Objective function and constraints
Result: Optimum feasible solution
Initialize Problem (P);
Solve LP with relaxed constraints;
Get Lower-Bound (LB) solution;

(A) Choose a new node;
(B) Solve Restricted Master Problem (RMP);

Evaluate a new node;
if (reduced value found) then

Add such column to the basis of RMP;
end
Solve PP to optimality;
if (solution with reduced value found) then

Add to RMP;
goto (B);

end
if (no solution with negative reduced value is found)

then
update lower bound;

end
if (∃ LB of other branch < computed LB) then

remove this node;
goto (A);

end
if (integer coefficient is not met) then

Generate cuts;
Add them to the RMP;
goto (B);

end
if (Solution is integral) then

Update upper bound;
else

branch and add children nodes to unprocessed;
end
if stop criterion is reached then

quit;
end
goto (A);

V. PERFORMANCE EVALUATION

In this section, we quantify the benefits of the proposed
BCP algorithm to solve our MPDC mapping problem, while
considering different scenarios.
We have chosen to conduct our simulations using GCP pricing
data since it offers low latency within the stipulated limit
of NGMN on the backhaul. To validate this assumption, we
spin the smallest VM instances, called (f1-Micro), to Ubuntu
16.04 on major European regions covered by GCP and tested
within each VM the ping for 100 times to other public IPs

TABLE III: Latency in milliseconds for some regions in Europe in GCP

From\To Belgium London Frankfurt Netherlands
Belgium N/A 6.1 7.8 107.7
London 6.2 N/A 13.4 10.5
Frankfurt 7.7 12.7 N/A 7.4
Netherlands 107.7 11.9 8.8 N/A

TABLE IV: Optimization strategies

Scheme Mnemonic α β γ
Power Minimization PMiS-100 1 0 0
Cost Minimization CMiS-010 0 1 0
Low-Throughput Maximization LTMaS-001 0 0 1
Equal Weight Optimization EWoS-333 1/3 1/3 1/3

of instantiated VMs. After averaging, we found that the ping
takes less than 10 ms between several point of presence in
Europe, as reported in Table III.
We considered different combinations of the parameters α,
β and γ, as summarized in Table IV. PMiS-100 initializes
α, β and γ as 1,0,0, respectively, aiming to minimize the
VM pool processing power only. CMiS-010 initializes α, β
and γ as 0,1,0, respectively, aiming to minimize the CC cost
only. LTMaS-001 initializes α, β and γ as 0,0,1, respectively,
aiminig to maximize the load resulting of handled low-loaded
gNBs. In EWoS-333, α, β and γ are initialized as 1

3 , 1
3 , 1

3 ,
respectively, aiming to meet all these three objectives together.
Finally, Static Selection Strategy (SSS) assigns one-to-one
VM to gNB mapping statically. This means that each gNB
is handled by one VM. We use different values for S and
N . Unless specified otherwise, during our simulations, we
consider a total number of gNBs (S = 40) and a total number
of VMs (N = 8) [30]. As in [32, 39], we considered time-
variant traffic profiles for both business and residential gNBs
as depicted in Fig. 2.
Business area has its busy hour around noon and is very low
starting midnight till early morning. However, residential area
has its peaks at night time, which is normal, when workers are
back to their homes.
We used commercial solver IBM ILOG CPLEX [40] to solve
the optimization problems formulated in Section IV-A.

A. Complexity Analysis

1) Comparison to Exhaustive search: We considered multi-
ple small-scale deployment scenarios according to the number
of VMs (N) and number of gNBs (S), as elaborated in Table

TABLE V: Computation time of MPDC using BCP and Exhaustive search

BCP-based MPDC Exhaustive Search MPDC
N S Ticks Seconds Ticks Seconds
8 40 44.12 0.08 534 0.83

10 45 98.68 0.24 2760.12 6.32
12 50 174.32 0.42 19507.24 47
15 75 332.51 0.68 108065.75 221
18 100 457.98 0.88 304452.61 585
20 125 571.23 0.93 405465.12 823
25 150 963.69 1.46 807615.61 2018
30 175 1256.87 1.83 914825.75 14561
35 200 1771.13 2.72 Intractable Intractable
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Fig. 3: Time Comparison for NMSP, MGAP and BCP-based MPDC

V. We measured the performance using two time units: system
time measured in seconds and time limits using “ticks” [40]
measured deterministically, with up to four threads.

As reported in Table V, we can see that BCP algorithm
reduces considerably the computation time compared to the
exhaustive search approach. Indeed, using BCP, 0.07 second
was needed to solve the gNBs-VM pool mapping problem
instead of 0.81 second, that is almost a decrease of one
order of magnitude. Starting from (N, S) = (12, 50), we
see two orders of magnitude difference in the average time
between exhaustive search and a BCP-based approach. For a
configuration of (N,S)= (35, 200), exhaustive search becomes
intractable, meanwhile computation time using BCP is still in
control, and is less than three seconds.

2) Comparison to Branch-and-Bound and Branch-and-Cut:
To assess the effectiveness of a BCP-based approach, we
compare it with two solutions: NMSP [30] using Branch-
and-Bound, and MGAP [31] using Branch-and-Cut. Note that
both NMSP and MGAP schemes were first adapted to our
context before using them in the comparison. We considered
200 scenarios with variable Li from 200 to 2190 with a step
of 10. In this scenario, in order to control simulation time, we
impose a time-limit of 120 seconds. Out of these 200 scenarios,
NMSP failed to find an optimal solution within the stipulated
time for 139 times out of 200. MGAP failed to find 141 times
and BCP-based MPDC only failed 105 times out of 200.

Fig. 3 depicts a comparison of computation time for the
three approaches (NMSP, MGAP and MPDC) for the last 40
out of the studied 200 scenarios. On the other hand, we can
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Fig. 5: Boxplot Comparison for NMSP, MGAP and MPDC

observe that even with good pricing starting point, at least
a call to the exact pricing is necessary to establish a valid
dual bound. Note that when the addition of a cut changes the
structure of the pricing problem, it makes it harder to solve
the sub-problem to optimality, and thus, increases the risk of
ending up with an intractable problem. In such case, the whole
algorithm would fail as seen in the blue peaks shown in this
figure.

Fig. 4 depicts the Cumulative Distribution Function (CDF)
of these three approaches to find a solution before the stop
criterion. We can see that MGAP and BCP-based MPDC trends
are very close. However, MPDC-based approach outperforms
MGAP in a lot of scenarios thanks to the usage of cuts on top
of column generation and branch-and-bound.
We note that the cuts are dynamically generated by CPLEX.
All of the following cuts (Clique cuts, Cover cuts, Flow cuts,
Gomory fractional cuts, Implied bound cuts, Mixed integer
rounding cuts, and Zero-half cuts) are made available within
the solver library and are used during the runtime.

Although, MGAP and BCP-based MPDC are likely to find
an optimal solution, we notice that there are some outliers
(peaks) where both failed in finding an optimal solution, as
depicted in Fig. 5. Such failures are due to the impossibility
of solution existence stipulated by the constraints according to
the value of Li .

Table VI reports the average time in ticks and seconds for
all of the non-failing scenarios. From that table, we can clearly
see that MGAP and BCP-based MPDC are very close, both
outperforming the NMSP scheme.
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TABLE VI: Computation time of NMSP, MGAP and BCP-based MPDC

NMSP (BB) [30] MGAP (BC) [31] MPDC (BCP)
ticks seconds ticks seconds ticks seconds

418.03 0.69 117.963 0.149 97.45 0.143

TABLE VII: Simulation parameters

Parameter Value
Number of VMs (N) 8
Total Number of gNBs (S) [30] 40
Number of residential gNBs 4
Idle mode Power (P0) [42] 60 watts
Maximum Power (P max) [42] 275 watts
λ 1
CP Load B (%) [42] 75
VM capacity Li (Mbps) 200, 210, .., 2190
Fixed capacity L0 (Mbps) [43] 225
Cost of 4 VM types ($/hour) [13] [0.0475 0.0592 0.03545 0.1575]

In what follows, we consider a fixed value of Li that we denote
as L0 to consider the case of homogeneous VMs (Containers
in this case) with constant capacity to be in-line with the
microservice architecture best practices [41]. We present the
performance comparison of the aforementioned five strategies
(i.e., PMiS-100, CMiS-010, LTMaS-001, EWoS-333, and SSS)
using different performance metrics:
• VM processing power
• Cloud Computing (CC) cost
• Number of active gNBs and VM pool
• Percentage of handled low-loaded gNBs
• Average number of active VMs
• And average Central Processing (CP) load.

The simulation parameters are reported in Table VII.

B. Total VM pool processing power

Fig. 6 compares the hourly VM pool processing power.
All trends are almost inline with the traffic trend of business
area gNBs. Obviously, PMiS-100 provides the least power
consumption as this is its emphasis. Interestingly, same trend
goes for the CMiS-010, where due to power minimization, less
VMs are activated and consequently less CC costs are incurred.
On the other hand, the SSS scheme is the worst performing
strategy as it statically allocates the VMs regardless of the
dynamics of the traffic and does not leverage the advantages
of statistical multiplexing when pooling resources. EWoS-333
is almost following the same trend, however, it consumes more
power at certain peak hours, namely starting from the period
16:00 till midnight. LTMaS-001 has the second highest power
consumption as in this strategy, more traffic originated from
low-loaded gNBs is handled.

C. Cloud Computing (CC) cost

We present in Fig. 7 the hourly CC cost resulting from the
activation of the VM implementing the 5GC service. Apart
from the SSS scheme, where the CC cost is flat due to
always-on state of VMs, LTMaS-001 is the second top costing
strategy although it overlaps with PMiS-100 in early morning
before 9:00 and late in the evening starting 21:00. This can
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Fig. 6: Total VM Power (w) versus 24-hour time window

TABLE VIII: Daily, Monthly and Yearly Savings ($) for Small Network

Average saving PMiS 100 CMiS 010 LTMaS 001 EWoS 333
Daily 10.06 12.8 8.28 12.67
Monthly 301.94 383.94 248.27 380.02
Yearly 3623.31 4607.24 2979.29 4560.28

be explained by the fact that this approach handles more cells
and thus increases the number of VMs to provide baseband
resources for it and consequently increases the CC cost. EWoS-
333 and CMiS-010 approaches are the least costing strategies
despite the fact that during some hours the EWoS-333 scheme
costs a little bit more than CMiS-010, precisely at hours 16:00,
17:00 and 20:00.

This is clearly shown in Fig. 8, where the maximum saving
are insured by CMiS-010 followed by EWoS-333 with minor
decreases at those hours.

Table VIII quantifies the savings with respect to SSS. Daily
savings are computed as the difference between CC costs of
each strategy and SSS. Aggregation to month and year is
done by multiplying by 30 days per month and 12 months
per year, respectively. From this table, we can see that CMiS-
010 is the top saver followed by EWoS-333 for the small-
scale deployment scenario (i.e., using 40 gNBs and 8 VMs).
This means that EWoS-333 achieves more than 95% of the
ultimate maximum possible savings resulting from a pure cost
minimization strategy. Using EWoS-333, for such a small scale
simulated network, an MNO can save 4560$ per year. Recall
that this cost is quantified using the GCP pricing data [13].

D. Number of Active gNBs and Active VMs

Fig. 9 shows the number of active gNBs per hour during
the day, according to the traffic profiles of both residential and
business areas. We can observe that LTMaS-001 has all the
gNBs active since it tends to maximize low-loaded gNBs. This
is similar to SSS where all the gNBs are kept active. These two
strategies have the biggest number of active gNBs. PMiS-100
has the least number of active gNBs since it aims to reduce
the power consumption. However, we note that this number
increases hourly during the busy period as each additionally
served gNB from low-loaded ones increases the power. As for
CMiS-010, as long as involved VMs have the needed baseband
processing capacity to handle associated gNBs, these latters are
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kept active. This explains why its trend is higher than PMiS-
100. EWoS-333, on the other hand, has less active gNBs than
CMiS-010 before 10:00 and after 20:00 as it has to balance
all the three different objectives.

Fig. 10 further investigates how VMs are activated during
the day according to the studied traffic profiles. We can see
that SSS keeps the totality of VMs active all the time which
advocates the need of dynamicity for savings. LTMaS-001 is
the second worst performing strategy as by maximizing the
load of gNBs, the number of active VMs is also maximized.
CMiS-010, EWoS-333 and PMiS-100 are closely performing.
However, EWoS-333 tends to increase the number of active
VMs at some hours, namely at 16:00 and 17:00 in order to
meet throughput maximization objective.

E. Average Central Processing (CP) load per VM

In order to assess how the CP load is affected by dynami-
cally mapping gNBs to VMs, we plot in Fig. 11 the average CP
load per VM during the 24-hour time window. Interestingly,
we can see that LTMaS-001 outperforms all the remaining
schemes except for the period between 21:00 and 24:00, where
the traffic resulting from business area is low. This is related to
the fact that this approach aims to maximize the traffic load of
low-loaded gNBs by increasing the number of VMs associated
to those gNBs, which decreases the average CP load per VM.
On one hand, PMiS-100 has the highest CP load per VM
during the periods 8:00-10:00 and 14:00-20:00, since it aims to
minimize the total processing power, which allows to minimize
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the number of instantiated VMs, increasing thus the average
CP load per VM. However, the period from 11:00 to 14:00
is interesting; although business area traffic reaches its peak
during this period, PMiS-100 has an average CP load lower
than the three other strategies (i.e., CMiS-010, EWoS-333, and
SSS). The reason is that the traffic of business area in this
period is fluctuating in teeth saw pattern unlike the subsequent
period from 14:00 to 17:00 where it has monotonous rising
trend. On the other hand, SSS floats in between. CMiS-010
trails a little below PMiS-100 due to a higher number of served
low-loaded gNBs whenever there is capacity in VMs.

F. Low-loaded gNBs silos and Average Number of VMs

Finally, Figs. 12 and 13 depict the percentage of low-loaded
gNBs silos and average number of instantiated VMs according
to each of our studied strategies. Recall first, that grouping
the number of gNBs with low-load is an intuitive option to
avoid investing power in a gNB rendering telecom services
but having no users consuming them, which is a waste of
resources. By grouping these gNBs, the service offering is
not disrupted but the power consumption is decreased. In this
simulation, we have varied the number of residential gNBs
using a step of 10. As explained in the previous section, we
can see that PMiS-100 has the least number of silo low-loaded
gNBs, followed by EWoS-333 and then CMiS-010. The two
strategies having biggest percentage of silo gNBs staying at
100% are LTMaS-001 and SSS as these two strategies aim to
maximize the number of active gNBs at all time. Regarding
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the average number of VMs to serve these gNBs, we can see,
from Fig. 13 that the PMiS-100 and CMiS-010 are very close
on this front followed by EWoS-333. LTMaS-001 and SSS
are the worst two strategies as expected due to the maximized
number of gNBs resulting from throughput maximization.

G. Final Remarks

To conclude our analysis of all the performance metrics, we
report in Table IX the average relative saving of each scheme
with respect to SSS. We can see that EWoS-333 provides a
good trade-off as it is in between the PMIS-100 and CMIS-
010 with 33% decrease of active gNBs. Interestingly, it is very
close to PMIS-100 and CMIS-010 in terms of decrease of
active VMs. This comes with a slight increase in CP load
of 22.3% which is acceptable as long as it is less than the
100% maximum load of a VM. We can also observe that, by
focusing only on the power minimization (i.e., PMIS-100), we
can achieve high savings in term of number of active gNBs
and active VMs, and a reasonable decrease in the CP load
compared to the SSS scheme, with the expense of having high
CP load compared to the other optimization strategies.

TABLE IX: Average saving (%) with respect to SSS

PMIS-100 CMIS-010 LTMaS-001 EWoS-333
# active gNBs 54.06 16.67 0 33.02
# active VMs 78.13 78.13 60.94 76.56
CP Load 14.17 2.84 4.59 (-)22.3
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Based on the evaluation of all aforementioned performance
metrics, we can conclude that an MNO can target multiple
objectives at the same time and achieve more than 95% of
a single cost minimization strategy by an adequate choice
of parameters. We have seen that the EWoS-333 achieves
thousands of $ yearly savings for a small-scale network. In
addition, it performs very close to pure power minimization or
cost minimization strategies in terms of decreasing the number
of active VMs despite some acceptable increase of the CP
load. These results provide guidelines that can be used by
operators to decide the best optimization strategy according to
their needs: processing power minimization, Cloud Computing
cost minimization, network load maximization or all.

VI. CONCLUSION

In this paper, we have addressed the problem of mapping
gNBs to VMs for Software-Defined Data Centers in 5G.
We have formulated the problem as an ILP with a generic
weighted objective function composed of three homogenized
terms: processing power minimization, virtualization cost min-
imization, and low-loaded gNBs traffic load maximization.
We then proposed a framework to solve this problem using
Branch, Cut and Price (BCP) algorithm. We evaluated and
analyzed different strategies in terms of each of the targeted
objectives. Such strategies have shown different facets of their
pros/cons so that MNOs could select the best strategy suiting
their needs. Surprisingly, we found out that the EWoS-333
strategy, which gives equal weights for the three objectives,
performs very close to the pure cost minimization approach
and outperforms other strategies thanks to the well-balanced
competing objectives. Particularly, in our setup, we found out
that EWoS-333 achieves more than 95% of the ultimate maxi-
mum possible savings resulting from a pure cost minimization
strategy at a price of acceptable slight Central Processing (CP)
load increase. Also, results show that proposed BCP-based
MPDC performs extremely well in term of computation time
compared to naive exhaustive search and better than alternative
strategies using Branch-and-Bound and Branch-and-Cut.
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