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Abstract

This paper analyzes the dynamic behavior of a randomly-heterogeneous continuum

model of a ballasted railway track through the numerical construction of dispersion

curves along the axis of the track. At intermediate frequencies (50-100 Hz), the dis-

persion curves display a strong decrease of the group velocity. At higher frequencies

(above 100 Hz), the wave are strongly localized and cannot propagate along the track.

This behavior is coherent with experimental observations reported in the literature on

ballasted railway tracks and other granular media. Additional simulations are per-

formed to prove that the localization is not a consequence of the geometry of the track

or the impedance mismatch between the ballast and the underlying soil, but is indeed

Anderson localization due to the heterogeneity of the ballast.

Keywords: Ballasted railway tracks, Granular media, Heterogeneous media, Random

media, Anderson localization
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1. Introduction

The ballast is the uppermost layer of the railway track superstructure, on which the

sleepers stand. It is made of coarse crushed stones, whose size distribution lies in the

range 25− 50 mm. This ballast layer plays an important role in the transmission and
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repartition of static and dynamic train loads, in the absorption of mechanical and acous-5

tical vibrations, and in the drainage of rain water [1]. The noise of the passage of a train

and its vibration impact on the environment can be important for all types of trains:

heavy freight coaches, whose low frequency impact in the soil carries far away; high-

speed trains, that generate high amplitude excitations; and even tramways (although

more rarely on ballasted tracks), which stand very close to surrounding buildings. This10

vibration impact may sometimes be strong enough to force the train companies to lo-

cally reduce the velocity of the passing trains or force the companies change the track.

The modeling of the ballast aims at improving the understanding of the mechanical

behavior of the track system and providing clues to mitigate this issue [2, 3]. It repre-

sents a challenging task because granular materials exhibit various distinct behaviors15

(such as transition between fluid-like and solid-like behavior) depending on the applied

stresses and strains.

Classical numerical models of granular media include discrete models and contin-

uum homogeneous models. Unfortunately, they are both inappropriate for dynamic

analyses of ballasted railway tracks. Indeed, the latter produce vibration levels away20

from the track that are much larger than experimentally measured, while the former

are too numerically expensive for such applications. Recently, a randomly-fluctuating

heterogeneous continuum model of the ballast was proposed [4]. This model is based

on continuum mechanics, so that it is parameterized with Lamé parameters and den-

sity, which are constant within the domain in classical models. In the proposed model,25

however, they fluctuate at the scale of the grains, which allows to recover the strong

heterogeneity of the stress field, characteristic of granular media and very influential on

its dynamic behavior [5, 4]. Finally, the fluctuations of the mechanical parameters are

modeled as random fields and parameterized with statistical parameters (average, vari-

ance, correlation length). More details on that model will be recalled in Section 3.1.30

The model was shown to be coherent with previously unexplained experimental ob-

servations, and to reproduce stress distributions obtained by discrete simulation of as-

semblies of grains. Being continuum-mechanics based, it is amenable to very efficient

numerical approximation of large scale problems involving ballasted railway tracks.

The main objective of this paper is to analyze precisely the dynamical behavior of this35
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randomly fluctuating model and confirm its validity for ballasted railway tracks. This

analysis will be performed through the numerical construction of dispersion curves for

that model of the ballast.

Dispersion curves are among the most classical tools used in the analysis of wave

propagation. These curves link the values of pairs of wave numbers and frequencies40

(k,ω) for which a plane wave can actually propagate in the medium. These simple

2D diagrams allow for a quick understanding of the properties of the wave propaga-

tion medium, independently of the source that may excite it. For a given excitation

frequency, the curves chart which waves will propagate in the medium considered, and

with what wave number. They also allow to understand the way a given wave will45

evolve with frequency, the so-called dispersion characteristics of that wave. In some

rare cases, the dispersion curves can be constructed analytically. For instance, in lin-

ear elastic isotropic infinite media, the dispersion curves are two straight lines, for the

pressure and shear waves, respectively. For half-spaces and thin media, respectively,

the dispersion curves for Rayleigh waves [6] and Lamb waves [7] can likewise be50

constructed analytically. In three dimensions, the wave number is a vector, with each

coordinate describing propagation along a given direction of space, and the dispersion

curve is actually a volume in a 4D space. To simplify the presentation, this paper

concentrates on the construction of the dispersion relation for wave numbers along the

axis of the track, hence exposing classical plot, with frequency on one axis, and a scalar55

wave number along the other axis.

In granular media, among which the ballast, wave propagation phenomena are

more difficult to analyze [8, 9]. For instance, dispersion curves can be constructed

experimentally for waves at the surface of unconsolidated granular media in dry condi-

tion [10, 11] and present a very complex behavior. Waves in granular media are carried60

by complex force chains, which create a heterogeneous and non-isotropic behavior,

as observed with photo-elastic imaging [12, 13]. Also, the contact chains are easily

broken, deformed and rearranged [14], creating a nonlinear behavior of the medium.

Even in the purely linear case, granular media are also dispersive, which is difficult to

capture through classical continuum models [15]. Through the construction of numeri-65

cal dispersion curves for the randomly-fluctuating continuum model of the ballast, this
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paper will reproduce some of the features of these experimental dispersion curves.

After the presentation of a general methodology for the numerical construction of

dispersion curves in Section 2, this construction will be the focus of Section 3. There, it

will be shown that high-frequency waves (above 100 Hz) cannot propagate in this bal-70

lasted railway track. This will be analyzed as Anderson localization [16, 17], which is

a very specific physical phenomenon that appears in disordered media, such as granular

packings. When localized, the waves cannot propagate over long distances because of

the heterogeneity of the parameters and remain in the vicinity of the source. Although

more classical in quantum systems, experimental evidence of Anderson localization75

exist for classical waves [18, 19, 20], and in particular in granular media [21]. To make

sure that the localization observed in Section 3 is not a simple wave guide effect, or a

consequence of the impedance mismatch between the ballasted railway track and the

underlying soil, additional simulations will be performed in Section 4.

2. Construction of the dispersion curve using numerical solutions in time-space80

In this section, we present a methodology to obtain dispersion curves using numer-

ical solutions of the wave equation in space-time.

2.1. Definition of dispersion curves

Let us consider the equilibrium equation, neglecting the influence of the gravity

forces, states:

∇ ·σ + f = ρü (1)

where u(x, t) is the displacement field, σ represents the stress tensor, ε = (∇u +

∇uT )/2 is the strain, f represents external volume forces, and ∇ is the differential

operator. We assume that the material is heterogeneous, linear, and isotropic, so that

σ = λ (x)TrεI+ 2µ(x)ε with λ (x) and µ(x) the Lamé coefficients, and I the identity

second-order tensor. The density is denoted ρ(x). The parameters are related to the

wave velocities through Vp =
√

(λ +2µ)/ρ and Vs =
√

µ/ρ . This problem is closed
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with boundary and initial conditions. For instance, in an infinite medium, the Sommer-

feld radiation conditions state:

lim
r→∞

r
(

∂u
∂ r
− iku

)
= 0, (2)

where r = ‖x‖.

Assuming that the displacement field in Eq. (1) is expressed as a monochromatic

plane wave: u = ũexp i(k · x−ωt), where ω is the angular frequency, k the wave

number and ũ the amplitude vector, we obtain in the case with no volume force:

(Γ(k)−ρω
2I)ũ = 0 (3)

where Γ(k) = (λ +µ)k⊗k− i(∇λ⊗k+k⊗∇µ)+(µ|k|2− ik ·∇µ) is the Christoffel85

tensor. The dispersion equations are defined as det(Γ(k)−ρω2I) = 0 and indicate the

(k,ω) pairs that allow for the existence of non-vanishing plane wave solutions of the

wave equation. The values of k can be real, complex or imaginary. With the convention

used here (as in [22]), the real values correspond to propagative modes, pure imaginary

values refer to evanescent modes, and complex values correspond to propagative modes90

with attenuation.

For an elastic, isotropic and 3-D homogeneous medium, the propagative solutions

are such that ω = Vp|k| or ω = Vs|k|. In the latter case, two different polarizations

(direction of vector ũ) exist. For most other media, dispersion relations have to be

computed numerically [23, 24].95

2.2. General methodology to obtain dispersion curves using time-space data

A first approach consists in diagonalizing directly the Christoffel tensor, when

available. In this paper, because the problem is too large, we rather use a methodology

based on a 2D Fourier transform of numerical approximations of Eq. (1) to obtain an

approximation of the pairs (k,ω) that satisfy the dispersion relation [25, 10, 26]. The

general methodology to construct the dispersion relation consists in computing a dis-

placement field, u(x, t) and performing Fourier transforms in both the time and space

domains to obtain a 2D-variate function Hk̂(k,ω) in a specific direction k̂ = k/k with

k = ‖k‖:

Hk̂(k,ω) =
∫ +∞

−∞

∫ +∞

−∞

u(x, t)e−i(k·x+ωt)dxkdt. (4)
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Note that xk = x · k̂ represents the coordinate of the space position along the selected

direction. The locations in (k,ω) where the amplitude ‖Hk̂(k,ω)‖ is large match the

dispersion equation [25]. Note that advantage is taken of the property of the method to

resolve multimodal signals (more than one wave mode in the same time signal).100

In order to compute an approximation of Eq. (4), we use u(x, t) estimated in po-

sitions {xm}1≤m≤M and aligned along direction k̂, and record the quantity of interest

in those sensors at different time steps {tn}1≤n≤N . Assuming that the sensors are uni-

formly distributed along a segment of length L, and that the time instants are uniformly

distributed in an interval of length T , we obtain the following map:

Hpq =

∣∣∣∣∣ M

∑
m=1

N

∑
n=1

w(xm · k̂, tn)u(xm, tn)e−2πi( pm
M + qn

N )

∣∣∣∣∣= ∣∣DFT2D[w(xm · k̂, tn)u(xm, tn)]
∣∣

(5)

where p = kL is the normalized wave-number, q = f T is the normalized frequency and

DFT2D represents the 2D Discrete Fourier Transform. To avoid the presence of side

lobes and reduce leakage, a bi-dimensional Tukey (tapered cosine) window function

w(xk, t) was applied [27, 28].

In many examples described in this paper, the maps cited above are computed as105

averages of such functions using P lines of sensors, and NMC realizations of the random

medium (to be discussed later). In that case, the formulas above are computed for

each line and each realization independently, and the average is computed dividing by

P×NMC. Also note that the source used for the construction of the maps has a very

flat spectrum so the solution u(x, t) can be used directly. However, all results will be110

de-convolved (actually normalized by the source in the Fourier space of frequencies)

before computing the maps.

2.3. Spectral Element solver

In this paper, Eq. (1) is approximated with the Spectral Element Method (SEM).

The SEM is a high-order Finite Element Method that uses Gauss-Lobatto-Legendre

(GLL) quadrature rule and Lagrange polynomials based on the nodes of that same

quadrature. This ensures that the mass matrix is diagonal and allows to use explicit

time integration schemes and very efficient parallelization (for a complete description
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of the method, see for instance [29], as well as the original papers [30, 31]). The space

discretization of the variational form of the wave propagation Eq. (1) gives:

MV̇ = Fext−Fint(U,V) (6)

where U and V are vectors containing the components of the displacement and velocity

at the nodes, M is the (diagonal) mass matrix, and the vectors Fext and Fint are vectors

of external loads and internal forces. Using an explicit second-order finite-difference

scheme in time leads to:

1
∆t

M [Vn+1−Vn] = Fext
n+1/2−Fint(Un+1/2,Vn+1/2), (7)

Un+1 = Un +
1

2∆t
[Vn +Vn+1] , (8)

An+1 =
1
∆t

[Vn+1−Vn] , (9)

where Un+1/2 = (Un+1 +Un)/2 and Fext
n+1/2 = (Fext

n+1 +Fext
n )/2. Even though the sta-

bility condition requires to use very small time steps [29, 32, 33], the construction of115

the solution at each time step is very cheap because the inversion of the mass ma-

trix is instantaneous. Our implementation uses hexahedral non-structured meshes and

Perfectly Matched Layers (PML) to account for infinite domains. PMLs are fictitious

layers of materials added at the outer edges of the computational domain to absorb

outgoing waves with as little reflection as possible at the interface [34, 35, 36, 37]. All120

simulations presented in this paper ran at Moulon Mesocentre facility in France, jointly

managed by CentraleSupélec and ENS Paris-Saclay. The cluster uses Intel Xeon pro-

cessors E5-2670 v3 @ 2.30 GHz (Haswell).

2.4. Verification of the methodology in the infinite isotropic case

This last part of the section is devoted to a verification of the methodology intro-125

duced in Section 2.2 in the isotropic case, for which the dispersion curve is known.

Indeed, as indicated in Section 2.1, the dispersion curve in infinite isotropic media is

composed of two lines, with equations ω = Vp|k| and ω = Vs|k|. This last section
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(a) (b)

Figure 1: Time history of the amplitude of the point source (a) and frequency spectrum (b) for the verification

example in Section 2.4.

therefore aims at showing that the proposed numerical methodology indeed reveals

these two lines in the isotropic case.130

An isotropic solid is considered, whose mechanical properties are Vp = 200 m/s,

Vs = 100 m/s, and ρ = 1450 kg/m3. The numerical model is a cube of side L = 5λmax =

50 m, where λmax = 10 m is approximately the longest wavelength in the model (see

below the loading frequency range). PMLs are positioned on all sides in order to mimic

an infinite medium. A point load is positioned at [1,1,1]λmax, with polarization along

the x direction. To create a source with almost flat spectrum, the load amplitude is

given by an Ormsby function:

A(t) =
[
(π f4 sinc(π f4t))2

π( f4− f3)
− (π f3 sinc(π f3t))2

π( f4− f3)

]
−[

(π f2 sinc(π f2t))2

π( f2− f1)
− (π f1 sinc(π f1t))2

π( f2− f1)

]
, (10)

with f1 = 20 Hz, f2 = 25 Hz, f3 = 160 Hz, and f4 = 165 Hz. This function displays a

quasi-plane spectrum between frequencies f2 and f3, with a low-cut frequency f1 and

a high-cut frequency f4. Fig. 1 displays the time history and frequency spectrum of the

loading.

The mesh is composed of hexahedral elements of edge λmin/2 = 0.3125 m. Each135

element uses 4th-order Lagrange polynomials in each direction, for a total of 375 de-
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Figure 2: General setting of the verification example in Sec. 2.4: Monitors positions (5 blue lines along each

direction of space), source position (red dot). The exterior cube represents the numerical domain without the

PMLs.

grees of freedom per element and 4’096’000 elements in the mesh. On all sides, 5

layers of PMLs are added, with a total thickness 0.255λmax. The damping evolution in

the PMLs is parameterized by a polynomial degree p = 3 and amplitude α = 9.87 [38].

The model was run on 144 processors, and required around 140 h of CPU time.140

The methodology proposed in Sec. 2.2 was then applied. In order to evaluate

Eq. (5), sensors are placed along different lines and record the displacement field.

Three groups of 5 lines of sensors were placed aligned with the cube axes. Each line

has a total length of 3.5λmax, with equally spaced sensor by λmin/10. Finally, the dis-

tance between two parallel lines is λmin/2. The general setting of sensors is represented145

on Fig. 2.

Fig. 3 presents the time history in the numerical domain. As the PML domain

is fictitious, its local solution is not relevant to the mechanical problem and is not

displayed in the images. There is no apparent reflection coming out of the PML, which

indicates that it is accurately playing its role of absorbing outgoing waves. We can150

clearly see the P and S waves with different velocities. The P wave, faster then the S

wave, presents large amplitudes along the x-axis and vanishing amplitude along the y

and z axes. This is due to the polarization of the source along the x-axis. As the P-wave

is a pressure wave, it is indeed strongly excited by the source. On the other hand, such

a source does not generate pressure perpendicular to its polarization. For the S-wave,155
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(a) (b) (c)

(d) (e) (f)

Figure 3: Normalized displacement fields in an infinite elastic isotropic homogeneous model at times: (a) t =

0.000 s; (b) t = 0.141 s; (c) t = 0.282 s; (d) t = 0.423 s; (e) t = 0.564 s; (f) t = 0.705 s.

the opposite is logically observed, with large amplitudes along the y and z axes and

vanishing amplitude along the x-axis. The displacement field used in Fig. 3 is obtained

by normalizing with the maximum displacement at 0.25 s.

Fig. 4 displays the dispersion curves obtained through the methodology described

in Section 2.2 using displacements obtained with the above setting. The colors indi-160

cate the values of Hpq in decibels. There is clearly an excellent agreement between the

values obtained using the proposed methodology and the analytical values of the dis-

persion curves. Because of the polarization of the source, the P-wave dispersion curve

is only observed in the sensors aligned along the x-axis, while the S-wave dispersion

curves are observed in the other two directions.165

3. Dynamic behavior of a ballasted railway track

In this section, we now present the construction of the dispersion curves for a bal-

lasted railway track. First, the setup of the model is described. Then, we provide some
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(a) (b) (c)

Figure 4: Dispersion curves for an infinite homogeneous media along axes x (figure a), y (figure b) and z

(figure c). The color scale is the amplitude of Hpq evaluated in Eq. (5), limited to values above −25 dB. The

dotted black line is the analytical solution for the pressure waves dispersion relation. The dashed black line

is the analytical solution for the shear wave.

snapshots of the solution in time and analyze them. Finally, the construction of the

dispersion curve itself is presented and discussed.170

3.1. Randomly heterogeneous continuum model of a ballasted railway track

The ballasted railway track is modeled over a length of 84.375 m as an elastic half-

space topped by a wedge-shaped structure, whose geometry is invariant along one di-

rection (see Fig. 5). The structure represents the ballast while the elastic half-space rep-

resents the soil that supports it. The soil is modeled as a bounded box with dimensions175

3×8×84.375 m3 and with the following properties: Vs = 180 m/s, Vp = 1100 m/s, and

ρ = 1900 kg/m3 (see further down for the description of the ballast). The box of soil is

surrounded on five sides by a layer of PMLs, that allow the wave to exit the box with

little reflection, mimicking an infinite medium. The total thickness of the PML layer is

2.45 m, and the damping evolution in the PMLs is parameterized by a polynomial de-180

gree p = 3 and amplitude α = 9.87. The mesh, shown as insert in Fig. 5, is discretized

by 2.4 millions of non-structured elements, with 375 degrees of freedoms (DOFs) in

each element, which amounts to a total of ≈ 160 millions DOFs in the entire model.

Note that this model was already used in [39], although with a different mesh.

A series of point forces polarized in the [1;1;1] direction, are positioned at the top of185

the ballast layer, 9 m away from the border of the model in a non-symmetric arrange-
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Figure 5: Geometry, loading (black arrows), and sensors (lines of red dots) for the model. The insert displays

the mesh. The ballast appears in yellow, the soil in blue, and the PML region in green.

ment in the transversal section. These sources are expected to excite both shear and

longitudinal waves in the model. Their amplitudes are given by an Ormsby function

with a plane spectrum between 10 and 400 Hz ( f1 = 8 Hz, f2 = 10 Hz, f3 = 400 Hz,

and f4 = 410 Hz in Eq. (10)). The displacement is recorded in sensors located along190

six parallel lines at the top of the ballast layer and aligned with the axis of the track

(see Fig. 5). The lines are 72 meters-long and the sensors are separated by 0.0732 m

≈ λmin/10. This sampling is sufficient to be able to compute the Fourier transform in

space accurately.

The ballast is modeled as a continuum-based randomly-fluctuating elastic medium,195

as introduced in [4]. Following the polar decomposition of the strain-stress tensor [40]),

the density, ρ , and the shear, µ , and bulk moduli, κ , are taken as fully correlated

stationary random fields indexed in space. The first-order marginal density for each

of these random fields is taken as gamma law with averages ρ = 1570 kg/m3, κ =

179.60 MN/m2 and µ = 35.32 MN/m2, and standard deviations σρ = 3925 kg/m3,200

σκ = 449.02 MN/m2 and σµ = 88.31 MN/m2. This corresponds to a ballast layer

with (arithmetic) average velocities Vs = 150 m/s and Vp = 380 m/s [39]. In such het-

erogeneous setting, the apparent velocities of the homogenized waves are expected to

12



Figure 6: One realization of the density field in a ballasted railway track (PML not represented).

be close to the harmonic averages, which are here approximately V p = 280 m/s and

V s = 110 m/s for the pressure and shear waves, respectively. Note that the standard de-205

viations are equal to 2.5 times the averages, so that the fluctuations are very large. The

correlation model [41, 42, 43] corresponds to that of a dense packing of impenetrable

spheres of uniform diameter d = 3.9 cm in void, with volume ratio φ = 0.583. More

details, including identification and comparison with simulations with the discrete el-

ement method, can be found in [4]. Realizations of the random fields can be obtained210

using a spectral representation method, specifically tailored for large scale parallel ap-

plications [44], and made available as an open-source software [45]. One sample of the

random field is provided in Fig. 6.

3.2. Analysis of the wave patterns

Fig. 7 displays snapshots at different times of the normalized displacement field215

in the ballasted railway track, with a normalization similar to that of Fig. 3, that is to

say a normalization by the maximum displacement at time t = 0.25 s. The first obser-

vation is that a large part of the energy seems to remain localized within the vicinity

of the source. This is not what is expected from a simulation in a homogeneous do-

main [46, 4], where waves should propagate non-dispersively with the velocity of a220

Rayleigh wave. In a setting including a homogeneous ballast layer, the situation would

be more complex, and probably involve dispersive waves in the waveguide [46]. How-
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ever, the fact that part of the energy remains localized close to the source is a specific

feature of the heterogeneous model of the ballast. On the snapshots at longer times (at

t = 0.585 s for instance), there seems to be a separation between waves with longer225

wavelengths that actually propagate away from the source, and shorter wavelengths

that remain localized around the source. This effect therefore seems to be dependent

on frequency. A possible explanation for this phenomenon, that seems to be stationary

in time, and strongly selective in frequency, is Anderson localization [16, 5, 47]. First

discovered in 1958 by P. W. Anderson [16] for the Schrödinger equation, it explains230

why pure metals are conductors while strongly heterogeneous metals – that is to say

metals with high density of defects in the cristalline structure – are insulators. Later

on, it was acknowledged as ubiquitous to all classical wave equations (acoustic, elec-

tromagnetic, elastic) [17], and explains that energy cannot propagate away from the

source in strongly heterogeneous non-periodic media. Anderson received the Nobel235

Prize in physics in 1977 for that discovery. The absence of propagative features can

be observed in the dispersion relation through the absence of (ω,k) pairs in the con-

sidered frequency range, that is to say a disappearance of the dispersion curve. Such a

disappearance will be discussed in the next section.

3.3. Construction of the dispersion curves240

We now turn to the construction of the dispersion curves for our model, using the

methodology presented in Sec. 2.2 and based on displacement field acquired along the

sensors lines indicated in Fig. 5. The maps Hpq are obtained for each of the 6 lines

independently and for 5 different random samples of the ballast layer. The final map is

obtained as an average over these 30 individual maps and is plotted in Fig. 8.245

In this figure, three main frequency regimes are identified. Above about 100 Hz, the

figure appears blank, which means that no energy propagates. Of course, this does not

mean that no energy exists in that frequency range, since the source contains frequen-

cies up to 400 Hz. It just does not propagate along the axis of the track (the direction

that is being monitored here), which is consistent with the observations at short wave-250

lengths made on Fig. 7 in the previous section. Energy in that high-frequency range

actually remains mostly localized in the vicinity of the source, as predicted by Ander-
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(a) (b) (c)

(d) (e) (f)

Figure 7: Normalized displacement fields in the ballasted railway track at times: (a) t = 0.135 s; (b) t =

0.225 s; (c) t = 0.315 s; (d) t = 0.405 s; (e) t = 0.495 s; (f) t = 0.585 s.

Figure 8: Dispersion curve for a heterogeneous ballast resting on a homogeneous soil. Dispersion relations

for the homogenized ballast shear wave (black solid line) and soil shear wave (black dashed line) are also

indicated. The color scale is the amplitude of the average Hpq in Eq. (5), averaged over 6 sensor lines and 5

random realizations of the ballast layer. The color scale is limited at −40dB.
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(a) (b) (c) (d)

Figure 9: Dispersion curves for individual maps: for two different lines in the same realization of the ballast

layer (no average, figures (a) and (b)), and for two different realizations of the ballast layer (averaged over

the 6 lines for that realization, figures (c) and (d)). Dispersion relations for the homogenized ballast shear

wave (black solid line) and soil shear wave (black dashed line) are also indicated. The color scale is limited

at −40dB.

.

son localization. Below about 50 Hz, there seems to be mainly an S-wave (or more

probably a Rayleigh wave, whose velocity is slightly smaller) propagating in the soil.

At such long wavelengths (compared to the thickness of the ballast), the wave does not255

really interact with the ballast layer and propagates as if in a homogeneous soil without

ballast. Between about 50 Hz and 100 Hz, the soil S/Rayleigh wave starts interacting

with the ballast, and its apparent velocity is strongly reduced, approximating that of

the ballast layer. A P wave also seems to appear in the ballast (faster than in the soil),

bending rapidly with increasing frequency. This general behavior is consistent with260

experimental observations in unconsolidated granular packings [10].

To get an idea of the fluctuations among the different independent maps (before

averaging), the maps corresponding to two different lines for the first realization of the

random ballast are plotted in Fig. 9, along with the maps corresponding to the average

over the 6 lines for two different random realizations of the ballast layer. The few maps265

presented here are representative of the entire set. Although the average on the lines

and the realizations reduces noise, the main features discussed above are present in each

and every individual curve. These features are therefore not a chance effect obtained

from averaging but really a characteristic behavior of ballasted railway tracks.

Figs. 8 and 9 clearly state that no wave can propagate along the direction of the270
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track with frequency above 100 Hz (wave number above 1 m−1), and that waves with

frequency between 50 Hz and 100 Hz propagate more slowly than wave below 50 Hz.

This of course reads more precisely in the dispersion curves but was already qualita-

tively seen at later times on Fig. 7. What cannot be read on the dispersion curves is what

happens to the energy of these higher frequency waves since there is no damping in this275

model. Observation of Fig. 7 indicates that at least part of this energy remains in the

vicinity of the source. Although it is widely known that high frequency waves get dis-

sipated within the ballast, the most novel finding here is a proposal for the mechanism

that leads to the trapping of high frequency waves in that ballast: Anderson localiza-

tion. Note that Anderson localization does not involve any non-linear mechanism, so280

that it is advocated that energy becomes trapped in the ballast layer by heterogeneity,

before it is eventually dissipated (in particular by friction between grains, which is not

modeled here).

4. Strong localization analysis

In the previous section, appearance of Anderson localization in ballasted railway285

tracks was hinted at, with its classical stationary character and a clear frequency de-

pendence. However, there is a possibility that this localization might be some type of

guided wave effect, due to the particular geometry of the ballast. This section aims

at removing the ambiguity by showing that the same feature would be present in an

infinite domain, composed only of ballast material.290

4.1. Description of the numerical model

To remove the effect of the ballast geometry and its interface with the underlying

soil, we consider an infinite domain, as in Section 2.4. This domain is modeled as a

cube of edge 10.98 m, with PMLs all around. The mesh is discretized with a uniform

grid of ≈ 7.2 millions cube elements with edge 0.06 m. Polynomials of 4th order295

are used, inducing close to 1.4 billion DOFs in the entire model. The PML uses 3

layers of elements with power degree 2, amplitude 3.71 and total thickness of the PML

equal to 1.69 m. A point force is positioned at [0.66,0.66,0.66] m, and polarized
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in the x direction. The time history of that source is that of Eq. (10) with a plane

spectrum between f2 = 40 Hz and f3 = 140 Hz, and cutoff frequencies at f1 = 35 Hz300

and f4 = 145 Hz.

Two different media will be considered in this section, and the corresponding two

dispersion curves will be constructed. The first medium is homogeneous, with me-

chanical parameters corresponding to the (arithmetic) average of the ballast in the pre-

vious section, with κ = 179.60 MN/m2, µ = 35.32 MN/m2, and ρ = 1570 kg/m3.305

The second medium is the same heterogeneous ballast as in the previous section and

in Section 3.1, with average values of κ = 179.60 MN/m2, µ = 35.32 MN/m2, and

ρ = 1570 kg/m3, and standard deviations σρ = 3925 kg/m3, σκ = 449.02 MN/m2 and

σµ = 88.31 MN/m2. The correlation model is identical to the one used above to de-

scribe the ballast layer and the fields correspond to average velocities of Vp = 380 m/s310

and Vs = 150 m/s, and apparent velocities close to V p = 280 m/s and V s = 110 m/s.

Since the geometry is this time isotropic, the sensor lines for the construction of

the dispersion curves can be set in all directions before averaging. Fig. 10 shows the

position of the sensors, along 91 lines separated by angles of 10o in both the horizon-

tal and vertical directions, and with sensors along the lines separated by distances of315

0.066 m, from 0 m to 10.98 m from the source. The monitors record the amplitude of

the displacement.

4.2. Analysis of the wave patterns

For each of the two cases considered, Figs. 11 and 12 display snapshots of the dis-

placement magnitude at different time instants. In the homogeneous case, the expected320

symmetrically spherical waves are observed. As in Section 2.4, P and S waves are

observed with different velocities, and with amplitudes depending on the orientation

with respect to the polarization of the source. On the other hand, in the heterogeneous

cases, there is no clear coherent pulse propagating away from the source and the energy

remains localized in the vicinity of the source.325

4.3. Dispersion curve for an infinite medium of ballast material

Eq. (5) was evaluated as an average over the 91 lines monitored for both the ho-

mogeneous and heterogeneous cases and Fig. 13 presents the obtained maps Hpq. The
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Figure 10: Position of the monitors (blue line) and the source (red point).

(a) (b) (c) (d) (e)

Figure 11: Normalized amplitude of the displacement field in a homogeneous infinite medium at times:

(a) t = 0.094 s; (b) t = 0.188 s; (c) t = 0.282 s; (d) t = 0.329 s; (e) t = 0.470 s.

(a) (b) (c) (d) (e)

Figure 12: Normalized amplitude of the displacement field in a heterogeneous infinite medium at times:

(a) t = 0.094 s; (b) t = 0.188 s; (c) t = 0.282 s; (d) t = 0.329 s; (e) t = 0.470 s.
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reference value for the decibel scale was picked as the maximum value from the ho-

mogeneous case for both maps. As expected, a good agreement is obtained in the330

homogeneous case with both the analytical shear wave and pressure wave modes. The

amplitude of the dispersion curve for the P wave appears smaller because of the average

among 91 lines who are mostly oriented to record S-polarized displacements. Indeed,

only 1 line is perfectly oriented to record the P wave (along the axis of polarization of

the source), while 10 lines are perfectly oriented to record S waves (in the plane going335

through the source and normal to its polarization).

Turning to the heterogeneous model, the filtering effect at 100 Hz is clearly ob-

served as in the ballasted railway track of the previous section. This shows that it is

indeed an intrinsic property of the heterogeneous material, and not a wave guide effect

due to the geometry of the ballasted track. Below 100 Hz, however, the material be-340

haves as a purely isotropic material, which shows that the velocity reduction observed

in the ballasted railway track was indeed the consequence of the combination of bal-

last and soil at different wavelengths. Note that there is no apparent P-wave in this

heterogeneous model for the same reason as discussed in the homogeneous case, but

amplified by the heterogeneity and the weaker averaging for lines recording P waves.345

4.4. Characterization of Anderson localization

In this last section, we provide additional evidence that the filtering effect above

100 Hz is indeed Anderson localization. Anderson localization is characterized by its

strong frequency dependence, which is already apparent in the dispersion curves con-

structed previously. It is also characterized by the stationarity in time of the localized350

energy, which means that the energy remains in the vicinity of the source rather than

slowly diffusing away. To illustrate this, the displacement magnitude is therefore av-

eraged over all recording stations at the same distance from the source and plotted in

Figs. 14 and 15 as a function of time and distance from the source, filtered in three

frequency bands (using a second order bandpass Butterworth filter). The normaliza-355

tion factor for the decibel scale is the maximum displacement magnitude for complete

spectra of frequencies. In the homogeneous case, the energy clearly propagates along

a straight line, whose slope is controlled by the velocity of the medium. As expected
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(a) (b)

Figure 13: Dispersion curves for infinite homogeneous (figure (a)) and heterogeneous media (figure (b)).

The color scale is the amplitude of Hpq evaluated in Eq. (5), limited to values above −40 dB. The dotted

black line is the analytical solution for the homogenized pressure waves dispersion relation. The dashed

black line is the analytical solution for the homogenized shear wave.

in a non-dispersive medium, this effect is independent of frequency. On the other

hand, in the heterogeneous medium, the behavior is strongly dispersive. Below 50 Hz,360

an isotropic homogenized behavior is retrieved. Above 100 Hz, the energy seems to

propagate along vertical lines (zero velocity), which clearly indicates that it remains

localized in time at the same distance from the source.

5. Conclusion

In this paper, we constructed and analyzed the dispersion curve of a ballasted rail-365

way track set on a homogeneous soil. A continuum-based randomly-fluctuating het-

erogeneous model was used to model the ballast. The dispersion curve of the ballasted

railway track shows a tremendous influence of the heterogeneity. The behavior is dis-

persive with higher frequency waves propagating slower than lower frequency waves.

Below 50 Hz, the waves do not interact with the ballast layer and we retrieve the behav-370

ior of the homogeneous soil. In the frequency range between 50 Hz and 100 Hz, waves

seem to slow down, but still propagate at that slower pace. Above 100 Hz, Anderson

localization sets in, where the higher frequency waves remain trapped in the vicinity
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(a) (b) (c)

Figure 14: Displacement magnitude in an infinite homogeneous medium over different frequency ranges:

(a) 0−50 Hz; (b) 50−100 Hz; (c) 100−150 Hz. The color scale is the amplitude of the displacement field,

limited to values above −80 dB.

(a) (b) (c)

Figure 15: Displacement magnitude in an infinite heterogeneous medium over different frequency ranges:

(a) 0−50 Hz; (b) 50−100 Hz; (c) 100−150 Hz. The color scale is the amplitude of the displacement field,

limited to values above −80 dB.
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of the source. Although railway engineering applications would really consider only

the [0,150] Hz range, this paper considered a larger range to draw definite conclusions375

about the lack of propagation of the higher frequency waves.

Although very widely studied in the physics literature, Anderson localization has

been studied in the acoustical literature mostly from the experimental angle, trying to

discriminate between dissipation and localization in measurements [21]. The conclu-

sions of this paper seem to indicate that the higher part of the energy generated by the380

passage of trains on a ballasted railway track remains trapped in the ballast rather than

being dissipated in the surrounding soil. This is opposite to the common knowledge

in the field of numerical modeling of railway-generated noise in the environment [48],

although railway engineers also experience strong ballast degradation which indicates

large dissipation of energy in that layer. This paper therefore proposes a physical expla-385

nation for this experimental observation, which may be a first building block towards

improving ballasted railway tracks.
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[4] L. de Abreu Corrêa, J. C. Quezada, R. Cottereau, S. C. d’Aguiar, C. Voivret,

Randomly-fluctuating heterogeneous continuum model of a ballasted railway

track, Computational Mechanics 60 (5) (2017) 845–861. doi:10.1007/410

s00466-017-1446-8.

[5] M. Leibig, Model for the propagation of sound in granular materials, Physical

Review E 49 (2) (1994) 1647–1656. doi:10.1103/PhysRevE.49.1647.

[6] L. Rayleigh, On waves propagated along the plane surface of an elastic solid,

Proceedings of the London Mathematical Society 1 (1) (1885) 4–11.415

[7] H. Lamb, On waves in an elastic plate, Proceedings of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sciences 93 (648) (1917) 114–

128. doi:10.1098/rspa.1917.0008.

[8] J. S. Langer, Lectures in the theory of pattern formation, in: J. V. J. Souletie,

R. Stora (Eds.), Chance and Matter, North-Holland, Amsterdam, 1987, pp. 629–420

711.

[9] J. Duran, Sands, powders, and grains: an introduction to the physics of granular

materials, Partially Ordered Systems, Springer Science & Business Media, New-

York, 2012.

[10] X. Jacob, V. Aleshin, V. Tournat, P. Leclaire, W. Lauriks, V. Gusev, Acoustic425

probing of the jamming transition in an unconsolidated granular medium, Physi-

cal Review Letters 100 (15) (2008) 158003.

24

http://dx.doi.org/10.1006/jsvi.1996.0257
http://dx.doi.org/10.1006/jsvi.1996.0257
http://dx.doi.org/10.1006/jsvi.1996.0257
http://dx.doi.org/10.1016/j.conbuildmat.2014.07.042
http://dx.doi.org/10.1007/s00466-017-1446-8
http://dx.doi.org/10.1007/s00466-017-1446-8
http://dx.doi.org/10.1007/s00466-017-1446-8
http://dx.doi.org/10.1103/PhysRevE.49.1647
http://dx.doi.org/10.1098/rspa.1917.0008


[11] L. Bodet, X. Jacob, V. Tournat, R. Mourgues, V. Gusev, Elasticity profile of an

unconsolidated granular medium inferred from guided waves: Toward acoustic

monitoring of analogue models, Tectonophysics 496 (1) (2010) 99–104.430

[12] A. Shukla, Dynamic photoelastic studies of wave propagation in granular media,

Optics and Lasers in Engineering 14 (3) (1991) 165–184.

[13] J. Geng, D. Howell, E. Longhi, R. Behringer, G. Reydellet, L. Vanel, E. Clément,

S. Luding, Footprints in sand: the response of a granular material to local pertur-

bations, Physical Review Letters 87 (3) (2001) 035506.435

[14] C.-H. Liu, S. R. Nagel, Sound and vibration in granular materials, Journal of

Physics: Condensed Matter 6 (23A) (1994) A433.

[15] M. J. Buckingham, Theory of acoustic attenuation, dispersion, and pulse prop-

agation in unconsolidated granular materials including marine sediments, The

Journal of the Acoustical Society of America 102 (5) (1997) 2579–2596.440

[16] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Physical Re-

view 109 (5) (1958) 1492–1505.

[17] P. W. Anderson, The question of classical localization: a theory of white

paint ?, Philosophical Magazine B 52 (3) (1985) 505–509. doi:10.1080/

13642818508240619.445

[18] R. Weaver, Anderson localization of ultrasound, Wave motion 12 (2) (1990) 129–

142.

[19] C.-h. Liu, S. R. Nagel, Sound in sand, Physical Review Letters 68 (15) (1992)

2301.

[20] O. I. Lobkis, R. L. Weaver, Anderson localization of ultrasound in plates: Further450

experimental results, The Journal of the Acoustical Society of America 124 (6)

(2008) 3528–3533.

25

http://dx.doi.org/10.1080/13642818508240619
http://dx.doi.org/10.1080/13642818508240619
http://dx.doi.org/10.1080/13642818508240619


[21] H. Hu, A. Strybulevych, J. Page, S. E. Skipetrov, B. A. van Tiggelen, Localization

of ultrasound in a three-dimensional elastic network, Nature Physics 4 (12) (2008)

945–948.455

[22] B. A. Auld, Acoustic fields and waves in solids, John Wiley and Sons, New-York,

1973.

[23] P. E. Lagasse, Higher order finite element analysis of topographic guides sup-

porting elastic surface waves, The Journal of the Acoustical Society of America

53 (4) (1973) 1116–1122. doi:10.1121/1.1913432.460

[24] L. Knopoff, A matrix method for elastic wave problems, Bulletin of the Seismo-

logical Society of America 54 (1) (1964) 431.

[25] D. Alleyne, P. Cawley, A two-dimensional fourier transform method for the mea-

surement of propagating multimode signals, The Journal of the Acoustical Soci-

ety of America 89 (3) (1991) 1159–1168.465

[26] J. O’Donovan, Micromechanics of wave propagation through granular material,

Ph.D. thesis, Imperial College London (2013).

[27] F. J. Harris, On the use of windows for harmonic analysis with the discrete fourier

transform, Proceedings of the IEEE 66 (1) (1978) 51–83. doi:10.1109/PROC.

1978.10837.470

[28] A. Nuttall, Some windows with very good sidelobe behavior, IEEE Transactions

on Acoustics, Speech, and Signal Processing 29 (1) (1981) 84–91.

[29] G. Cohen, Higher-order numerical methods for transient wave equations, Scien-

tific Computation, Springer, Berlin Heidelberg New York, 2001.

[30] Y. Maday, A. T. Patera, Spectral element methods for the incompressible Navier-475

Stokes equations, in: State-of-the-art surveys on computational mechanics, no.

A90-47176 21-64, American Society of Mechanical Engineers, New York, 1989,

pp. 71–143.

26

http://dx.doi.org/10.1121/1.1913432
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1109/PROC.1978.10837


[31] C. Bernardi, Y. Maday, Approximations spectrales de problèmes aux limites el-
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