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Abstract

Under the global title “The non triviality of a Φ4
4 model” we show in

the form of three separate articles the existence and uniqueness of a solution
to a Φ4

4 non linear renormalized system of equations of motion in Euclidean
space. This system represents a non trivial model which describes the dy-
namics of the Φ4

4 Green’s functions in the Axiomatic Quantum Field Theory
(AQFT) framework.

The present paper is the second part called “II - The costruction of the
Φ4

4 solution” . It completes the first one (called “I The new mapping M∗

and the Φ4
4-iteration”), by the proofs of the necessary statements given in I

for the construction of the unique non trivial solution of the model.
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1 Introduction

Under the global title “The non triviality of a Φ4
4 model” we show in the form

of two separate articles the existence and uniqueness of a solution to a Φ4
4 non

linear renormalized system of equations of motion in Euclidean space. This system
represents a non trivial model which describes the dynamics of the Φ4

4 Green’s
functions in the Axiomatic Quantum Field Theory (AQFT) framework.

The present paper is the complement of “I” [20], in the following sense: apart
from the theorems 2.1 and 2.2 which are direct consequences of previously pub-
lished results, it contains the proofs of all propositions and theorems of section 3
and 4 of “I”.

In a more qualitative way, we construct this solution by the following five steps
ensured in terms of the seven included Appendices:

1. In Appendix 2.1 we justify the non triviality of the subset ΦR ∈ BR (cf.
def. 3.1 of [20]) by choosing as a representative element of it, the so called
fundamental sequence HT0, which carries all the characteristic physical and
mathematical informations about the subset ΦR.

Inspired by the Φ4
0 solution [18], [19] it is defined as starting point of the

Φ4
4-iteration (cf. def. 3.1 of [20])) and constitutes an approximate solution

of the dynamical system of equations in 4-dimensions (cf. theorem 4.1 of
[20] of local contractivity that we demonstrate in Appendix 2.7).

2. In Appendix 2.2 we establish the equivalence between the so called new
mapping M∗ and the initial mapping-M defined by the infinite system of
dynamic integral equations 1.1 presented in [20]. As we explained in [20]
we constructedM∗ in such a way that: a) On one hand, the splitting, signs,
bounds and limits of the Green’s functions and of the renormalization pa-
rameters are preserved by all the orders of the Φ4

4-iteration ( cf. theorem 3.2
of stability of [20]) b) On the other hand being contractive in a closed neigh-
bourhood of the fundamental sequence, it provides the Φ4

4 unique solution as
limit of the convergent Φ4

4- iteration (cf. Appendix 2.7).

3. In Appendices 2.3, 2.4 2.5 we present the proofs of the signs, bounds and
limits at infinity of the “global terms” Bn+1 An+1 and Dn respectively.
These properties constitute the necessary tools for the proof of the stabil-
ity of Φ4

4-iteration inside ΦR (theorem 3.2 of [20] which is established in
Appendix 2.6 via the proofs of propositions 3.5 and 3.6 (of [20]).

4. Finally, in Appendix 2.7, as we noticed before, we show the theorem of the
local contractivity of M∗ inside a closed ball with center the fundamental
sequence.

For the reader’s convenience the proof of each theorem or proposition of “I” is
preceded by the precise name of the statement, and the number of Appendix as it
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is announced in “I”. Moreover the corresponding number of the related definitions
or formulas are reminded along the lines of the associated proofs.

2 Tha proofs of [20]

1 The non triviality of ΦR

APPENDIX 2.1 Proof of theorem 3.1 of “I” [20]

Theorem 2.1 The subset ΦR is a nontrivial subset of BR
We consider the fundamental sequence HT0 (cf. definition 2.5 of “I” [20]) and
verify successively the properties of ΦR (cf. definition 3.1 (of “I” [20] ). Precisely:

1.

∀(q,Λ) ∈ (E4
(q) × R+∗)

H2
T0 = (q2 +m2)(1 + δ10(q,Λ)∆F )

with:

δ10(q,Λ)∆F =
−ρ0 + Λδ3,min([N3̃]− [N3̃](q2+m2)=0)∆F

1 + ρ0 + Λ|a0|
We verify:

lim
(q2+m2)=0

H2
T0(q,Λ)∆F (q) = 1 (or lim

(q2+m2)=0
δ10(q,Λ)∆F = 0)

and in view of the logarithmic asymptotic behaviour of the Φ4
4 operation

namely: [N3̃]∆F ∼q→∞ log(q2 +m2)

H2
T0(q,Λ) ≤ (q2 +m2)(1+π2/18)

and
H2
min(q) ≤ H2

T0(q,Λ), with H2
min(q) = q2 +m2

(2.1)
(cf. properties (3.53) of [20]).

2. For every n = 2k + 1, k ≥ 1 and ∀ (q,Λ) ∈ (E4n
(q) × R+∗) we verify

(recurrenly) that the functions

H4
T0 = −δ3,min(Λ)

∏
l=1,2,3

H2
T0(ql)∆F (ql)

Hn+1
T0 (q,Λ) =

δn,min(Λ)Cn+1
T0 (q,Λ)

3Λn(n− 1)
;

(2.2)

(where {δn,min}n≥3 is the splitting sequence of definition 2.3, of “I”[20]),
have the structure of (G.R.Φ.C’s) and belong to the class A(αnβn)

4n of Wein-
berg functions with corresponding asymptotic indicatrices given as follows:
∀ S ⊂ E4n

(q)

αn(S) =


−(n− 3) if S 6⊂ Ker λn
0 if S ⊂ Ker λn
βn(S) = ν(n) = 2n ∀ S ⊂ E4n

(q)

 (2.3)
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(cf. properties (3.54) of [20]).

3. The properties 3.55, 3.56, 3.57 of “I” [20] are automatically satisfied by the
tree type definition ofHT0 in terms of the the splitting sequence {δn,min}n≥3

of definition 2.3 of “I”:

with δ3,min(Λ) ∼
q→∞

Λ (δ3,min =
6Λ

1 + 9Λ(1 + 6Λ2)
)

lim
Λ→0

δ3,min(Λ)

Λ
= 6, and

(2.4)

δn,min(q,Λ) ∼
q→∞

Λ and lim
Λ→0

δn,min(Λ)

Λ
= 3n(n− 1)

δn,min(Λ) < δn,max(Λ)
(2.5)

The signs and bounds 3.58 3.59 of [20] are also ensured recurrently by the
Hn+1
T0 Green’s functions in view of the splitting-tree structure (cf. definition

2.2).

4. Finally, we trivially obtain that HT0 also verifies the property 4 of ΦR (cf.
equations 3.60 , 3.61 and 3.62 of“I” [20], of the renormalization constants)

γ0 = 1; , a0 = −δ3,min[N3̃](q2+m2)=0 (2.6)

ρ0 = Λδ3,min[
∂

∂q2
[N3̃]](q2+m2)=0 � (2.7)

2 The new mappingM∗

APPENDIX 2.2 Proof of proposition 3.1 of [20] (“M∗ is equivalent to M” of
[20])

i) We first notice that as far as the renormalization parameters a, ρ and γ are
concerned the corresponding definitions of the mappingM∗ are identical to those
appearing precisely in the definition (1.1) eqs 1.6 ofM of [20](modulo the partic-
ular properties in ΦR cf. also Remarks 3.1 of [20]).

ii) Now, we identify the two images of H2′ in [20] and write for example: on
the left the corresponding definition of the mappingM∗ equations (3.65) and on
the right hand side the image byM equations (1.6):

(q2 +m2)(1 + δ′1∆F ) = − Λ

(γ̃ + ρ̃)
{[N (3)

3 H4]− ãH2∆F }+
(q2 +m2)γ̃

(γ̃ + ρ̃)
or

δ′1∆F =
−ρ̃− Λ{[N (3)

3 H4]− ãH2∆F }∆F

(γ̃ + ρ̃)
�

(2.8)
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iii) In an analogous way ∀n ≥ 3, (q,Λ) ∈ E4n
(q) × R+, taking into accountM and

by using the “splitting” property in ΦR: Hn+1 =
δn(q,Λ)Cn+1

3Λn(n− 1)
, we have:

Hn+1(q,Λ) =
1

(γ̃ + ρ̃)
{ [An+1 +Bn+1 + Cn+1](q,Λ) + ΛãHn+1(q,Λ)} or

Hn+1 =
1

(γ̃ + ρ̃)
[An+1 +Bn+1 + ΛãHn+1] +

Hn+13Λn(n− 1)

δn(γ̃ + ρ̃)
or
δn{(γ̃ + ρ̃)Hn+1 − [An+1 +Bn+1 + ΛãHn+1]} = Hn+13Λn(n− 1)
and finally

δ′n(q,Λ) =
3Λn(n− 1)

(γ̃ + ρ̃)−Dn(H)− Λã
with Dn(H) =

Bn+1 +An+1

Hn+1

�
(2.9)

3 The properties of the global terms Bn+1
(ν) and An+1

(ν) and Dn+1
(ν)

APPENDIX 2.3 Proof of Proposition 3.2 of [20]
Let Hν ∈ ΦR.

• We start with n=3.

By the hypothesisHν ∈ ΦR the properties i) “opposite sign property” (using
H4
ν < 0) ii) the axiomatic field theory properties, euclidean invariance and

iii) asymptotic momentum behaviour at infinity are directly obtained thanks
to the hypothesis Hν ∈ ΦR (precisely the corresponding properties of H4

ν <
0) .

In order to obtain iv a) We apply the splitting of H4
ν , then the sign and bound

H4
(ν,min) and obtain the bound |B4

(ν,min)|. Precisely:

∀ fixed (q̃, Λ̃) ∈ (E12
(q)×]0, 0.05])

|B4
ν | ≥ |B4

ν,min|
where:

|B4
ν,min| = 9Λ

2 I
0
G(q2, q3)δ3,min

3∏
i=1

∆F (qi)H
2
(ν)(qi) with

I0
G(q2, q3) =

∫
R

(0)
G [H2

ν (k +
3∑
i=2

qi)[∆F (k +
3∑
i=2

qi)]
2∆F (k)]d4k

(2.10)
(For the precise momentum assignement of the integral cf.figure 1).

• Now, for n ≥ 5 the properties i) “opposite sign property” ii) the axiomatic
field theory properties and euclidean invariance and iii) asymptotic momen-
tum behaviour at infinity are again easily established thanks to the hypothesis
Hν ∈ ΦR.
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δ3ν

Hν
2

Hν2

Hν

Hν  q1

 q2

 q3

 k

l1= k+ q2 + q3

l1
l1

2

 q3

 q  q1

 q=  q1+ q2 + q3

3Λ

 q2
2

Figure 1: Graphical representation of one of the three similar contributions of the global
term for n = 3: B4

ν,(j2=2) = −3Λ[N2H
4
ν ][N1H

2] ( Φ4-operation) of order ν). The figure
displays also the zoom on the bubble H4

ν - point function after application of the splitting.

For the lower bound iv a) we replace the sum of |Bn+1] by just the domi-
nant contribution multiplied by the appropriate combinatorial factor and by
taking into account the splitting and minimization of Hn+1

ν following the
hypothesis Hν ∈ ΦR.

Finally we note that ∀n ≥ 5 we use an identical prescription of four mo-
mentum assignement for the one loop integration as indicated in fig. 2. In
other words we integrate with respect to the H2

ν -point function (and the cor-
responding free propagators) of the dominant term of the tree Cn+1

ν,min so that
the part Hn−1

ν does not contribute to the integration procedure as indicated
in the figure 2. Of course the integral is always logarithmically divergent and
∀n ≥ 5 it needs the renormalisation operator R(0)

G . But, the overall asymp-
totic behaviour (decreasing as n increases) is, as expected, the same as that
of R.Φ.C - Hn+1

ν thanks to the free propagator and the “vertex” Hn−1
ν .This

completes the proof of the lower bound (3.71) [20]. Analogous arguments
yield the proof of the upper bound |Bn+1

ν,max| ( (3.75) of [20].)

�

• iv).b) For the increase property of the sequence
{
δ̃Bn,ν

}
(cf.equation 3.72 of

[20]), we first prove the following:

Lemma 3.1

∀ fixed (q̃, Λ̃) ∈ (E20
(q)×]0, 0.05])

|B6
ν,min|

|H6
ν,max|

≥
|B4

ν,min|
|H4

ν,max|
(2.11)
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δ3,min
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Hν

 q1
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 q3
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l2= k+∑ qi, i=1..4

l2 l1

2

 q3

 q

 q5

 q=∑ qi, i=1...5

3Λ

 q2

2

Hν2

 q4

Hν2

 q1

l1= ∑ qi, i=1,2,3

l2

 q5

Hν2

3Λ

Hνn-1

Hν

Hν

ln-2= ∑ qi, i=1,2,..n-2

ln-2
 k

 q=∑ qi, i=1...n

 qn-1

 qn

ln-1= k+∑ qi, i=1..n-1

ln-1

2

2

ln-1

 qn

q

δn,min

δ5,min

Figure 2: On the left we give the graphical representation of the term
3Λ[N2H

6
ν,min][N1H

2
ν ] of order ν). In the same figure a zoom of the bubble-function

H6
ν,min after application of the minimization and the two splittings of H6

ν,min and
H4
ν,min is displayed. On the right we display the analogous integration procedure for

3Λ[N2H
n+1
ν,min]N1H

2
ν .

Proof of Lemma 3.1 Following the proven bound 3.71 and the hypothesis
Hν ∈ ΦR we write:

|B6
ν,min|

|H6
ν,max|

=
15Λ

2
I0
G(q(4))

δ5,min|H4
ν |∆F (

∑
i=1,2,3 qi)

∏
l=4,5H

2
ν (ql)∆F (ql)

δ5,max|H4
ν |∆F (

∑
i=1,2,3 qi)

∏
l=4,5H

2
ν (ql)∆F (ql)

= 15Λ
2 I0

G(q(4))
δ5,min

δ5,max
with (cf.fig.2)

I0
G(q(4)) =

∫
R

(0)
G [H2

ν (k +
4∑
i=1

qi)[∆F (k +
4∑
i=1

qi)]
2∆F (k)]d4k

(2.12)

Moreover by analogy, when n = 3 we have:

|B4
ν,min|

|H4
ν,max|

=
9Λ

2
I0
G(q(2))

δ3,min

δ3,max
with (cf.fig.1)

I0
G(q(2)) =

∫
R

(0)
G [H2

ν (k +
2∑
i=1

qi)[∆F (k +
2∑
i=1

qi)]
2∆F (k)]d4k

(2.13)
Now, we take into account the positivity and the logarithmic asymptotic be-
haviour with respect to the external momenta of both integrands together
with the inclusion relation of the momentum subspaces S(q(2)) ⊂ S(q(4)),

6



so that we could write:

R
(0)
G [H2

ν (k +
∑4

i=1 qi)[∆F (k +
∑4

i=1 qi)]
2∆F (k)]

≥ R(0)
G [H2

ν (k +
∑2

i=1 qi, q3 = 0, q4 = 0)[∆F (k +
∑2

i=1 qi)]
2∆F (k)]

= R
(0)
G [H2

ν (k +
∑2

i=1 qi)[∆F (k +
∑2

i=1 qi)]
2∆F (k)]

or
I0
G(q(4)) ≥ I0

G(q(2))
(2.14)

On the other hand we verify (by application of definition 2.3 of splitting
parameters of [20] ), that the inequality:

5
δ5,min

δ5,max
> 3

δ3,min

δ3,max
(2.15)

holds under the weak condition: ∀ Λ ≤ 0.5. It then follows that

|B6
ν,min|

|H6
ν,max|

≥
|B4

ν,min|
|H4

ν,max|
� (2.16)

• Then, we show recurrently that: ∀ fixed (q̃, Λ̃) ∈ (E4n
(q)×]0, 0.05]) and n ≥ 7

the sequence: {
δ̃Bn,ν

}
n=2k+1,k≥3

=
|Bn+1

ν,min|
n(n− 1)|Hn+1

ν,max|
(2.17)

increases with increasing n. In other words we prove that:

|Bn+1
ν,min|

n(n− 1)|Hn+1
ν,max|

≥
|Bn−1

ν,min|
(n− 2)(n− 3)|Hn−1

ν,max|
(2.18)

By using the corresponding proven bound 3.71 |Bn+1
ν,min| (resp. |Bn−1

ν,min|) ,
and proposition 3.6 for |Hn+1

ν,max| (resp. for |Hn−1
ν,max|), the inequality 2.18 is

equivalent to the following one:

δn,minT̃nI0
G(q(n−1))

δn,maxTn
≥
δ(n−2),minT̃n−2I

0
G(q(n−3))

δ(n−2),maxTn−2
(2.19)

where: (Reminder)

Tn = (n−3)2

48 + (n−3)
3 + 1

T̃n = (n−3)2

48 + (n−3)
3

(2.20)

Notice that the integrals I0
G(q(n−1)), I0

G(q(n−3)) are defined by analogy to
2.12 and 2.13 (see also the right part of figure 2) with corresponding loga-
rithmic asymptotic coefficients which verify : β(n,ν) = β(1,ν)n ≥ β(n−2,ν) =
β(1,ν)(n− 2) ∀ S ⊂ E4n

(q), S(q(n−3)) ⊂ S(q(n−1)).
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Figure 3: For the values of n (= x continuous) in the interval ]7, 500] fd0 decreases
continuously always from values bigger than 1 up to the limit value of 1

So that finally, it remains to show that:

fd0 ≡
δn,minT̃nδ(n−2),maxTn−2

δn,maxTnδ(n−2),minT̃n−2

≥ 1

or
[1 + 3Λ(n− 2)(n− 3)][1 + n(n− 1)d0](n− 3)2[ (n−5)2

48 + (n−5)
3 + 1]

1 + 3Λn(n− 1)][1 + (n− 2)(n− 3)d0](n− 5)2[ (n−3)2

48 + (n−3)
3 + 1]

≥ 1

(2.21)
Of course the tedious numerical calculations show clearly that the difference
between numerator and denominator is always positive and goes to zero by
positive values for sufficiently large n. For different values of d0 figure 3
represents graphically the curves of fd0(n) which for n (= x continuous) in
the interval ]7, 500] decreases continuously always from values bigger than
1 up to the limit value of 1. This completes the proof of the proposition. �

APPENDIX 2.4 Proof of Proposition 3.3 of [20] (cf.figure 4)
Let Hν ∈ ΦR. In an analogous way, by application of the splittings signs and

bounds of |H6
ν,max| and |H4

(ν,max)| we establish the upper bound |A4
ν,max|. The

convergence of the double integral due to the renormalization procedure allows us
to apply Fubini’s theorem and integrate first with respect to the k four-momentum
to obtain the following: (cf.fig 5 with our comments).

|A4
ν,max| =

∫
RGI

(3)
G,ν(k)[H2

(ν)(l1)[∆F (l1)]2∆F (k + q1)d4k

×Λδ(5,max)δ3,max

3∏
i=1

∆F (qi)H
2
(ν)(qi)

(2.22)

where I(3)
Gν represents the result of the first integration with respect to k1.
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Figure 4: On the left the global term A4
ν = Λ[N

(5)
3 H6

ν ] (Φ4-operation of order ν) is
graphically represented with a zoom of the bubbleH6

ν - point function after the application
of maximization and the splittings to theH6

ν andH4
ν -point functions thanks to the hypothe-

sis Hν ∈ ΦR. On the right we represent graphically the analogous double-loop integration
procedure of An+1

ν = Λ[N
(n+2)
3 Hn+3

ν ] (Φ4-operation of order ν). Despite the quadratic
divergence of the double integral with respect to k and k1, the overall asymptotic behaviour
(decreasing as n increases) is, as expected, the same as that of the R.Φ.C. Hn+1

ν .

The positivity of the two integrands in equations 2.10 and 2.22 allows the
comparison of the two integrals (cf. also the figures 1 and 5). More precisely
the faster decrease of the propagator [∆F (l1)]2 in the integrand of equ. 2.22 in
comparison with the propagator ∆F (k +

∑3
i=2 qi)]

2 in the integrand of equ. 2.10
enables us to obtain the following inequality:

I0
G(q2, q3) ≥

∫
R

(0)
G I

(3)
G,ν(k)[H2

(ν)(l1)[∆F (l1)]2∆F (k + q1)d4k (2.23)

On the other hand taking into account definition 2.3 of [20] of the splitting param-
eters, we verify that:

9

2
δ3,min > δ(5,max)δ3,max ∀Λ ≤ 0.05 (2.24)

So finally:
|B4

ν,min| − |A4
ν,max| > 0 ∀Λ ≤ 0.05 (2.25)

�
The properties i) “good sign property” ii) the axiomatic field theory properties

and euclidean invariance and iii) asymptotic momentum behaviour at infinity are
directly obtained thanks to the hypothesis Hν ∈ ΦR.

iv. a) In order to prove the upper bound |An+1
ν,max| we use analogous arguments

as for the lower bound |Bn+1
ν,min|, and in particular exactly as for the upper bound

|A4
ν,max|.

9



δ3ν
2

Hν2

Hν
2

Hν

Hν
 q1

 q2

 q3

l3

l1= k+q1+ q2 + q3

l1

l1

2

 q3

 q

 q1

 q=  q1+ q2 + q3

Λ

δ5ν

Hν2

k1

l2
k1

l2= k+k1

l3= k+q1

l1

IGν3 l3

 q1

 q2

 q3

l1

 q

l4= k1

Hν2

 q3

Hν
2

Hν2
2

 q1

Hν

 q2 q2

δ3ν

l1

Figure 5: Graphical representation of the global termA4
ν = Λ[N

(5)
3 H6

ν ] (Φ4-operation of
order ν). On the left hand side the figure displays a zoom on the bubbleH6 - point function
after the application of the splittings to the H6 and H4-point functions. On the right hand
side graph the vertex-ball I(3)Gν represents the result of the integration with respect to k1.

We apply the splitting by the hypothesis Hν ∈ ΦR. For simplicity on the left
of the figure 4 we give the configuration of the analogous splitting of A4

ν . For the
double integration we use the momentum prescription we defined on the right of
the figure 4. We also notice that despite the quadratic divergence of the double
integral with respect to k and k1, the overall asymptotic behaviour (decreasing as
n increases) is as expected the same as that of Hn+1

(ν) ’s. So:

|Λ[N
(n+2)
3 Hn+3

(ν) ]| ≤ Λ
∫
R

(3)
G [ |Hn+3

(ν,max)|
∏
i=1,2,3 ∆F (li) ]d4k1d

4k

≤ Λδ(n+2,max)Tn+2∆F (
n∑
i=1

qi)]|Hn+1
(ν,max)(q(n))|

×
∫
R

(2)
G

∏
i=2,3

[H2
(ν)(li)[∆F (li)]

2∆F (k1 + k)d4k1d
4k

(notation in fig: 4 l3 = k1) �

(2.26)

Remark 2.1
By application of the previous result for the case ofA6

ν,max andA4
ν,max together

with the hypothesis Hν ∈ ΦR for |H6
ν,max| and |H4

ν,max|, we easily obtain that:

|A6
ν,max|

|H6
ν,max|

≤
|A4

ν,max|
|H4

ν,max|
∀ Λ ∈]0, 0.05] (2.27)
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This inequality constitues the first step of the decreasing behaviour of the sequence{
δ̃An

}
n=2k+1,k≥2

that we show below.

iv.b) We show that ∀ fixed (q̃, Λ̃) ∈ (E4n
(q)×]0, 0.05]) the sequence:

{
δ̃An

}
n=2k+1,k≥2

=
|An+1

ν,max|
n(n− 1|Hn+1

ν,max|
(2.28)

decreases with increasing n. In other words we prove that:

|An+1
ν,max|

n(n− 1)|Hn+1
ν,max|

≤
|An−1

ν,max|
(n− 2)(n− 3)|Hn−1

ν,max|
(2.29)

By using the previous result of |An+1
ν,max| the previous inequality 2.29 is equivalent

to the following:

δ(n+2,max)Tn+2∆F (
∑n

i=1 qi)
∫

[I
(n)
G ]

n(n− 1)
≤
δ(n,max)Tn∆F (

∑n−2
i=1 qi)

∫
[I

(n−2)
G ]

(n− 2)(n− 3)
(2.30)

Now, due to the total external momentum dependence of the “external” and “inter-
nal propagators” inside of each of the two integrands I(n)

G and I(n−2)
G , we have:

∆F (

n∑
i=1

qi)

∫
[I

(n)
G ]d4k1d

4k ≤ ∆F (

n−2∑
i=1

qi)

∫
[I

(n−2)
G ]d4k1d

4k (2.31)

So that finally we have to verify that the following continuous function of n
fd1 is smaller than 1:

fd1(n) ≡ δn+2,maxTn+2(n− 2)(n− 3)

δn,maxTnn(n− 1)
≤ 1

or
(n+ 1)(n+ 2)[1 + n(n− 1)d0][ (n−1)2

48 + (n−1)
3 + 1](n− 2)(n− 3)

n(n− 1)[1 + (n+ 1)(n+ 2)d0][ (n−3)2

48 + (n−3)
3 + 1]n(n− 1)

≤ 1

(2.32)
By giving to the numerical constant d0 = 3Λ10(−1) different values in the inter-
val [0.02 , 0,45] and after numerical calculations we can find that the difference
between the denominator and numerator is always positive.

For the values of n (= x continuous) in the interval ]7, 200] (cf.figure 6 ) the
function fd1(n) increases continuously (with positive values always smaller than
1) up to the limit value of 1.

APPENDIX 2.5 Proof of Proposition 3.4 ( [20])

i) By application of the hypothesis Hν ∈ ΦR, of the signs of Hn+1
ν -functions and

the sign properties established before of Bn+1
ν and An+1

ν , the expressions
3.83 3.84 ( [20]) are trivially verified.

11
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Figure 6: For the values of n (= x continuous) in the interval ]7, 200] the function fd1(n)
increases continuously (with positive values always smaller than 1 ) up to the limit value
of 1.

ii) Following the hypothesisHν ∈ ΦR, the splitting properties 3.56, 3.57 ( of [20])
yield recurrently at every fixed values of q ,the behavior of every Hν ∈ ΦR

with respect to the coupling constant as (−Λ)(n−1)/2. But, Bn+1
ν (resp.

An+1
ν ) behaves by definition as (−Λ)(n+1)/2 (resp. as (−Λ)(n+3)/2), so fi-

nally:
∀ fixed (q̃, n), lim

Λ→0
Dn,ν(Λ) = 0 (2.33)

iii) By application of the previous results 2.16 2.27 and 2.25 we obtain:

D5,ν,min ≥ D3,ν,min ≥ 0 (2.34)

Moreover the upper and lower boundsBn+1
ν,min, B

n+1
ν,max, A

n+1
ν,max, together with

the increase of the sequence
{
δ̃Bn,ν

}
n≥5

(resp. the decrease of
{
δ̃An

}
n≥5

)

established previously in appendices 2.3 and 2.4 respectively, allow us to
obtain directly the upper and lower bounds of Dn,ν .

In particular the increase property of Dn,ν,min/n(n− 1) (cf. 3.88 of [20] is
obtained in a similar way to that of proof of 2.34:

Dn,ν,min

n(n− 1)
= (δ̃Bn,ν − δ̃An,ν) ≥ (δ̃Bn−2,ν − δ̃An−2,ν) =

Dn−2,ν,min

(n− 2)(n− 3)
(2.35)

iv) Finally the existence of the limit at infinity (3.89) of [20] is directly ensured.

These results complete the proof of proposition 3.4
�
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4 The proof of the stability (Theorem 3.2 of [20]

In order to simplify the notations we often omit the arguments (q,Λ) and (q2).

1 Signs and bounds

APPENDIX 2.6 Proof of Propositions 3.5 and 3.6 (of [20])
A) Proof of proposition 3.5

1. Let Hν−1 ∈ ΦR. For the positivity and asymptotic behaviour at infinity of
the two point function H2

ν , we proceed as follows: the mappingM∗ yields:

H2
ν = (q2 +m2)(1 + δ1,ν∆F )

with: δ1,ν∆F (q2) =
−ρ̃− Λ{[N (3)

3 H4
ν−1]− ãH2

ν−1∆F }∆F (q2)

(γ̃ν−1 + ρ̃ν−1)
(2.36)

Then the positive signs of the dominant terms in the numerator ensured by
the recurrence hypothesis Hν−1 ∈ ΦR, ∀Λ ≤ 0, 05 precisely:

− Λ[N
(3)
3 H4

ν−1] > 0, −ãH2
ν−1 > 0 (2.37)

(due to the negative sign of H4
ν−1) and the two positive terms of the denom-

inator
γ̃ν−1 > 0, ρ̃ν−1 > 0 (2.38)

The same terms 2.11 yield the increasing logarithmic behaviour at large
momenta so the upper bounds at every order ν and at infinity are obtained
(cf. 3.53 or 3.90 of [20]).

2. As far as the 4-point function H4
ν is concerned we apply again the definition

(3.2 of [20]) of the mappingM∗ on Hν−1 ∈ ΦR and write

H4
ν = −δ3,(ν)

∏
l=1,2,3

[H2
ν∆F (ql,Λ)]

Here by the definition 3.2 ofM∗ ([20])

δ3,(ν) =
6Λ

(γ̃ + ρ̃)(ν−1) +D3,(ν−1) + Λ|a(ν−1)|

(2.39)

By using proposition 3.4 of [20], of the positivity of D3,(ν−1) and definition
2.3 of [20] for the positive minimal and maximal values of the renormalisa-
tion parameters, we verify the upper and lower positive bounds of δ3,(ν) in
ΦR. Then, taking into account the preceding result of theH2

ν -point function,
the negative sign and bounds of H4

ν in ΦR, ∀ ν and at infinity are obtained, (
automatically the properties 3.55 or 3.92of [20]) so the proof of proposition
3.5 is completed. �

13



B) Proof of proposition 3.6
Taking into account the previous results of H2

ν , H
4
ν as starting point we ap-

ply, for every n ≥ 5, a recursive procedure: we suppose that for all the previous
Hm+1
ν , (m ≤ n − 2) Green’s functions the “good sign” and upper and lower

bounds (properties (3.99), (3.100), (3.101) of proposition (3.6) of [20]) are satis-
fied. We then apply this hypothesis on the recurrent definition of the sum-tree term
Cn+1
ν in terms of all previous Green’s functions and the “good sign” and upper and

lower bounds and limits at infinity (cf. 3.94, 3.95, 3.96, 3.97 of [20]), of the latter
are trivially obtained.

For the signs and bounds of every Hn+1
ν we proceed exactly in an analogous

way as we did for the H4
ν function: we first consider the splitting functions using

the mappingM∗:

δn,ν =
3Λn(n− 1)

(γ̃(ν−1) + ρ̃(ν−1) +Dn,(ν−1)(H(ν−1))− Λã(ν−1))

with Dn,(ν−1)(H(ν−1)) =
|Bn+1

(ν−1)| − |A
n+1|
(ν−1)|

|Hn+1
(ν−1)|

(2.40)

In view of the hypothesis Hν−1 ∈ ΦR we apply propositions 3.2 (on |Bn+1
(ν−1))|)

respectively 3.3 (on |An+1|
(ν−1))), 3.4 (on Dn,(ν−1)) and the corresponding bounds

and limits of the renormalization parameters, so that the bounds and limits of δn,ν
3.57 or 3.98, of [20] are established.

Now, we use the previous results about the properties of Cn+1
ν and δn,ν and

by application of the definition 3.2 of of the mapping M∗ (“splitting property”)
(∀n ≥ 5) the signs 3.99, the bounds 3.100, 3.101 of [20]) are recurrently verified,
so the proof of proposition 3.6 is completed . �

The proof of theorem 3.2 of [20]
Finally, in order to complete the proof of theorem 3.2 we apply the previous

results of proposition 3.5 concerning the H2
ν and H4

ν Green’s functions and obtain
the properties of the renormalization parameters 3.60, 3.61, 3.62 of [20] at every
order ν.

So, the stability of the Φ4
4-iteration under the action of M∗ inside the subset

ΦR is ensured.
�
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5 Proof of the local contractivity of the mapping M∗ or the conver-
gence of the Φ4

4 iteration to a unique non trivial solution inside Sr(0)
(cf. theorem.4.1 of [20])

APPENDIX 2.7 By application of the definition 2.10 of the normN , in [20] the
contractivity criteria are equivalent to the following conditions: ∀ Λ ∈]0, 0.04]

(I)

sup
(n,q,Λ)

 |Hn+1
ν −Hn+1

T0 |
Mn

;
|∂(0,1)
∂q2

N3(H4
ν −H4

T0)|

M̂
(0,1)
(3)

;
|N2(Hn+1

ν −Hn+1
T0 )|

M̂(n,2)

;
|γν − γ0|
Nγ


≤ k(0)(Λ)r0 with k(0)(Λ) < 1

and
(II)

sup
(n,q,Λ)

 |Hn+1
ν −Hn+1

ν−1 |
Mn

;
|∂(0,1)
∂q2

N3(H4
ν −H4

ν−1)|

M̂
(0,1)
3

;
|N2(Hn+1

ν −Hn+1
ν−1 )|

M̂(3,2)

;
|γν − γν−1|
Nγ


≤ Kν(Λ)‖Hν−1 −Hν−2‖; with Kν(Λ) < 1 and k(0) +Kν < 1

(2.41)

1. Proof of (I)

We first obtain the corresponding bounds for ν = 1. We start from n =
1, n = 3 and generalize recurrently for every n ≥ 5 . Then we apply the
same procedure for every ν ≥ 2.

a) Let n = 1
|H2

1 −H2
T0|

M1
≤ Λ|N3(H4

max −H4
min)|∆F

M1
(2.42)

By using definition 4.1 of the ball Sr(0)(HT0), the norm definition 2.10
and proposition 3.5 of I [20], we finally obtain:

|H2
1 −H2

T0|
M1

≤ k(0)
1,1r(0)

with: k(0)
1,1 =

6Λ2(q2 +m2)π
2/54(1 + 6Λ2(q2 +m2)π

2/54)

(q2 +m2)(1 + 6(q2 +m2)π2/54

(2.43)
For n = 3 we have:

H4
1 (qΛ) = −δ3,(1)(q,Λ)

∏
`=1,2,3

H2
(1)(q`,Λ)∆F (q`) ; (2.44)

so
|H4

1 −H4
T0|

M3
≤ {δ3,max − δ3,min}

M3

∏
`=1,2,3

H2
(max)(q`,Λ)∆F (q`)+

+3δ3,max
|H2

1 −H2
T0|

M3

∏
`=1,2

H2
(max)(q`,Λ)∆F (q`)

(2.45)
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And again by the definition of norms, of r(0) and the previous result
for n = 1 we obtain:

|H4
1 −H4

T0|
M3

≤ Λr(0)(1 + (18)2Λ2) i.e. k(0)
1,3 = Λ(1 + (18)2Λ2)

and k
(0)
1,3 < 1 for Λ ≤ 0.1

(2.46)
Now for every n ≥ 5 and n̄ ≤ n − 2 we suppose that we have estab-
lished an analogous inequality, namely:

|H n̄+1
1 −H n̄+1

T0 |
Mn

≤ r(0)k
(0)
1,n̄

with k
(0)
1,n̄ < k

(0)
1,3 if Λ ≤ 0.1 and we show that k(0)

1,n < k
(0)
1,3

without any supplementary condition on Λ.
(2.47)

By using the definition of Sr(0)(HT0), the norm definition , the splitting
properties, the bounds of the tree terms, and the recursion we have
successively:

|Hn+1
1 −Hn+1

T0 |
Mn

≤ {δn,max − δn,min}|C
n+1
max|

3Λn(n− 1)Mn
+
δn,max|Cn+1

1 − Cn+1
T0 |

3Λn(n− 1)Mn

<
r(0)(n− 3)2

48n(n− 1)
{|H

n−1
max|

Mn−2
+ k

(0)
1,n−2

H2
(max)

M1
+ 2k

(0)
1,1

|Hn−1
max|

Mn−2
}

(2.48)
In the last formula we used again the result of ref. [15, c] on the number
Tn of different partitions inside the tree terms as we did in proposition
3.6 . Now we note that for every n we have:

|Hn+1
max|
Mn

<
|Hn−1

max|
Mn−2

(2.49)

As a matter of fact by application of proposition 3.6 and the norm def-
inition we can write:

|Hn+1
max|
Mn

<
(n− 3)2|Hn−1

max|
48n(n− 1)Mn−2

<
|Hn−1

max|
48Mn−2

(2.50)

It then follows that:

|Hn+1
max|
Mn

<
(n− 3)2|Hn−1

max|
48n(n− 1)Mn−2

<
|H4

max|
48M3

< Λ (2.51)

From these results and the recurrent hypothesis

k
(0)
1,n−2 < k

(0)
1,3 (2.52)
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we have:

|Hn+1
1 −Hn+1

T0 |
Mn

<
r(0)

48
{Λ + k

(0)
1,3 + 2k

(0)
1,1}

or
|Hn+1

1 −Hn+1
T0 |

Mn
< r(0)k

(0)
1,n

(2.53)

with:

k
(0)
1,n =

k
(0)
1,3

16
(2.54)

0.08 0.085 0.09 0.095 0.1 0.105

0.25

0.5

0.75

1

kν1
0

k13

kν30

k11

0

0

Figure 7: The stronger condition to require for the coupling constant comes from H2
ν

precisely: Λ ≤ 0.101 with kν,1 = 0.9925 while k1,3 = 0.4189 and corresponding values
kν,3 = 0.40 and k1,1 = 0.1846.

b) In the case of ν ≥ 2 we follow an analogous procedure and find sim-
ilar results . We just notice that for n = 1 the condition imposed on
Λ, in order that k(0)

ν,1 < 1, is stronger than the one of every k(0)
ν,n <

1, with n ≥ 3 (cf. figure 7).
As a matter of fact at every order ν ≥ 2 of the Φ4

4-iteration the contribu-
tions coming from the values of the renormalization constants γ̃, ρ̃, ã
become nontrivial.
Then as before by taking into account the norm definition, and the def-
inition of Sr(0)(HT0) and r(0) we first have:

|γ̃ν−1 − γ̃0| ≤ r(0)(1 + 9Λ(1 + 6Λ2))

|ρ̃ν−1 − ρ̃0| ≤ Λr(0)M̂
r(0,1)
3

|ãν−1 − ã0| ≤ Λr(0)M̂
r(0,1)
3

(2.55)
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and finally (after some trivial estimations):

|H2
ν −H2

T0|
M1

≤ kν,1 r(0) with kν,1(Λ) = 48Λ2(1 + 10Λ)

and kν,1(Λ) < 1 for : Λ ≤ 0.1
(2.56)

Now as before, ∀n ≥ 3 we estimate the following bounds:

|H4
ν −H4

T0|
M3

≤ Λr(0)(1 + 144Λ2(1 + 10Λ))

which means: k(0)
ν,3 = Λ(1 + 144Λ2(1 + 10Λ))

and k
(0)
ν,3 < 1 for Λ ≤ 0.135 (cf. figure 7)

(2.57)

and similar results for:

|N3(H4
ν −H4

T0)|
M̂

r(0,1)
3

and
| ∂
∂q2

N3(H4
ν −H4

T0)|

M̂
r(0,1)
3

(2.58)

Moreover we find again recurrently, using the same arguments as when
ν = 1 that for all n ≥ 5:

k(0)
ν,n < k

(0)
ν,3 < k

(0)
ν,1 = 48Λ2(1 + 10Λ) independent of ν (2.59)

Conclusion:

∀ν ≥ 2, ‖Hν −HT0‖ ≤ k(0)(Λ)r(0) where
k(0)(Λ) = 48Λ2(1 + 10Λ) < 1 ∀ Λ ≤ 0.1

�
(2.60)

2. Proof of (II)

The first step ν = 2 being easily verified, we suppose that for all ν̄ ≤ ν − 1
the corresponding inequality 2.41 is vérified.

a) For n = 1 we write:

|H2
ν −H2

ν−1|
M1

≤ |ρ̃ν−1 − ρ̃ν−2||γ̃ν−1 + 2(ρ̃ν−1 + ρ̃ν−2)|+ |γ̃ν−1 − γ̃ν−2|ρ̃ν−1

|γ̃0 + ρ̃0|2|M1

+
Λ|N3H

4
ν−1(γ̃ν−2 + ρ̃ν−2)−N3H

4
ν−2(γ̃ν−1 + ρ̃ν−1)|∆F

|(γ̃ν−1 + ρ̃ν−1)(γ̃ν−2 + ρ̃ν−2)|M1

+
Λ|N3H

4
ν−1(γ̃ν−2 + ρ̃ν−2)−N3H

4
ν−2(γ̃ν−1 + ρ̃ν−1)|(q2+m2)=0H

2
ν−1∆F

|(γ̃ν−1 + ρ̃ν−1)(γ̃ν−2 + ρ̃ν−2)|M1

+Λ
|H2

ν−1 −H2
ν−2||N3H

4
ν−2|q2+m2=0∆F

|(γ̃ν−1 + ρ̃ν−1)(γ̃ν−2 + ρ̃ν−2)|M1
(2.61)
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Then using the definitions of the norm and the renormalization con-
stants we first have:

|γ̃ν−1 − γ̃ν−2| ≤ ‖Hν−1 −Hν−2‖Nγ(Λ)|q2=0

|ρ̃ν−1 − ρ̃ν−2| ≤ Λ‖Hν−1 −Hν−2‖M̂ (0,1)
3 |q2+m2=0

(2.62)

Then, after some elementary estimations the first term of the R.H.S. of
2.61 yields:

O1

M1
=
|ρ̃ν−1 − ρν−2|γ̃ν−2 + |γ̃ν−1 − γ̃ν−2|ρ̃ν−2

|γ̃0 + ρ̃0|2|M1
≤

≤ Kν,1
1 (Λ)‖Hν−1 −Hν−2‖

with Kν,1
1 (Λ) = 12Λ < 1 when Λ ≤ 0.08

(2.63)

We take the sum of the second and third term of 2.61 and call it O2:

By application again of the norm definition we obtain:
O2

M1
≤ Kν,2

1 (Λ)‖Hν−1 −Hν−2‖

here: Kν,2
1 (Λ) = 12Λ

H2
max∆F |N3H

4
max|M̂3

M1
< 12Λ

and again that means for Λ ≤ 0.08 Kν,2
1 < 1

(2.64)

The last term of 2.61 that we call O3 yields:

O3

M1
≤ Λ
|H2

ν−1 −H2
ν−2||N3H

4
ν−2|q2+m2=0∆F

|(γ̃ν−1 + ρ̃ν−1)(γ̃ν−2 + ρ̃ν−2)|M1
≤

≤ Kν,3
1 (Λ)‖Hν−1 −Hν−2‖ here: Kν,3

1 (Λ) = 6Λ2

(2.65)

By using the corresponding bounds from 2.63, 2.64 2.65 we obtain:

|H2
ν −H2

ν−1|
M̃1

< Kν
1 (Λ)‖Hν−1 −Hν−2‖

here: Kν
1 (Λ) = Kν,1

1 +Kν,2
1 +Kν,3

1 = 6Λ(4 + Λ)

with Kν
1 < 1 ∀ Λ ≤ 0.04

�
(2.66)
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b) Let n = 3 we write:

|H4
ν −H4

ν−1|
M3

≤ A+B (2.67)

where:

A =
δ3,ν

∏
`=1,2,3 |H2

ν (q`,Λ)−H2
ν−1(q`,Λ)|∆F (q`)

M3

(2.68)

and

B =
|δ3,ν − δ3,ν−1|

∏
`=1,2,3H

2
ν−1(q`,Λ)∆F (q`)

M3
(2.69)

i) By an analogous procedure as before we obtain:

A ≤ Kν
3,A(Λ)‖Hν−1 −Hν−2‖

with Kν
3,A(Λ) =

3Kν
1

D̃3,min

∏
l=2,3

H2
(max)(q`,Λ)

M1(ql)

(2.70)

and D̃3,min = 1 + ρ0 + Λ|a0|+ 0, 18Λ (2.71)

Now by application of the norm definition of M1 and definition of
H2
max (Proposition 3.5 of [20]), we obtain a best estimate of the

ratio H2
max
M1

:

H2
max

M1
≤ 1− 6(q2 +m2)π

2/54(1− Λ2)

1 + 6(q2 +m2)π2/54

and for sufficiently large q2:
H2
max

M1
∼ 6Λ2

(2.72)

and so:

Kν
3,A(Λ) < 108Λ4Kν

1 < 0.7Kν
1 (∀Λ < 0.08) (2.73)

ii) As far as the term B of the r.h.s. of 2.64 is concerned we use the
same arguments as before and we obtain:

|δ3,ν − δ3,ν−1|
∏
`=1,2,3H

2
ν−1(q`)∆F (q`)

M3
≤ (B.1)+(B.2)+(B.3)

(2.74)
with explicitly:
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ii.1)

(B.1) ≤

≤
∏

`=1,2,3

H2
ν−1(q`)

M1(q`)

|γ̃ν−1 − γ̃ν−2|+ |ρ̃ν−1 − ρν−2|+ |ãν−1 − ãν−2|
D̃3,ν−1D̃3,ν−2

Here we used the definitions of the mappingM∗
D̃3,ν−1 = γ̃ν−1 + ρ̃ν−1 +D3,ν−1 − Λãν−1

(and the analogous expression for D̃3,ν−2), so

(B.1) ≤ Kν
3,B.1(Λ)‖Hν−1 −Hν−2‖

with Kν
3,B.1 ≤ (6Λ)3(1 + 9Λ) for sufficiently large q2.

and for small q2 Kν
3,B.1(Λ) < 1, ∀Λ ≤ 0.05

(2.75)
ii.2) and:

(B.2) ≤

≤ 6Λ
∏
`=1,2,3H

2
ν−1(q`)∆F (q`)

|H4
ν−1 −H4

ν−2|B4
ν−2 −A4

ν−2|
M3|H4

ν−1||H4
ν−2|D̃3,ν−1D̃3,ν−2

(2.76)

where
|B4

ν−2 −A4
ν−2|

|H4
ν−2|

= D3,ν−2 (2.77)

so (B.2) ≤ Kν
3,B.2(Λ)‖Hν−1 −Hν−2‖

where Kν
3,B.2 =

D3,max

D̃3,min

=
9Λ(1 + 6Λ2)

(1 + ρ0 + Λ|a0|+ 0, 18Λ)

and Kν
3,B.2(Λ) < 1, ∀Λ ≤ 0.1 (very weak condition)

(2.78)
ii.3) Moreover:

(B.3) <
9Λ

M3D̃3,ν−1

{
|N2(H4

ν−1 −H4
ν−2)|H2

max∆F

}
+

9Λ

M3D̃3,ν−1

{
|N2H

4
max||H2

ν−1 −H2
ν−2|∆F

}
(2.79)

Notice that we have used the sign properties of B4 and A4

together with the definitions of the mapping. Then, by appli-
cation of the norm definitions we obtain:

(B.3) < Kν
3,B.3(Λ)‖Hν−1 −Hν−2‖

where Kν
3,B.3 =

18ΛH2
max

D̃3,minM1

Kν
3,B.3(Λ) < 1, ∀Λ ≤ 0.05

(2.80)

21



Finally inserting the results 2.70, 2.72, 2.75 and 2.77 in equation 2.64
we obtain that

Kν
3 < 1 ∀Λ ≤ 0.05 �

c) Under weaker conditions on Λ and using the analogous procedure, (norm
definitions, together with properties in ΦR etc.) we find that:

c.i) there is a positve constant continuous function of Λ,

Kν
γ (Λ) < 1 such that: (2.81)

|γ̃ν − γ̃ν−1|
Nγ

≤ Kν
γ (Λ)‖Hν−1 −Hν−2‖;

with Kν
γ (Λ) = 3Kν

1 γmaxM
−2
1 |q2=0 +Kν

3 γ
2
max < 1

(under conditions weaker than the condition Λ ≤ 0.05)
(2.82)

c.ii)

|ρ̃ν − ρ̃ν−1|
M

(0,1)
3

≤ Λ
| ∂
∂q2

N3(H4
ν −H4

ν−1)|

M̂
(0,1)
3

≤ Kν
ρ (Λ)‖Hν−1 −Hν−2‖;

with Kν
ρ = ΛKν

3 < 1 under weaker condition on Λ
(2.83)

c.iii)
|ãν − ãν−1|
M

(0,1)
3

≤ Kν
3 (Λ)‖Hν−1 −Hν−2‖ (2.84)

c.iv) By using the basic splitting properties in ΦR of H4 and by analo-
gous arguments as above we show that

|N2H
4
ν | ≤ 6Λ[N3

2 ]̃
2∏
l=1

M1(ql)

so that
|N2(H4

ν −H4
ν−1)|

M̂(3,2)

≤ Kν
3 (Λ)‖Hν−1 −Hν−2‖

(2.85)

Finally:

sup
(q,Λ)

 |
∂(0,1)

∂q2
N3(H4

ν −H4
ν−1)|

M̂
(0,1)
3

;
|N2(H4

ν −H4
ν−1)|

M̂(3,2)

;
|γν − γν−1|
Nγ


≤ Kν

3,2,γ(Λ)‖Hν−1 −Hν−2‖;
with Kν

3,2,γ(Λ) < 1 when Λ ≤ 0.05 �
(2.86)
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d) Let n ≥ 5

We suppose that for every ñ ≤ n − 2 the second property of 2.41 is
verified in the following sense:

∀Λ ≤ 0.05 and ∀ fixed ν,
there is a strictly positive constant (continuous function of Λ) Kν

ñ(Λ) such that:

sup
(q,Λ)

{
|H ñ+1

ν −H ñ+1
ν−1 |

Mñ

}
≤ Kν

ñ(Λ)‖Hν−1 −Hν−2‖ with

Kν
ñ(Λ) < Kν

ñ−2(Λ) ≤ · · · ≤ Kν
3 (Λ)

(2.87)
We show this property for ñ = n by using again the definitions of the
norm , the mappingM∗ and the properties in ΦR .

|Hn+1
ν −Hn+1

ν−1 |
Mn

≤ An +Bn where

An =
δn,ν |Cn+1

ν − Cn+1
ν−1 |

3Λn(n− 1)Mn

Bn =
|δn,ν − δn,ν−1||Cn+1

ν−1 |
3Λn(n− 1)Mn

(2.88)

i)

An =
δn,ν |Cn+1

ν − Cn+1
ν−1 |

3Λn(n− 1)Mn
≤

An ≤ Kν
n,A‖Hν−1 −Hν−2‖ with

Kν
n,A(Λ) =

H2
(max)

24M1

{
Kν
n−2H

2
(max)

M1
+
Kν

1 |H
n−1
(max)|

Mn−2

}
(2.89)

We easily verify that under a weaker condition than Λ ≤ 0.05

Kν
n,A ≤ Kν

n−2,A < 1 � (2.90)

ii) For the term Bn of 2.85 we use the same arguments as before and
we obtain:

Bn =
|δn,ν − δn,ν−1||Cn+1

ν−1 |
3Λn(n− 1)Mn

≤ |Bn,1|+ |Bn,2|+ |Bn,3| (2.91)

with:
ii.1)

|Bn,1| ≤

≤ |Cn+1
ν−1 |
|γ̃ν−1 − γ̃ν−2|+ |ρ̃ν−1 − ρν−2|+ |ãν−1 − ãν−2|

MnD̃n,ν−1D̃n,ν−2
(2.92)
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In the same way we obtain :

|Bn,1| ≤ Kν
n,B.1‖Hν−1 −Hν−2‖ with

Kν
n,B.1 =≤

∏
l=2,3

H2
(max)(q`)(n− 3)2|Hn−1

max|(γmax + 2ΛM̂
(0,1)
n )

M1(ql)24n(n− 1)Mn−2D̃3,min

(2.93)
Now using the obvious bound:

|Hn−1
max|

Mn−2
≤
∏
l=2,3

H2
(max)(q`)|H

n−3
max|

M1(ql)24Mn−4
(2.94)

and the analogous definition 2.61 of Kν
n−2,B.1 we have:

Kν
n,B.1 ≤

∏
l=2,3

H2
(max)(q`)(n− 3)2(n− 2(n− 3)

M1(ql)24n(n− 1)(n− 5)2
Kν
n−2,B.1

⇔ Kν
n,B.1 < Kν

n−2,B.1 < 1 �
(2.95)

ii.2) By analogy to n = 3

|Bn,2| ≤ Kν
n,B.2‖Hν−1 −Hν−2‖ with

Kν
n,B.2 =

Dn,max

D̃n,min

∼ Dn−2,max

D̃n−2,min

< 1 ∀Λ ≤ 0.05 �

(2.96)
ii.3) Then by an analogous to the above procedure we have:

|Bn, 3| < Kν
n,B.3‖Hν−1 −Hν−2‖ with

Kν
n,B.3 = δ∞[Nn

2 ]̃q=0

H2
max

2M1
(1 +

Tn
n(n− 1)

)

and verify Kν
n,B.3 ∼ K

ν−2
n,B.3 < 1, ∀ Λ ≤ 0.05 �

(2.97)

Finally by addition of 2.87, 2.92, 2.93 and 2.94 we obtain the proof of the
recursion 2.84 and by using also the result 2.57 the proof of the contractivity
criterium 2.41 follows. �
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