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Introduction

Under the global title "The non triviality of a Φ 4 4 model" we show in the form of two separate articles the existence and uniqueness of a solution to a Φ 4 4 non linear renormalized system of equations of motion in Euclidean space. This system represents a non trivial model which describes the dynamics of the Φ 4 4 Green's functions in the Axiomatic Quantum Field Theory (AQFT) framework.

The present paper is the complement of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF], in the following sense: apart from the theorems 2.1 and 2.2 which are direct consequences of previously published results, it contains the proofs of all propositions and theorems of section 3 and 4 of "I".

In a more qualitative way, we construct this solution by the following five steps ensured in terms of the seven included Appendices:

1. In Appendix 2.1 we justify the non triviality of the subset Φ R ∈ B R (cf. def. 3.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) by choosing as a representative element of it, the so called fundamental sequence H T 0 , which carries all the characteristic physical and mathematical informations about the subset Φ R .

Inspired by the Φ 4 0 solution [START_REF] Manolessou | Local Contractivity of the Φ 4 0 mapping[END_REF], [START_REF] Manolessou | Numerical study of the local contractivity of the Φ 4 0 mapping[END_REF] it is defined as starting point of the Φ 4 4 -iteration (cf. def. 3.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF])) and constitutes an approximate solution of the dynamical system of equations in 4-dimensions (cf. theorem 4.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] of local contractivity that we demonstrate in Appendix 2.7).

2. In Appendix 2.2 we establish the equivalence between the so called new mapping M * and the initial mapping-M defined by the infinite system of dynamic integral equations 1.1 presented in [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]. As we explained in [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] we constructed M * in such a way that: a) On one hand, the splitting, signs, bounds and limits of the Green's functions and of the renormalization parameters are preserved by all the orders of the Φ 4 4 -iteration ( cf. theorem 3.2 of stability of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) b) On the other hand being contractive in a closed neighbourhood of the fundamental sequence, it provides the Φ 4 4 unique solution as limit of the convergent Φ 4 4 -iteration (cf. Appendix 2.7).

3. In Appendices 2.3, 2.4 2.5 we present the proofs of the signs, bounds and limits at infinity of the "global terms" B n+1 A n+1 and D n respectively. These properties constitute the necessary tools for the proof of the stability of Φ 4 4 -iteration inside Φ R (theorem 3.2 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] which is established in Appendix 2.6 via the proofs of propositions 3.5 and 3.6 (of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]). 4. Finally, in Appendix 2.7, as we noticed before, we show the theorem of the local contractivity of M * inside a closed ball with center the fundamental sequence.

For the reader's convenience the proof of each theorem or proposition of "I" is preceded by the precise name of the statement, and the number of Appendix as it is announced in "I". Moreover the corresponding number of the related definitions or formulas are reminded along the lines of the associated proofs.

2 Tha proofs of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] 1 The non triviality of Φ R APPENDIX 2.1 Proof of theorem 3.1 of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] Theorem 2.1 The subset Φ R is a nontrivial subset of B R We consider the fundamental sequence H T 0 (cf. definition 2.5 of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) and verify successively the properties of Φ R (cf. definition 3.1 (of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] ). Precisely:

1. ∀(q, Λ) ∈ (E 4 (q) × R + * ) H 2 T 0 = (q 2 + m 2 )(1 + δ 10 (q, Λ)∆ F ) with: δ 10 (q, Λ)∆ F = -ρ 0 + Λδ 3,min ([N 3 ] -[N 3 ](q 2 +m 2 )=0 )∆ F 1 + ρ 0 + Λ|a 0 | We verify: lim (q 2 +m 2 )=0 H 2 T 0 (q, Λ)∆ F (q) = 1 (or lim (q 2 +m 2 )=0 δ 10 (q, Λ)∆ F = 0)
and in view of the logarithmic asymptotic behaviour of the Φ 4 4 operation namely:

[N 3 ]∆ F ∼ q→∞ log(q 2 + m 2 ) H 2
T 0 (q, Λ) ≤ (q 2 + m 2 ) (1+π 2 /18) and H 2 min (q) ≤ H 2 T 0 (q, Λ), with H 2 min (q) = q 2 + m 2 (2.1) (cf. properties (3.53) of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]).

2.

For every n = 2k + 1, k ≥ 1 and ∀ (q, Λ) ∈ (E 4n (q) × R + * ) we verify (recurrenly) that the functions

H 4 T 0 = -δ 3,min (Λ) l=1,2,3 H 2 T 0 (q l )∆ F (q l ) H n+1 T 0 (q, Λ) = δ n,min (Λ)C n+1 T 0 (q, Λ) 3Λn(n -1) ; (2.2) 
(where {δ n,min } n≥3 is the splitting sequence of definition 2.3, of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]), have the structure of (G.R.Φ.C's) and belong to the class A (αnβn) 4n

of Weinberg functions with corresponding asymptotic indicatrices given as follows: [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]).

∀ S ⊂ E 4n (q) α n (S) =    -(n -3) if S ⊂ Ker λ n 0 if S ⊂ Ker λ n β n(S) = ν (n) = 2n ∀ S ⊂ E 4n (q)    (2.3) (cf. properties (3.54) of
3. The properties 3.55, 3.56, 3.57 of "I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] are automatically satisfied by the tree type definition of H T 0 in terms of the the splitting sequence {δ n,min } n≥3 of definition 2.3 of "I":

with δ 3,min (Λ) ∼ q→∞ Λ (δ 3,min = 6Λ 1 + 9Λ(1 + 6Λ 2 ) ) lim Λ→0 δ 3,min (Λ) Λ = 6, and (2.4) 
δ n,min (q, Λ)

∼ q→∞ Λ and lim Λ→0 δ n,min (Λ) Λ = 3n(n -1) δ n,min (Λ) < δ n,max (Λ) (2.5)
The signs and bounds 3.58 3.59 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] are also ensured recurrently by the H n+1 T 0 Green's functions in view of the splitting-tree structure (cf. definition 2.2).

4. Finally, we trivially obtain that H T 0 also verifies the property 4 of Φ R (cf. equations 3.60 , 3.61 and 3.62 of"I" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF], of the renormalization constants)

γ 0 = 1; , a 0 = -δ 3,min [N 3 ](q 2 +m 2 )=0 (2.6) 
ρ 0 = Λδ 3,min [ ∂ ∂q 2 [N 3 ]] (q 2 +m 2 )=0 (2.7)
2

The new mapping M * APPENDIX 2.2 Proof of proposition 3.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] ("M * is equivalent to M" of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) i) We first notice that as far as the renormalization parameters a, ρ and γ are concerned the corresponding definitions of the mapping M * are identical to those appearing precisely in the definition (1.1) eqs 1.6 of M of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF](modulo the particular properties in Φ R cf. also Remarks 3.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]).

ii) Now, we identify the two images of H 2 in [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] and write for example: on the left the corresponding definition of the mapping M * equations (3.65) and on the right hand side the image by M equations (1.6):

(q 2 + m 2 )(1 + δ 1 ∆ F ) = - Λ (γ + ρ) {[N (3) 3 H 4 ] -ãH 2 ∆ F } + (q 2 + m 2 )γ (γ + ρ) or δ 1 ∆ F = -ρ -Λ{[N (3) 3 H 4 ] -ãH 2 ∆ F }∆ F (γ + ρ) (2.8)
iii) In an analogous way ∀ n ≥ 3, (q, Λ) ∈ E 4n (q) × R + , taking into account M and by using the "splitting" property in Φ R : H n+1 = δ n (q, Λ)C n+1 3Λn(n -1) , we have:

H n+1 (q, Λ) = 1 (γ + ρ) { [A n+1 + B n+1 + C n+1 ](q, Λ) + ΛãH n+1 (q, Λ)} or H n+1 = 1 (γ + ρ) [A n+1 + B n+1 + ΛãH n+1 ] + H n+1 3Λn(n -1) δ n (γ + ρ) or δ n {(γ + ρ)H n+1 -[A n+1 + B n+1 + ΛãH n+1 ]} = H n+1 3Λn(n -1)
and finally

δ n (q, Λ) = 3Λn(n -1) (γ + ρ) -D n (H) -Λã with D n (H) = B n+1 + A n+1 H n+1
(2.9)

3 The properties of the global terms B n+1 (ν) and A n+1 (ν) and D n+1

(ν) APPENDIX 2.3 Proof of Proposition 3.2 of [20] Let H ν ∈ Φ R .
• We start with n=3.

By the hypothesis H ν ∈ Φ R the properties i) "opposite sign property" (using H 4 ν < 0) ii) the axiomatic field theory properties, euclidean invariance and iii) asymptotic momentum behaviour at infinity are directly obtained thanks to the hypothesis H ν ∈ Φ R (precisely the corresponding properties of H 4 ν < 0) .

In order to obtain iv a) We apply the splitting of H 4 ν , then the sign and bound H 4 (ν,min) and obtain the bound |B 4 (ν,min) |. Precisely:

∀ fixed (q, Λ) ∈ (E 12 (q) ×]0, 0.05]) |B 4 ν | ≥ |B 4 ν,min | where: |B 4 ν,min | = 9Λ 2 I 0 G (q 2 , q 3 )δ 3,min 3 i=1 ∆ F (q i )H 2 (ν) (q i ) with I 0 G (q 2 , q 3 ) = R (0) G [H 2 ν (k + 3 i=2 q i )[∆ F (k + 3 i=2 q i )] 2 ∆ F (k)]d 4 k
(2.10) (For the precise momentum assignement of the integral cf.figure 1).

• Now, for n ≥ 5 the properties i) "opposite sign property" ii) the axiomatic field theory properties and euclidean invariance and iii) asymptotic momentum behaviour at infinity are again easily established thanks to the hypothesis 

H ν ∈ Φ R .
B 4 ν,(j2=2) = -3Λ[N 2 H 4 ν ][N 1 H 2 ] ( Φ 4 -operation) of order ν).
The figure displays also the zoom on the bubble H 4 ν -point function after application of the splitting.

For the lower bound iv a) we replace the sum of |B n+1 ] by just the dominant contribution multiplied by the appropriate combinatorial factor and by taking into account the splitting and minimization of H n+1 ν following the hypothesis H ν ∈ Φ R .

Finally we note that ∀n ≥ 5 we use an identical prescription of four momentum assignement for the one loop integration as indicated in fig. 2. In other words we integrate with respect to the H 2 ν -point function (and the corresponding free propagators) of the dominant term of the tree C n+1 ν,min so that the part H n-1 ν does not contribute to the integration procedure as indicated in the figure 2. Of course the integral is always logarithmically divergent and ∀n ≥ 5 it needs the renormalisation operator R (0) G . But, the overall asymptotic behaviour (decreasing as n increases) is, as expected, the same as that of R.Φ.C -H n+1 ν thanks to the free propagator and the "vertex" H n-1 ν .This completes the proof of the lower bound (3.71) [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]. Analogous arguments yield the proof of the upper bound |B n+1 ν,max | ( (3.75) of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF].)

• iv).b) For the increase property of the sequence δB n,ν (cf.equation 3.72 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]), we first prove the following: On the left we give the graphical representation of the term

Lemma 3.1 ∀ fixed (q, Λ) ∈ (E 20 (q) ×]0, 0.05]) |B 6 ν,min | |H 6 ν,max | ≥ |B 4 ν,min | |H 4 ν,max | (2.11)
3Λ[N 2 H 6 ν,min ][N 1 H 2 ν ] of order ν).
In the same figure a zoom of the bubble-function H 6 ν,min after application of the minimization and the two splittings of H 6 ν,min and H 4 ν,min is displayed. On the right we display the analogous integration procedure for

3Λ[N 2 H n+1 ν,min ]N 1 H 2 ν .
Proof of Lemma 3.1 Following the proven bound 3.71 and the hypothesis H ν ∈ Φ R we write:

|B 6 ν,min | |H 6 ν,max | = 15Λ 2 I 0 G (q (4) ) δ 5,min |H 4 ν |∆ F ( i=1,2,3 q i ) l=4,5 H 2 ν (q l )∆ F (q l ) δ 5,max |H 4 ν |∆ F ( i=1,2,3 q i ) l=4,5 H 2 ν (q l )∆ F (q l ) = 15Λ 2 I 0 G (q (4) )
δ 5,min δ 5,max with (cf.fig. 2)

I 0 G (q (4) ) = R (0) G [H 2 ν (k + 4 i=1 q i )[∆ F (k + 4 i=1 q i )] 2 ∆ F (k)]d 4 k (2.12)
Moreover by analogy, when n = 3 we have:

|B 4 ν,min | |H 4 ν,max | = 9Λ 2 I 0 G (q (2) )
δ 3,min δ 3,max with (cf.fig. 1)

I 0 G (q (2) ) = R (0) G [H 2 ν (k + 2 i=1 q i )[∆ F (k + 2 i=1 q i )] 2 ∆ F (k)]d 4 k
(2.13) Now, we take into account the positivity and the logarithmic asymptotic behaviour with respect to the external momenta of both integrands together with the inclusion relation of the momentum subspaces S(q (2) ) ⊂ S(q (4) ), so that we could write:

R (0) G [H 2 ν (k + 4 i=1 q i )[∆ F (k + 4 i=1 q i )] 2 ∆ F (k)] ≥ R (0) G [H 2 ν (k + 2 i=1 q i , q 3 = 0, q 4 = 0)[∆ F (k + 2 i=1 q i )] 2 ∆ F (k)] = R (0) G [H 2 ν (k + 2 i=1 q i )[∆ F (k + 2 i=1 q i )] 2 ∆ F (k)] or I 0 G (q (4) ) ≥ I 0 G (q (2) ) (2.

14)

On the other hand we verify (by application of definition 2.3 of splitting parameters of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] ), that the inequality:

5 δ 5,min δ 5,max > 3 δ 3,min δ 3,max (2.15) 
holds under the weak condition: ∀ Λ ≤ 0.5. It then follows that

|B 6 ν,min | |H 6 ν,max | ≥ |B 4 ν,min | |H 4 ν,max | (2.16)
• Then, we show recurrently that: ∀ fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) and n ≥ 7 the sequence:

δB n,ν n=2k+1,k≥3 = |B n+1 ν,min | n(n -1)|H n+1 ν,max | (2.17) 
increases with increasing n. In other words we prove that:

|B n+1 ν,min | n(n -1)|H n+1 ν,max | ≥ |B n-1 ν,min | (n -2)(n -3)|H n-1 ν,max | (2.18)
By using the corresponding proven bound 3.71 |B n+1 ν,min | (resp. |B n-1 ν,min |) , and proposition 3.6 for |H n+1 ν,max | (resp. for |H n-1 ν,max |), the inequality 2.18 is equivalent to the following one:

δ n,min Tn I 0 G (q (n-1) ) δ n,max T n ≥ δ (n-2),min Tn-2 I 0 G (q (n-3) ) δ (n-2),max T n-2 (2.19)
where: (Reminder)

T n = (n-3) 2 48 + (n-3) 3 + 1 Tn = (n-3) 2 48 + (n-3) 3 (2.20)
Notice that the integrals I 0 G (q (n-1) ), I 0 G (q (n-3) ) are defined by analogy to 2.12 and 2.13 (see also the right part of figure 2) with corresponding logarithmic asymptotic coefficients which verify :

β (n,ν) = β (1,ν) n ≥ β (n-2,ν) = β (1,ν) (n -2) ∀ S ⊂ E 4n
(q) , S(q (n-3) ) ⊂ S(q (n-1) ). So that finally, it remains to show that: 

f d 0 ≡ δ n,min Tn δ (n-2),max T n-2 δ n,max T n δ (n-2),min Tn-2 ≥ 1 or [1 + 3Λ(n -2)(n -3)][1 + n(n -1)d 0 ](n -3) 2 [ (n-5) 2 48 + (n-5) 3 + 1] 1 + 3Λn(n -1)][1 + (n -2)(n -3)d 0 ](n -5) 2 [ (n-3) 2 48 + (n-3) 3 + 1] ≥ 1 (2.
|A 4 ν,max | = R G I (3) G,ν (k)[H 2 (ν) (l 1 )[∆ F (l 1 )] 2 ∆ F (k + q 1 )d 4 k ×Λδ (5,max) δ 3,max 3 i=1 ∆ F (q i )H 2 (ν) (q i ) (2.22)
where I

Gν represents the result of the first integration with respect to k 1 . The positivity of the two integrands in equations 2.10 and 2.22 allows the comparison of the two integrals (cf. also the figures 1 and 5). More precisely the faster decrease of the propagator [∆ F (l 1 )] 2 in the integrand of equ. 2.22 in comparison with the propagator ∆ F (k + 3 i=2 q i )] 2 in the integrand of equ. 2.10 enables us to obtain the following inequality:

I 0 G (q 2 , q 3 ) ≥ R (0) G I (3) G,ν (k)[H 2 (ν) (l 1 )[∆ F (l 1 )] 2 ∆ F (k + q 1 )d 4 k (2.23)
On the other hand taking into account definition 2.3 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] of the splitting parameters, we verify that:

9 2 δ 3,min > δ (5,max) δ 3,max ∀Λ ≤ 0.05 (2.24) 
So finally:

|B 4 ν,min | -|A 4 ν,max | > 0 ∀Λ ≤ 0.05 (2.25)
The properties i) "good sign property" ii) the axiomatic field theory properties and euclidean invariance and iii) asymptotic momentum behaviour at infinity are directly obtained thanks to the hypothesis We apply the splitting by the hypothesis H ν ∈ Φ R . For simplicity on the left of the figure 4 we give the configuration of the analogous splitting of A 4 ν . For the double integration we use the momentum prescription we defined on the right of the figure 4. We also notice that despite the quadratic divergence of the double integral with respect to k and k 1 , the overall asymptotic behaviour (decreasing as n increases) is as expected the same as that of H n+1 (ν) 's. So: that we show below.

H ν ∈ Φ R . iv . 
|Λ[N (n+2) 3 H n+3 (ν) ]| ≤ Λ R (3) 
G [ |H n+3 (ν,max) | i=1,2,3 ∆ F (l i ) ]d 4 k 1 d 4 k ≤ Λδ (n+2,max) T n+2 ∆ F ( n i=1 q i )]|H n+1 (ν,max) (q (n) )| × R (2) G i=2,3 [H 2 (ν) (l i )[∆ F (l i )] 2 ∆ F (k 1 + k)d 4 k 1 d 4 k (notation in fig: 4 l 3 = k 1 ) (2 
iv.b) We show that ∀ fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) the sequence:

δA n n=2k+1,k≥2 = |A n+1 ν,max | n(n -1|H n+1 ν,max | (2.28)
decreases with increasing n. In other words we prove that:

|A n+1 ν,max | n(n -1)|H n+1 ν,max | ≤ |A n-1 ν,max | (n -2)(n -3)|H n-1 ν,max | (2.29)
By using the previous result of |A n+1 ν,max | the previous inequality 2.29 is equivalent to the following:

δ (n+2,max) T n+2 ∆ F ( n i=1 q i ) [I (n) G ] n(n -1) ≤ δ (n,max) T n ∆ F ( n-2 i=1 q i ) [I (n-2) G ] (n -2)(n -3)
(2.30) Now, due to the total external momentum dependence of the "external" and "internal propagators" inside of each of the two integrands

I (n) G and I (n-2) G
, we have:

∆ F ( n i=1 q i ) [I (n) G ]d 4 k 1 d 4 k ≤ ∆ F ( n-2 i=1 q i ) [I (n-2) G ]d 4 k 1 d 4 k (2.31)
So that finally we have to verify that the following continuous function of n f d 1 is smaller than 1:

f d 1 (n) ≡ δ n+2,max T n+2 (n -2)(n -3) δ n,max T n n(n -1) ≤ 1 or (n + 1)(n + 2)[1 + n(n -1)d 0 ][ (n-1) 2 48 + (n-1) 3 + 1](n -2)(n -3) n(n -1)[1 + (n + 1)(n + 2)d 0 ][ (n-3) 2 48 + (n-3) 3 + 1]n(n -1)
≤ 1

(2.32) By giving to the numerical constant d 0 = 3Λ10 (-1) different values in the interval [0.02 , 0,45] and after numerical calculations we can find that the difference between the denominator and numerator is always positive.

For the values of n (= x continuous) in the interval ]7, 200] (cf.figure 6 ) the function f d 1 (n) increases continuously (with positive values always smaller than 1) up to the limit value of 1. increases continuously (with positive values always smaller than 1 ) up to the limit value of 1.

ii) Following the hypothesis H ν ∈ Φ R , the splitting properties 3.56, 3.57 ( of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) yield recurrently at every fixed values of q ,the behavior of every H ν ∈ Φ R with respect to the coupling constant as (-Λ) (n-1)/2 . But, B n+1 ν (resp. A n+1 ν ) behaves by definition as (-Λ) (n+1)/2 (resp. as (-Λ) (n+3)/2 ), so finally:

∀ fixed (q, n), lim

Λ→0 D n,ν (Λ) = 0 (2.33)
iii) By application of the previous results 2. [START_REF] Voros | Private communication CEN Saclay[END_REF] ) established previously in appendices 2.3 and 2.4 respectively, allow us to obtain directly the upper and lower bounds of D n,ν .

In particular the increase property of D n,ν,min /n(n -1) (cf. 3.88 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] is obtained in a similar way to that of proof of 2.34:

D n,ν,min n(n -1) = ( δB n,ν -δA n,ν ) ≥ ( δB n-2,ν -δA n-2,ν ) = D n-2,ν,min (n -2)(n -3) (2.35)
iv) Finally the existence of the limit at infinity (3.89) of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] is directly ensured.

These results complete the proof of proposition 3.4

B) Proof of proposition 3.6

Taking into account the previous results of H 2 ν , H 4 ν as starting point we apply, for every n ≥ 5, a recursive procedure: we suppose that for all the previous H m+1 ν , (m ≤ n -2) Green's functions the "good sign" and upper and lower bounds (properties (3.99), (3.100), (3.101) of proposition (3.6) of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) are satisfied. We then apply this hypothesis on the recurrent definition of the sum-tree term C n+1 ν in terms of all previous Green's functions and the "good sign" and upper and lower bounds and limits at infinity (cf. 3.94, 3.95, 3.96, 3.97 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]), of the latter are trivially obtained.

For the signs and bounds of every H n+1 ν we proceed exactly in an analogous way as we did for the H 4 ν function: we first consider the splitting functions using the mapping M * :

δ n,ν = 3Λn(n -1) (γ (ν-1) + ρ(ν-1) + D n,(ν-1) (H (ν-1) ) -Λã (ν-1) ) with D n,(ν-1) (H (ν-1) ) = |B n+1 (ν-1) | -|A n+1| (ν-1) | |H n+1 (ν-1) | (2.40)
In view of the hypothesis H ν-1 ∈ Φ R we apply propositions 3.2 (on |B n+1 (ν-1) )|) respectively 3.3 (on |A n+1| (ν-1) )), 3.4 (on D n,(ν-1) ) and the corresponding bounds and limits of the renormalization parameters, so that the bounds and limits of δ n,ν 3.57 or 3.98, of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] are established. Now, we use the previous results about the properties of C n+1 ν and δ n,ν and by application of the definition 3.2 of of the mapping M * ("splitting property") (∀n ≥ 5) the signs 3.99, the bounds 3.100, 3.101 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) are recurrently verified, so the proof of proposition 3.6 is completed .

The proof of theorem 3.2 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] Finally, in order to complete the proof of theorem 3.2 we apply the previous results of proposition 3.5 concerning the H 2 ν and H 4 ν Green's functions and obtain the properties of the renormalization parameters 3.60, 3.61, 3.62 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] at every order ν.

So, the stability of the Φ 4 4 -iteration under the action of M * inside the subset Φ R is ensured.

5 Proof of the local contractivity of the mapping M * or the convergence of the Φ 4 4 iteration to a unique non trivial solution inside Sr(0) (cf. theorem.4.1 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) APPENDIX 2.7 By application of the definition 2.10 of the norm N , in [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] the contractivity criteria are equivalent to the following conditions: ∀ Λ ∈]0, 0.04]

(I) sup (n,q,Λ)    |H n+1 ν -H n+1 T 0 | M n ; | ∂ (0,1) ∂q 2 N 3 (H 4 ν -H 4 T 0 )| M (0,1) (3) 
; |N 2 (H n+1 ν -H n+1 T 0 )| M(n,2) ; |γ ν -γ 0 | N γ    ≤ k (0) (Λ)r 0 with k (0) (Λ) < 1 and (II) sup (n,q,Λ)    |H n+1 ν -H n+1 ν-1 | M n ; | ∂ (0,1) ∂q 2 N 3 (H 4 ν -H 4 ν-1 )| M (0,1) 3 ; |N 2 (H n+1 ν -H n+1 ν-1 )| M(3,2) ; |γ ν -γ ν-1 | N γ    ≤ K ν (Λ) H ν-1 -H ν-2 ; with K ν (Λ) < 1 and k (0) + K ν < 1 (2.41) 1. Proof of (I)
We first obtain the corresponding bounds for ν = 1. We start from n = 1, n = 3 and generalize recurrently for every n ≥ 5 . Then we apply the same procedure for every ν ≥ 2.

a) Let n = 1 |H 2 1 -H 2 T 0 | M 1 ≤ Λ|N 3 (H 4 max -H 4 min )|∆ F M 1 (2.42)
By using definition 4.1 of the ball S r(0) (H T 0 ), the norm definition 2.10 and proposition 3.5 of I [20], we finally obtain:

|H 2 1 -H 2 T 0 | M 1 ≤ k (0) 1,1 r(0) with: k (0) 1,1 = 6Λ 2 (q 2 + m 2 ) π 2 /54 (1 + 6Λ 2 (q 2 + m 2 ) π 2 /54 ) (q 2 + m 2 )(1 + 6(q 2 + m 2 ) π 2 /54
(2.43) For n = 3 we have:

H 4 1 (qΛ) = -δ 3,(1) (q, Λ) =1,2,3 H 2 (1) (q , Λ)∆ F (q ) ; (2.44) so |H 4 1 -H 4 T 0 | M 3 ≤ {δ 3,max -δ 3,min } M 3 =1,2,3 H 2 (max) (q , Λ)∆ F (q )+ +3δ 3,max |H 2 1 -H 2 T 0 | M 3 =1,2 H 2 (max) (q , Λ)∆ F (q ) (2.45)
And again by the definition of norms, of r(0) and the previous result for n = 1 we obtain:

|H 4 1 -H 4 T 0 | M 3 ≤ Λr(0)(1 + (18) 2 Λ 2 ) i.e. k (0) 1,3 = Λ(1 + (18) 2 Λ 2 ) and k (0) 1,3 < 1 for Λ ≤ 0.1
(2.46) Now for every n ≥ 5 and n ≤ n -2 we suppose that we have established an analogous inequality, namely:

|H n+1 1 -H n+1 T 0 | M n ≤ r(0)k (0) 1,n with k (0) 1,n < k (0) 1,3 if Λ ≤ 0.1 and we show that k (0) 1,n < k (0) 1,3
without any supplementary condition on Λ.

(2.47) By using the definition of S r(0) (H T 0 ), the norm definition , the splitting properties, the bounds of the tree terms, and the recursion we have successively:

|H n+1 1 -H n+1 T 0 | M n ≤ {δ n,max -δ n,min }|C n+1 max | 3Λn(n -1)M n + δ n,max |C n+1 1 -C n+1 T 0 | 3Λn(n -1)M n < r(0)(n -3) 2 48n(n -1) { |H n-1 max | M n-2 + k (0) 1,n-2 H 2 (max) M 1 + 2k (0) 1,1 |H n-1 max | M n-2 }
(2.48) In the last formula we used again the result of ref. [15, c] on the number T n of different partitions inside the tree terms as we did in proposition 3.6 . Now we note that for every n we have:

|H n+1 max | M n < |H n-1 max | M n-2 (2.49) 
As a matter of fact by application of proposition 3.6 and the norm definition we can write:

|H n+1 max | M n < (n -3) 2 |H n-1 max | 48n(n -1)M n-2 < |H n-1 max | 48M n-2
(2.50)

It then follows that:

|H n+1 max | M n < (n -3) 2 |H n-1 max | 48n(n -1)M n-2 < |H 4 max | 48M 3 < Λ (2.51)
From these results and the recurrent hypothesis

k (0) 1,n-2 < k (0) 1,3 (2.52) 
we have:

|H n+1 1 -H n+1 T 0 | M n < r(0) 48 {Λ + k (0) 1,3 + 2k (0) 1,1 } or |H n+1 1 -H n+1 T 0 | M n < r(0)k (0) 1,n (2.53) 
with: b) In the case of ν ≥ 2 we follow an analogous procedure and find similar results . We just notice that for n = 1 the condition imposed on Λ, in order that k (0) ν,1 < 1, is stronger than the one of every k (0) ν,n < 1, with n ≥ 3 (cf. figure 7). As a matter of fact at every order ν ≥ 2 of the Φ 4 4 -iteration the contributions coming from the values of the renormalization constants γ, ρ, ã become nontrivial. Then as before by taking into account the norm definition, and the definition of S r(0) (H T 0 ) and r(0) we first have:

k (0) 1,n = k (0) 1,3 16 
|γ ν-1 -γ0 | ≤ r(0)(1 + 9Λ(1 + 6Λ 2 )) |ρ ν-1 -ρ0 | ≤ Λr(0) M r(0,1)
and finally (after some trivial estimations):

|H 2 ν -H 2 T 0 | M 1 ≤ k ν,1 r(0) with k ν,1 (Λ) = 48Λ 2 (1 + 10Λ)
and k ν,1 (Λ) < 1 for : Λ ≤ 0.1

(2.56)
Now as before, ∀n ≥ 3 we estimate the following bounds:

|H 4 ν -H 4 T 0 | M 3 ≤ Λr(0)(1 + 144Λ 2 (1 + 10Λ))
which means:

k (0) ν,3 = Λ(1 + 144Λ 2 (1 + 10Λ)) and k (0) ν,3 < 1 for Λ ≤ 0.135 (cf. figure 7)
(2.57) and similar results for:

|N 3 (H 4 ν -H 4 T 0 )| M r(0,1) 3 and | ∂ ∂q 2 N 3 (H 4 ν -H 4 T 0 )| M r(0,1) 3 (2.58)
Moreover we find again recurrently, using the same arguments as when ν = 1 that for all n ≥ 5:

k (0) ν,n < k (0) ν,3 < k (0) ν,1 = 48Λ 2 (1 + 10Λ) independent of ν (2.59) Conclusion: ∀ν ≥ 2, H ν -H T 0 ≤ k (0) (Λ)r(0)
where

k (0) (Λ) = 48Λ 2 (1 + 10Λ) < 1 ∀ Λ ≤ 0.1 (2.60)

Proof of (II)

The first step ν = 2 being easily verified, we suppose that for all ν ≤ ν -1 the corresponding inequality 2.41 is vérified.

a) For n = 1 we write:

|H 2 ν -H 2 ν-1 | M 1 ≤ |ρ ν-1 -ρν-2 ||γ ν-1 + 2(ρ ν-1 + ρν-2 )| + |γ ν-1 -γν-2 |ρ ν-1 |γ 0 + ρ0 | 2 |M 1 + Λ|N 3 H 4 ν-1 (γ ν-2 + ρν-2 ) -N 3 H 4 ν-2 (γ ν-1 + ρν-1 )|∆ F |(γ ν-1 + ρν-1 )(γ ν-2 + ρν-2 )|M 1 + Λ|N 3 H 4 ν-1 (γ ν-2 + ρν-2 ) -N 3 H 4 ν-2 (γ ν-1 + ρν-1 )| (q 2 +m 2 )=0 H 2 ν-1 ∆ F |(γ ν-1 + ρν-1 )(γ ν-2 + ρν-2 )|M 1 +Λ |H 2 ν-1 -H 2 ν-2 ||N 3 H 4 ν-2 | q 2 +m 2 =0 ∆ F |(γ ν-1 + ρν-1 )(γ ν-2 + ρν-2 )|M 1 (2.61)
Then using the definitions of the norm and the renormalization constants we first have:

|γ ν-1 -γν-2 | ≤ H ν-1 -H ν-2 N γ (Λ)| q 2 =0 |ρ ν-1 -ρν-2 | ≤ Λ H ν-1 -H ν-2 M (0,1) 3 | q 2 +m 2 =0 (2.62)
Then, after some elementary estimations the first term of the R.H.S. of 2.61 yields:

O 1 M 1 = |ρ ν-1 -ρ ν-2 |γ ν-2 + |γ ν-1 -γν-2 |ρ ν-2 |γ 0 + ρ0 | 2 |M 1 ≤ ≤ K ν,1 1 (Λ) H ν-1 -H ν-2 with K ν,1 1 (Λ) = 12Λ < 1 when Λ ≤ 0.08 (2.63)
We take the sum of the second and third term of 2.61 and call it O 2 :

By application again of the norm definition we obtain:

O 2 M 1 ≤ K ν,2 1 (Λ) H ν-1 -H ν-2 here: K ν,2 1 (Λ) = 12Λ H 2 max ∆ F |N 3 H 4 max | M3 M 1 < 12Λ
and again that means for Λ ≤ 0.08 K ν,2 1 < 1

(2.64)

The last term of 2.61 that we call O 3 yields:

O 3 M 1 ≤ Λ |H 2 ν-1 -H 2 ν-2 ||N 3 H 4 ν-2 | q 2 +m 2 =0 ∆ F |(γ ν-1 + ρν-1 )(γ ν-2 + ρν-2 )|M 1 ≤ ≤ K ν,3 1 (Λ) H ν-1 -H ν-2 here: K ν,3 1 (Λ) = 6Λ 2
(2.65) By using the corresponding bounds from 2.63, 2.64 2.65 we obtain:

|H 2 ν -H 2 ν-1 | M1 < K ν 1 (Λ) H ν-1 -H ν-2 here: K ν 1 (Λ) = K ν,1 1 + K ν,2 1 + K ν,3 1 = 6Λ(4 + Λ) with K ν 1 < 1 ∀ Λ ≤ 0.04 (2.66) b)
Let n = 3 we write:

|H 4 ν -H 4 ν-1 | M 3 ≤ A + B (2.

67)

where:

A = δ 3,ν =1,2,3 |H 2 ν (q , Λ) -H 2 ν-1 (q , Λ)|∆ F (q ) M 3
(2.68) and

B = |δ 3,ν -δ 3,ν-1 | =1,2,3 H 2 ν-1 (q , Λ)∆ F (q ) M 3
(2.69) i) By an analogous procedure as before we obtain:

A ≤ K ν 3,A (Λ) H ν-1 -H ν-2 with K ν 3,A (Λ) = 3K ν 1 D3,min l=2,3 H 2 (max) (q , Λ) M 1 (q l ) (2.70) and D3,min = 1 + ρ 0 + Λ|a 0 | + 0, 18Λ (2.71) 
Now by application of the norm definition of M 1 and definition of H 2 max (Proposition 3.5 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]), we obtain a best estimate of the ratio H 2 max M 1 :

H 2 max M 1 ≤ 1 - 6(q 2 + m 2 ) π 2 /54 (1 -Λ 2 ) 1 + 6(q 2 + m 2 ) π 2 /54
and for sufficiently large q 2 : H

2 max M 1 ∼ 6Λ 2 (2.72)
and so:

K ν 3,A (Λ) < 108Λ 4 K ν 1 < 0.7K ν 1 (∀Λ < 0.08) (2.73)
ii) As far as the term B of the r.h.s. of 2.64 is concerned we use the same arguments as before and we obtain:

|δ 3,ν -δ 3,ν-1 | =1,2,3 H 2 ν-1 (q )∆ F (q ) M 3 ≤ (B.1)+(B.2)+(B.3)
(2.74) with explicitly:

ii.1)

(B.1) ≤ ≤ =1,2,3 H 2 ν-1 (q ) M 1 (q ) |γ ν-1 -γν-2 | + |ρ ν-1 -ρ ν-2 | + |ã ν-1 -ãν-2 | D3,ν-1 D3,ν-2
Here we used the definitions of the mapping

M * D3,ν-1 = γν-1 + ρν-1 + D 3,ν-1 -Λã ν-1
(and the analogous expression for D3,ν-2 ), so 3 (1 + 9Λ) for sufficiently large q 2 . and for small q 2 K ν 3,B.1 (Λ) < 1, ∀Λ ≤ 0.05 (2.75) ii.2) and:

(B.1) ≤ K ν 3,B.1 (Λ) H ν-1 -H ν-2 with K ν 3,B.1 ≤ (6Λ)
(B.2) ≤ ≤ 6Λ =1,2,3 H 2 ν-1 (q )∆ F (q ) |H 4 ν-1 -H 4 ν-2 |B 4 ν-2 -A 4 ν-2 | M 3 |H 4 ν-1 ||H 4 ν-2 | D3,ν-1 D3,ν-2 (2.76) 
where

|B 4 ν-2 -A 4 ν-2 | |H 4 ν-2 | = D 3,ν-2 (2.77) so (B.2) ≤ K ν 3,B.2 (Λ) H ν-1 -H ν-2 where K ν 3,B.2 = D 3,max D3,min = 9Λ(1 + 6Λ 2 ) (1 + ρ 0 + Λ|a 0 | + 0, 18Λ) and K ν 3,B.2 (Λ) < 1, ∀Λ ≤ 0.1 (very weak condition) (2.78) ii.3) Moreover: (B.3) < 9Λ M 3 D3,ν-1 |N 2 (H 4 ν-1 -H 4 ν-2 )|H 2 max ∆ F + 9Λ M 3 D3,ν-1 |N 2 H 4 max ||H 2 ν-1 -H 2 ν-2 |∆ F ( 2 
.79) Notice that we have used the sign properties of B 4 and A 4 together with the definitions of the mapping. Then, by application of the norm definitions we obtain: 

(B.3) < K ν 3,B.3 (Λ) H ν-1 -H ν-2 where K ν 3,B.3 = 18ΛH 2 max D3,min M 1 K ν 3,B.3 (Λ) < 1, ∀Λ ≤ 0.05 ( 
|γ ν -γν-1 | N γ ≤ K ν γ (Λ) H ν-1 -H ν-2 ; with K ν γ (Λ) = 3K ν 1 γ max M -2 1 | q 2 =0 + K ν 3 γ 2
max < 1 (under conditions weaker than the condition Λ ≤ 0.05)

(2.82) c.ii)

|ρ ν -ρν-1 | M (0,1) 3 ≤ Λ | ∂ ∂q 2 N 3 (H 4 ν -H 4 ν-1 )| M (0,1) 3 ≤ K ν ρ (Λ) H ν-1 -H ν-2 ;
with K ν ρ = ΛK ν 3 < 1 under weaker condition on Λ (2.83) c.iii) |ã ν -ãν-1 | M (0,1) 3

≤ K ν 3 (Λ) H ν-1 -H ν-2
(2.84) c.iv) By using the basic splitting properties in Φ R of H 4 and by analogous arguments as above we show that

|N 2 H 4 ν | ≤ 6Λ[N 3 2 ] 2 l=1 M 1 (q l ) so that |N 2 (H 4 ν -H 4 ν-1 )| M(3,2) ≤ K ν 3 (Λ) H ν-1 -H ν-2
(2.85)

Finally: We suppose that for every ñ ≤ n -2 the second property of 2.41 is verified in the following sense: ∀Λ ≤ 0.05 and ∀ fixed ν, there is a strictly positive constant (continuous function of Λ) K ν ñ (Λ) such that:

sup (q,Λ)    | ∂ (0,
sup (q,Λ) |H ñ+1 ν -H ñ+1 ν-1 | M ñ ≤ K ν ñ (Λ) H ν-1 -H ν-2 with K ν ñ (Λ) < K ν ñ-2 (Λ) ≤ • • • ≤ K ν 3 (Λ)
(2.87) We show this property for ñ = n by using again the definitions of the norm , the mapping M * and the properties in Φ R .

|H n+1 ν -H n+1 ν-1 | M n ≤ A n + B n where A n = δ n,ν |C n+1 ν -C n+1 ν-1 | 3Λn(n -1)M n B n = |δ n,ν -δ n,ν-1 ||C n+1 ν-1 | 3Λn(n -1)M n (2.88) i) A n = δ n,ν |C n+1 ν -C n+1 ν-1 | 3Λn(n -1)M n ≤ A n ≤ K ν n,A H ν-1 -H ν-2 with K ν n,A (Λ) = H 2 (max) 24M 1 K ν n-2 H 2 (max) M 1 + K ν 1 |H n-1 (max) | M n-2
(2.89) We easily verify that under a weaker condition than Λ ≤ 0.05

K ν n,A ≤ K ν n-2,A < 1 (2.90)
ii) For the term B n of 2.85 we use the same arguments as before and we obtain: In the same way we obtain :

B n = |δ n,ν -δ n,ν-1 ||C n+1 ν-1 | 3Λn(n -1)M n ≤ |B n,1 | + |B n,
|B n,1 | ≤ K ν n,B.1 H ν-1 -H ν-2 with K ν n,B.1 =≤ l=2,3
H 2 (max) (q )(n -3) 2 |H n-1 max |(γ max + 2Λ M (0,1) n )

M 1 (q l )24n(n -1)M n-2 D3,min (2.93) Now using the obvious bound:

|H n-1 max | M n-2 ≤ l=2,3
H 2 (max) (q )|H n-3 max | M 1 (q l )24M n-4

(2.94)

and the analogous definition 2.61 of K ν n-2,B.1 we have:

K ν n,B.1 ≤ l=2,3
H 2 (max) (q )(n -3) 2 (n -2(n -3) M 1 (q l )24n(n -1)(n -5) 
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 21 Figure 1: Graphical representation of one of the three similar contributions of the global term for n = 3:B 4 ν,(j2=2) = -3Λ[N 2 H 4 ν ][N 1 H 2 ] ( Φ 4 -operation) of order ν).The figure displays also the zoom on the bubble H 4 ν -point function after application of the splitting.
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 3 Figure 3: For the values of n (= x continuous) in the interval ]7, 500] f d0 decreases continuously always from values bigger than 1 up to the limit value of 1

  21)Of course the tedious numerical calculations show clearly that the difference between numerator and denominator is always positive and goes to zero by positive values for sufficiently large n. For different values of d 0 figure 3 represents graphically the curves of f d 0 (n) which for n (= x continuous) in the interval ]7, 500] decreases continuously always from values bigger than 1 up to the limit value of 1. This completes the proof of the proposition. APPENDIX 2.4 Proof of Proposition 3.3 of [20] (cf.figure 4) Let H ν ∈ Φ R . In an analogous way, by application of the splittings signs and bounds of |H 6 ν,max | and |H 4 (ν,max) | we establish the upper bound |A 4 ν,max |. The convergence of the double integral due to the renormalization procedure allows us to apply Fubini's theorem and integrate first with respect to the k four-momentum to obtain the following: (cf.fig 5 with our comments).

Figure 4 :=]

 4 Figure 4: On the left the global term A 4 ν = Λ[N (5) 3 H 6 ν ] (Φ 4 -operation of order ν) is graphically represented with a zoom of the bubble H 6 ν -point function after the application of maximization and the splittings to the H 6 ν and H 4 ν -point functions thanks to the hypothesis H ν ∈ Φ R . On the right we represent graphically the analogous double-loop integration procedure of A n+1 ν = Λ[N (n+2) 3 H n+3 ν ] (Φ 4 -operation of order ν). Despite the quadratic divergence of the double integral with respect to k and k 1 , the overall asymptotic behaviour (decreasing as n increases) is, as expected, the same as that of the R.Φ.C. H n+1 ν .

  a) In order to prove the upper bound |A n+1 ν,max | we use analogous arguments as for the lower bound |B n+1 ν,min |, and in particular exactly as for the upper bound |A 4 ν,max |.

Figure 5 : 4 ν 3 )

 543 Figure 5: Graphical representation of the global term A 4 ν = Λ[N (5) 3 H 6 ν ] (Φ 4 -operation of order ν). On the left hand side the figure displays a zoom on the bubble H 6 -point function after the application of the splittings to the H 6 and H 4 -point functions. On the right hand side graph the vertex-ball I (3)Gν represents the result of the integration with respect to k 1 .

APPENDIX 2 . 5

 25 Proof of Proposition 3.4 ( [20]) i) By application of the hypothesis H ν ∈ Φ R , of the signs of H n+1 ν -functions and the sign properties established before of B n+1 ν and A n+1 ν , the expressions 3.83 3.84 ( [20]) are trivially verified.

Figure 6 :

 6 Figure 6: For the values of n (= x continuous) in the interval ]7, 200] the function f d1 (n)

Figure 7 :

 7 Figure 7: The stronger condition to require for the coupling constant comes from H 2 ν precisely: Λ ≤ 0.101 with k ν,1 = 0.9925 while k 1,3 = 0.4189 and corresponding values k ν,3 = 0.40 and k 1,1 = 0.1846.

2 | + |B n, 3 | ( 2

 232 1 -γν-2 | + |ρ ν-1 -ρ ν-2 | + |ã ν-1 -ãν-2 | M n Dn,ν-1 Dn,ν-2(2.92)

  2.27 and 2.25 we obtain:

	D 5,ν,min ≥ D 3,ν,min ≥ 0	(2.34)
	Moreover the upper and lower bounds B n+1 ν,min , B n+1 ν,max , A n+1 ν,max , together with
	the increase of the sequence δB n,ν n≥5	(resp. the decrease of δA n n≥5

  |B n,2 | ≤ K ν n,B.2 H ν-1 -H ν-2with Then by an analogous to the above procedure we have:|B n , 3| < K ν n,B.3 H ν-1 -H ν-2 withFinally by addition of 2.87, 2.92, 2.93 and 2.94 we obtain the proof of the recursion 2.84 and by using also the result 2.57 the proof of the contractivity criterium 2.41 follows.

						2	K ν n-2,B.1
	⇔ K ν n,B.1 < K ν n-2,B.1 < 1		
							(2.95)
	ii.2) By analogy to n = 3			
	K ν n,B.2 =	D n,max Dn,min	∼	D n-2,max Dn-2,min	< 1	∀Λ ≤ 0.05
							(2.96)
	ii.3) K ν n,B.3 = δ ∞ [N n 2 ]q=0 and verify K ν n,B.3 ∼ K ν-2 H 2 max 2M 1 n,B.3 < 1, ∀ Λ ≤ 0.05 (1 + T n n(n -1) )
							(2.97)

|ã ν-1 -ã0 | ≤ Λr(0) M r(0,1)3(2.55)

 4The proof of the stability (Theorem 3.2 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] In order to simplify the notations we often omit the arguments (q, Λ) and (q 2 ).

1 Signs and bounds APPENDIX 2.6 Proof of Propositions 3.5 and 3.6 (of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF])

A) Proof of proposition 3.5

For the positivity and asymptotic behaviour at infinity of the two point function H 2 ν , we proceed as follows: the mapping M * yields:

(2.36) Then the positive signs of the dominant terms in the numerator ensured by the recurrence hypothesis H ν-1 ∈ Φ R , ∀Λ ≤ 0, 05 precisely:

(due to the negative sign of H 4 ν-1 ) and the two positive terms of the denominator γν-1 > 0, ρν-1 > 0 (2.38)

The same terms 2.11 yield the increasing logarithmic behaviour at large momenta so the upper bounds at every order ν and at infinity are obtained (cf. 3.53 or 3.90 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]).

2.

As far as the 4-point function H 4 ν is concerned we apply again the definition (3.2 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) of the mapping M * on H ν-1 ∈ Φ R and write

Here by the definition 3.2 of M * ( [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF])

(2.39) By using proposition 3.4 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF], of the positivity of D 3,(ν-1) and definition 2.3 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] for the positive minimal and maximal values of the renormalisation parameters, we verify the upper and lower positive bounds of δ 3,(ν) in Φ R . Then, taking into account the preceding result of the H 2 ν -point function, the negative sign and bounds of H 4 ν in Φ R , ∀ ν and at infinity are obtained, ( automatically the properties 3.55 or 3.92of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF]) so the proof of proposition 3.5 is completed.