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The "non triviality" of a Φ 4 4 model, I The new mapping M * -the Φ 4 4 -iteration

Under the global title "The non triviality of a Φ 4 4 model" we show in the form of three separate articles "I', "II", "III", the existence and uniqueness of a solution to a Φ 4 4 non linear renormalized system of equations of motion in Euclidean space. This system represents a non trivial model which describes the dynamics of the Φ 4 4 Green's functions in the Wightman Axiomatic Quantum Field Theory (AQFT) framework.

The work constitutes the extension in 4-dimensions of a previous theoretical and numerical study, in zero dimensional space, by application of a fixed point theorem to another equivalent form of this dynamic system the so called Φ 4 0 "new mapping" M * which has been shown to be locally contractive, something verified by the numerical results. This extension, called "new Φ 4 4 mapping M * " is locally contractive inside a neighborhood of a particular "tree type" sequence of renormalized Green 's functions, in the four dimensional euclidean momentum space. This neighborhood (and the Φ 4 4 non trivial solution), belongs to a particular subset of the appropriate Banach space characterized by precise "renormalization physical parameters" "alternating signs", "splitting", "linear (AQFT) properties" and "good asymptotic behaviour" with respect to the four-dimensional Euclidean external momenta.
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Introduction A new non perturbative method

In the 80's I started a program for the construction in a non perturbative approach, of a non trivial Φ 4 4 model consistent with the general principles of a Wightman Axiomatic Quantum Field Theory (W.A.Q.F.T.) [1] in Euclidean Space.

The general scheme that I followed (and continue to do so) is to construct a Green's Functions physical interaction model in Euclidean Space such that it verifies the Osterwalder-Schrader Axioms [START_REF] Osterwalder | [END_REF] or equivalently the Relativistic Wightman axioms in Minkowski space. Following the chart presented below, if the constructed Green's functions verify the axioms on the left or on the right a well defined (W.A.Q.F.T.) model is established by application of the "Wightman or equivalently of Osterwalder Schrader reconstruction theorem". (1.1) The method is different in approach from the work done in the Constructive Q.F.T. framework of Glimm, Jaffe and others [3], [START_REF] Jaffe | Constructive Quantum Field Theory[END_REF], [5] and the methods of Symanzik who created the basis for a pure Euclidean approach to Q.F.T. [6] 2 Some historical informations Let us first present an overview of the different steps and results realized towards this objective, since my thesis [7] until today.

1 The Renormalized G-Convolutions R.G.C.

The subject of [7] proposed by J. Bros, has been elaborated in the context of many previously developped ideas and results about the analyticity properties of npoint Green's functions in the Axiomatic Quantum Field theory framework by J. Bros, H. Epstein and others [9], [START_REF] Steinmann | [END_REF], [START_REF] Hepp | Axiomatic field theory[END_REF], [12], [13].

In particular the results of [7] published in collaboration with J.Bros in [8] under the title "Renormalized G-Convolutions of n Point functions in Q.F.Th.-Convergence in Euclidean space", have been the extension of the results of M. Lassalle in [13]a).

The author of [13]a) proved that if we consider a connected graph G with n external lines and of which every vertex incident to n v lines is associated to one H nv -point function, then by defining a prescription of integration on the complex four-momenta associated with the internal lines, and under convergence assumptions in Euclidean directions, the so called convolution product H G associated with G is well defined as an analytic function in the corresponding complex Minkowski space of n four-momenta variables. The analyticity domain of H G contains the corresponding n-point "primitive domain" implied by causality and spectrum and the various real boundary values of H G satisfy the relevant Steinmann relations [START_REF] Steinmann | [END_REF].

The extension in [8] has been performed in the sense that no convergence assumptions in the Euclidean directions are supposed. The functions H G are not integrable at infinity but belong to a suitable class of slowly increasing functions the so called Weinberg classes [14]. A class of Weinberg functions (cf. [14], [8])

f ∈ C ∞ (E 4n (q) ) is denoted by A (α,β) 4n
and is characterized by two bounded real valued functions α(S), β(S), on the set of all linear subspaces S ⊂ E 4n (q) , which are called the "asymptotic indicatrices".

In [8] particular classes of Weinberg functions have been introduced (the classes of admissible Weinberg functions) and they have played a fundamental role for the convergence proof and good asymptotic behavior of the renormalized convolutions by an extension of the B.P.H.Z [15] renormalization procedure. More particularly a "finite part" of the G-convolution integral is defined through an algorithm which closely follows and generalizes Zimmermann's renormalization scheme [16] for the Feynmann graphs in perturbation theory .

The study in [8] concerned the most general convolutions (the so-called Gconvolutions) in a space of arbitrary dimensions. The corresponding graphs were defined by bubble vertices v (resp. complete internal lines) associated with general H nv point functions (resp. with general H 2 -point functions) satisfying all appropriate A.Q.F.T. properties.

Under the assumption that the general H nv , H 2 -point functions belong to the classes of symbols of pseudodifferential operators µv 4(nv-1) , µ i 4 it has been proven (cf. theorem 4.1 of [8]) that for every such G-convolution, the corresponding renormalized integrand belongs to the class of Weinberg functions with the appropriate asymptotic indices. So the Weinberg's criterion of convergence is verified.

The prescription of renormalization that we defined and that I present in more details in section 2 that follows, ensured not only the convergence of every "renormalized G-Convolution product" , but also the asymptotic behaviour of the renormalized G-Convolutions of n-point functions established in [17] and later the corresponding logarithmic asymptotic behaviour proved by B. Ducomet in [18].

2 The Renormalized normal product -the Φ 4 4 equations of motion and their analyticity poperties Inspired by Zimermann's ideas [19] (in perturbation theory) I started the construction of a dynamical model for a Φ 4 coupling. I introduced a Renormalized Normal Product in a non perturbative A.Q.F.Th. context, [20], and established the corresponding equations of motion for the connected completely amputated with respect to the free propagators Green's functions (Schwinger functions) in Euclidean momentum space . Precisely:

In the Q.F.T. language the interaction of four scalar fields Φ(x) is represented by an interaction Lagrangian of L I ∼ ΛΦ 4 type, for example [19]:

L ∼ ΛΦ 4 -∂ µ Φ∂ µ Φ -m 2 Φ 2 (1.2)
and it is mathematically described in the four-dimensional Minkowski space by the following two-fold set of dynamical equations:

i. a nonlinear differential equation (the equation of motion of the field Φ) resulting from the corresponding Lagrangian by application of the variational principle:

-( + m 2 )Φ(x) = Λ ρ + γ [ : Φ 3 (x) : -aΦ(x) ] (1.3) 
ii. the "conditions of quantization" of the field Φ(x) expressed by the equal time commutation relations:

[Φ(x), Φ(y)] = [ Φ(x), Φ(y)] = 0, at x 0 = y 0 (1.4) [Φ(x), Φ(y)] = i γ ρ + γ δ 3 ( x -y), at x 0 = y 0 (1.5)
Here m > 0 and Λ > 0 are the physical mass and coupling constant of the interaction model, and a, ρ, γ, are physically well defined quantities associated to this model, the so-called renormalization constants. In the following definition 1.1 we present their relation with the H 2 and H 4 -Green's functions as they have been introduced in [20]. From these equations one can formally derive an equivalent infinite system of nonlinear integral equations of motion for the Green's functions (the "vacuum expectation values") of the theory, analogous but not identical, to the Dyson -Schwinger equations [21][22]. This dynamic infinite system of equations for the Schwinger functions (i.e. the connected, completely amputated with respect to the free propagator Green's functions, H = {H n+1 } n=2k+1,k∈N ), in the Euclidean 4-dimensional momentum space, (denoted by E 4n (q) ), derived from the system 1.3, 1.4, 1.5, has been established in 4 dimensions by using the Renormalized Normal Product of [20] and has the following form:

Definition 1.1 H 2 (q, Λ) = - Λ γ + ρ {[N (3) 3 H 4 ] -ΛaH 2 (q, Λ)∆ F (q)} + (q 2 + m 2 )γ γ + ρ with ã = lim (q 2 +m 2 )=0 [N (3) 3 H 4 ], ρ = lim (q 2 +m 2 )=0 ∂ ∂q 2 [N (3) 3 H 4 ] and γ = -6Λ l=1,2,3 H 2 (q l )∆ F (q l ) H 4 (q) q=0 (1.6) ∀ n ≥ 3, (q, Λ) ∈ E 4n (q) × R H n+1 (q, Λ) = 1 γ + ρ { [A n+1 + B n+1 + C n+1 ](q, Λ) + ΛaH n+1 (q, Λ)∆ F (q)} (1.7) with: A n+1 (q, Λ) = -Λ[N (n+2) 3
H n+3 ](q, Λ);

(1.8) We shall use frequenly both notations q or q (n) to indicate (q 1 . . . , q n ) ∈ E 4n . But for every other positive integer m < n the corresponding set is denoted as:

B n+1 (q, Λ) = -3Λ J∈ n(2) n ! j 1 !j 2 ! [N (j 2 ) 2 H j 2 +2 ][N (j 1 ) 1 H j 1 +1 ](q, Λ) (1.9) C n+1 (q, Λ) = -6Λ I∈ n(3) n ! i 1 !i 2 !i 3 ! σ sym (I) l=1,2,3 [N (i l ) 1 H i l +1 ](q i l , Λ) (1.10) A n+1 H 3Λ H H n Λ Λ n+3 ∑ j2+2 j2+j1==n 6Λ∑ (I)
q (m) = (q 1 . . . , q m ) ∈ E 4m
Moreover the notation n (2) in the sum of the global term B n+1 means the set of different partitions J = (J 1 , J 2 ) of the set X = {1, 2, . . . n} such that j 1 = CardJ 1 is an odd integer, j 2 = CardJ 2 and j 1 + j 2 = n.

Respectively, the notation n (3) in the sum of the global term C n+1 means the set of triplets -partitions I = (I 1 , I 2 , I 3 ) of the set X = {1, 2, . . . n}, with i l = CardI l , (l = 1, 2, 3), odd integers, and such that i l ≥ i 2 ≥ i 3 and l=1,2,3 i l = n.

The notations:

[N

(n+2) 3 H n+3 ], [N (j 2 ) 2 H j 2 +2 ][N (j 1 ) 1 H j 1 +1 ], l=1 ,2,3 [N 
(i l ) 1 H i l +1 ]
represent the so called "Φ 4 4 operations" that we introduce in the Renormalized G-Convolution Product (R.G.C.P ) context of the references [8], [17], [18] and [23]. Briefly, the two loop Φ 4 4 -operation is defined by: (see for example figure 1 

the term A n+1 ) [N (n+2) 3 H n+3 ] = R (3) G [ H n+3 i=1,2,3 ∆ F (l i ) ]d 4 k 1 d 4 k 2 (1.11) with R (3) 
G being the corresponding renormalization operator for the two loops graph with bubble vertex the H n+3 Green's function.

The analogous expression for the one loop Φ 4 4 -operation is the following (in fig. 1 it is one of the contributions in the term B n+1 ):

[N (j 2 ) 2 H j 2 +2 ][N (j 1 ) 1 H j 1 +1 ] = H j 1 +1 ∆ F R (2) G [H j 2 +2 i=1,2 ∆ F (l i )]d 4 k (1.12) with R (2)
G , the corresponding renormalization operator for the one loop graph. The notation ∆ F indicates the free propagator, and the Φ 4 4 operation N (j 1 ) 1 is exactly the multiplication ("trivial convolution") by the corresponding free

propagator ∆ F = 1 ( q 2 + m 2 )
. Here q 2 means the Euclidean norm of the vector of n independent four momenta q = {q 1 . . . , q n } ∈ E 4n (q) .

3. Notice that in 1.6 we gave the physical definition of the "renormalization constants" ã, ρ, γ. However, in the general mathematical study that follows (cf. definitions 2.10 3.1, 3.2 (of the renormalized vector space B R , of the subset Φ R and the mapping M * respectively), they are introduced as functions of the H 2 and H 4 -point functions Iin [23], in collaboration with B.Ducomet and by using an extension in the renormalized case of the iterative procedure of Bros -Lassalle [13] we proved that the Φ 4 4 equations of motion conserve all algebraic and analyticity properties resulting from the linear Wightman A.Q.F.Th. axioms in complex Mincowski space. The proofs in [23], have been elaborated for renormalized graphs more general than the type of simple graphs of figure 1. In section 2 we give more details about the recursive integration procedure of simpler cases "the tree graphs".

3 The "primary Φ-Iteration" -Alternating signs -Splitting properties -Bounds

The information concerning the special features of the dynamics of four interacting fields, has been obtained 'experimentally" through an iteration of these integral equations of motion in the two dimensional case, at fixed coupling constant and at zero external momenta, with the free solution as starting point. This is what I called the "Φ-Iteration" in [24]. The exploration of the detailed structure of the "Φ-Iteration", has brought forth the particular properties of the different global terms of the equations at every order ν, constructed in terms of the H n+1 ν functions. These properties essentially were:

• (a) alternating signs and splitting (or factorization) properties at zero external momenta:

H n+1 (q = 0, Λ) = -n(n -1)δ n (Λ)H n-1 (q = 0, Λ)[H 2 (q = 0, Λ)] 2
(1.13) with {δ n } a bounded increasing sequence of continuous functions of Λ and uniformly convergent to some finite positive continuous function of Λ, δ Λ ∞ .

• (b) bounds at zero external momenta and zero momentum dominance bounds, which in turn yield global bounds of the general form:

H n+1 (q, Λ) ≤ n ! K n (1.14)
where K is a finite positive constant independent of n.

These features formed a self-consistent system of conditions conserved by the "Φ-Iteration". In particular they implied precise "norms" of the sequences of the Green's functions H n+1 :

H = sup q,n,Λ {M -1 n (q, Λ) |H n+1 (q, Λ)|} (1.15)
with the corresponding norm functions given as follows:

∀ (q, Λ) ∈ E 4n (q) × R + * M n (q, Λ) = n! ( 1/8 ) n-5 2 (δ Λ ∞ ) n-1 2 n i=1 M 1 (q i , Λ), (1.16) 
with:

M 1 ( q i , Λ) = [ q i 2 + m 2 ] 1+ 1 8 + 10Λ 2 (1.17)
and δ Λ ∞ a universal constant which characterizes the splitting properties presented previously. [START_REF] Jaffe | Constructive Quantum Field Theory[END_REF] The new mapping M * and the local contractivity These norms in turn are conserved and automatically ensure the convergence of the "Φ-Iteration" to the solution. So, the answer to the problem of how to construct the fixed-point method became clear: it would be sufficient first to define a Banach space B using the norms provided by the "Φ-Iteration". One then should seek a fixed point of the equations of motion inside a characteristic subset Φ ⊂ B which exactly imitates the fine structure of the Φ-Iteration.

Unfortunately this is not the case. The global terms A n+1 , B n+1 , and C n+1 , (tree terms) (with alternating signs) have the same asymptotic behaviour with respect to n. More precisely, at every fixed value of the external momenta, we obtain:

A n+1 ∼ n→∞ n! n 2
(1.18)

B n+1 ∼ n→∞ n! n 2 (1.19) C n+1 ∼ n→∞ n! n 2 (1.20)
As far as the behaviour with respect to the external four momenta is concerned they follow the behaviour of the norm functions given in 1.16 (i.e. the corresponding structure of the Banach space).

So despite the convergence of "Φ-Iteration", ( due to the alternating signs of the global terms) the mapping:

M : B M -→ B (1.21)
defined by the above equations is not contractive [START_REF] Voros | Private communication CEN Saclay[END_REF]. As a matter of fact the n 2 dependence prevents the norms from being conserved. This is the reason that motivated us to the definition of a new mapping M * (given by the following equations ) which is contractive:

H n+1 (q, Λ) = δ n (q, Λ)C n+1 (q, Λ) 3Λn(n -1) (1.22)
with:

δ n (q, Λ) = 3Λn(n -1) (γ + ρ) + D n (H) -Λα∆ F (1.23)
and

D n (H) = |B n+1 | -|A n+1 | |H n+1 | (1.24)
One can intuitevely understand the contractivity of the new mapping M * by looking at the behaviour with respect to n of the function D n (at fixed Λ and external momenta). Precisely,

D n (H) ∼ n→∞ n 2 n !d 0 n ! ∼ n→∞ n 2 δ ∞ where we put d 0 = 1 δ ∞ (1.25)
Consequently one has:

δ n (q, Λ) ∼ n→∞ δ ∞ n(n -1) n 2 ∼ n→∞ δ ∞ (1.26)
By this last argument we can show not only the conservation of the norms (in every dimension r = 0, 1, 2, 3, 4) but also the contractivity of the "new mapping" M * to a fixed point inside a particular subset Φ ⊂ B, characterized by the "splitting" "signs" and "bounds," under the following sufficient condition imposed on the renormalized coupling constant:

0 ≤ Λ ≤ 0.04 (1.27)
In an equivalent way, this result means the existence and uniqueness of a non trivial solution (even in four dimensions), of the system. Under the condition 1.27, this solution lies in a neighbourhood of a precise point-sequence of the appropriate subset Φ ⊂ B, the so called fundamental sequence{H 0 }. Consequently, the construction of this non perturbative solution can be realized by iteration of the mapping M * inside Φ ⊂ B starting from the corresponding to every dimension fundamental sequence {H 0 }. This is exactly what we first realized for zero-dimensions in the references [START_REF] Alaie | [END_REF] ( with two of my students and my colleague S.Gladkov). Later in [START_REF] Manolessou | Local Contractivity of the Φ 4 0 mapping[END_REF] theoretically and in collaboration with my colleague S.Tafat for the numerical study [START_REF] Manolessou | Numerical study of the local contractivity of the Φ 4 0 mapping[END_REF], we obtained more precise (and convincing) results.

The reasons that motivated us for a study in smaller dimensions and not directly in four, were the absence of the difficulties due to the renormalization in two dimensions and the pure combinatorial character of the problem in zero dimensions.

Another useful aspect of the zero dimensional case is the fact that it provides a direct way to test numerically the validity of the method.

Notice that the most important improvement of the method in the 4-dimensional case as far as the corresponding properties of the solution are concerned has been precisely the proof of the "alternating signs" and "splitting" properties, at every value of the external momenta, and not only at zero external momenta as we had originally established by the primary "Φ-Iteration" and the solution of the zero dimensional problem.

Moreover the physical conditions imposed on H 2 -and H 4 -Green's functions for the definition of the renormalization parameters are implicitly included in the chacterisation of the subset Φ ⊂ B. We give a small example that makes clear this physical character of the method. In two (or one) and zero dimensions one notices that the presence of the renormalization implies the absence of the terms proportional to Green's functions represented by figure 2 2

[ H ] q 2 k+q q Figure 2: Graphical representation of divergent terms even in two dimensions which appear after the derivation of the equations of motion by the functional integral but which do not appear in the system of 1.1 thanks to the renormalization procedure .

The renormalization constraints constitute the crucial two-fold advantageous aspect of our method: on one hand they provide us with a non trivial solution of the equations of motion even in four dimensions, a basic difference between our approach and the "Constructive Field Theory" methods [START_REF] Glimm | [END_REF] [START_REF] Jaffe | Constructive Quantum Field Theory[END_REF], which use the generating functional formalism, in order to construct the Q.F.T. Green's functionsmoments of this functional. On the other hand, this is the essential point that makes our system of equations in zero dimensions equivalent to that obtained directly by derivation of the generating functional (application of the variational principle) [START_REF] Wightman | Private communication[END_REF].

5 Some remarks about "contradictions" 1. Taking into account the divergence of the perturbative series of a Φ 4 2 model, a result that A. Jaffe [START_REF] Jaffe | [END_REF] established several years ago, another (two-part) question immediately arises. Does the two-dimensional "Φ-Iteration" gen-erate the perturbative series exactly? If yes, then is there any contradiction between the divergence of the perturbative expansion and the convergence of the Φ-Iteration?

The answer is that the Φ-Iteration has nothing to do with the perturbation series. The method is not a reconstruction of perturbation theory. More precisely, all terms of the N th order of perturbation series are included together with subsequent ones at every order N of the Φ-Iteration (cf. [24]a,b,). In other words a series like that of perturbation can be divergent, but a series of polynomials of the terms of the former may still be convergent. The difference between the two approaches comes from the different way in which the polynomials in Λ are arranged and summed up in each of the two approximations. So automatically there is no contradiction if the "Φ-Iteration" converges to a nontrivial solution despite the divergence of perturbation theory.

2. The first remarks about the existence and non triviality of a Φ 4 4 interaction model are found in [33] by lattice considerations. Then, later following some arguments presented by Aizenmann and Frölich in [34] [35] it seems that the Φ 4 4 model is a trivial one. This point of view is mainly based on the results of these authors obtained as limits to the continuum of lattice field theory models. With our method no "artificial" regularization is used and the renormalization in four dimensional "continuum" momentum space is the starting point for the structure and the proofs of the procedure. So, the contradiction between these conjectures and our intention to prove the nontriviality of the Φ 4 4 solution can be understood along these lines.

3. More recently the authors in [START_REF] Luscher | Scaling Laws and Triviality Bounds in the Lattice phi**4 Theory. 1[END_REF], [START_REF] Weisz | Triviality of φ 4 4 theory small volume expansion[END_REF] and [START_REF] Siefert | Triviality of φ 4 theory in a finite volume scheme adapted to the broken phase[END_REF] conclude with what they consider a confirmation of the standard view of triviality of [34] and [35] based on numerical experiments, essentially simulations, up to some orders of perturbation theory and with finite volumes. To my eyes the question remains: Why the physics of interacting elementary particles should be considered as a limit of lattice configurations?

3 The I, II and III and the verification of the Osterwalder-Shrader Axioms.

The present paper is the first part of the series and it is called "I -The new mapping M * and the Φ 4 4 -iteration", It contains the results in terms of the necessary theorems propositions, remarks, for the construction of the unique non trivial solution of the model. In the second part called "II -The construction of the Φ 4 4 solution" we present in details the proofs of the statements presented in "I".

The third part is called "III -The Osterwalder-Schrader Positivity verified by the Φ 4 4 solution". As a matter of fact, the Distribution property, Euclidean covariance and Symmetry together with the Axiomatic Q.F.T h. analytic properties (in complex Minkowski space related to the locality and spectrum) are established partially in reference [23] for the renormalized equations of motion, recently in [START_REF] Manolessou | Local Contractivity of the Φ 4 4 mapping Preprint EISTI[END_REF] and further elaborated in the present work [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] and [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] for the solution of the Φ 4 4 equations. These results ensure in some sense the coherence of our scheme. (But not completely. The cluster property will presented in a separated study).

As far as the positivity property is concerned, the complete study in four (and automatically in all smaller) dimensions constitutes the purpose of my last paper in preparation [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model -III-The Osterwalder-Schrader Positivity of the Φ 4 4 solution[END_REF] which under the title "The non triviality of a Φ 4 4 model, III -The Osterwalder-Schrader Positivity of the Φ 4 4 solution" represents the last part of the three part present work.

Precisely, it is proven that under weaker conditions imposed on the physical coupling constant Λ the infinite sequence of Green's functions-solution of the Φ 4 4 equations of motion in Euclidean momentum space (found in [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF] and [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF]), verifies the Osterwalder-Schrader Positivity.

Plan of the present paper I

The paper is organized as follows:

1. In section 2 we introduce :

• The general vector space B,

• the "splitting sequences"

• the "tree type sequences"

• the "Renormalized Φ Convolutions (R.Φ.C.)" -Green's functions and the "Generalized Renormalized Φ Convolutions (G.R.Φ.C.").

• The Banach Space B R ⊂ B.

2. In section 3 We introduce:

• the particular subset Φ R ⊂ B R • the new mapping M * on B R
• the Φ 4 4 -iteration and the stability of Φ R .

3. In section 4 we present the construction of the unique solution by the Φ 4 4iteration starting from H T 0 . In other words we show the local contractivity of the mapping M * inside a precise closed ball in Φ R with center the fundamental sequence.

In the paper II [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] we give the proofs of the theorems stated in sections 3 and 4 of the present [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model I Preprint EISTI[END_REF].

2 The vector space B -the "splitting sequences" the "tree type sequences" and the Banach space B R

The fundamental difference between two and four (or three) dimensions is the divergence in the latter case of a finite number of Φ -Convolutions for every fixed integer n = 2k + 1, k ∈ N. Therefore, it has been necessary to introduce the precise definition of the renormalization operations and choose a more specific space of Green's functions sequences in the A.Q.F.T. framework.

To this purpose, we introduce the basic elements of this space, the so-called tree type sequences H T , and from a particular choice of one of them, we recursively define the Renormalized Φ -Convolutions (R.F.C). For the detailed definitions and statements concerning the recursive procedure of the renormalization, we refer the reader to the references [8], [13] [17], [18]. [23].

Apart from a brief reminder of certain crucial properties, we apply some of the results of these papers without any detailed description.

1 The space B -the"splitting sequences"-the "tree type sequences" 1 The space B Definition 2.1

We define the vector space B of the sequences H = {H n+1 } n=2k+1; k∈N as follows:

For every n the function H n+1 belongs to the space C ∞ (E 4n (q) × R + ) of continuously differentiable real numerical functions of the set (q, Λ) of 4n + 1 real independent variables and verifies the following properties. There exists a finite positive constant C n , such that the following bounds hold:

∀ (q, Λ) ∈ (E 4 (q) × R + ) |H 2 (q, Λ)| ≤ C 1 [( q 2 + m 2 ) (1+π 2 /18) ]
(2.28)

and

∀ n = 2k + 1 k ∈ N * , (q, Λ) ∈ (E 4n (q) × R + ) |H n+1 (q, Λ)| ≤ n!C n [( q 2 + m 2 ) (1+π 2 /18) ] n (2.29)
Here the notation q = n i=1 q 2 i means the Euclidean norm of the vector q ∈ E 4n (q) . In the following we often use the equivalent notation:

q 2 = q 2 .
2 The "splitting sequences" δ ∈ B Definition 2.2 We introduce the particular class D ⊂ B of the so-called "splitting sequences" δ = {δ n (q, Λ)} n=2k+1 k∈N ∈ B. There exists a finite positive constant C 0 such that the corresponding bounds (2.29) take the following form:

∀ n = 2k + 1 k ∈ N * 0 < δ n (q, Λ) ≤ C 0 ∀(q, Λ) ∈ E 4n (q) × R + .
(2.30)

Definition 2.
3 Particular splitting sequences -The upper and lower bounds

δ 3,max (Λ) = 6Λ γ 0 + ρ 0 + Λ|a 0 | + 6 d0 ; δ 3,min (Λ) = 6Λ 1 + 9Λ(1 + 6Λ 2 ) and ∀n ≥ 5 δ n,max (Λ) = 3Λn(n -1) γ 0 + ρ 0 + Λ|a 0 | + n(n -1) d0
with:

lim n→∞ δ n,max (Λ) ≤ δ ∞ < +∞ moreover γ 0 = 1, a 0 = -δ 3,min [N 3 ]q 2 +m 2 =0 ; ρ 0 = Λδ 3,min [ ∂ ∂q 2 [N 3 ]] q 2 +m 2 =0 and δ n,min (Λ) = 3Λ n(n -1) γ max + ρ max + Λ|a max | + 3Λn (n -1) with γ max = 1 + 9Λ(1 + 6Λ 2 ), ρ max = 6Λ 2 ∂ ∂q 2 [N 3 ]q 2 +m 2 =0 and |a max | = 6Λ[N 3 ]q 2 +m 2 =0
(2.31)

Remark 2.1 As we explain in the following about the constant d0 in the four dimensional case appearing in the definition of δ n,max we usually put d0 ≥ d 0 = 3Λ10 -2 , which is precisely the value we determined and used in [START_REF] Manolessou | Local Contractivity of the Φ 4 0 mapping[END_REF] and [START_REF] Manolessou | Numerical study of the local contractivity of the Φ 4 0 mapping[END_REF] for the zero dimensional case.

3 The "tree type sequences" H T Definition 2.4 We define the following class of sequences H T associated with a given splitting sequence δ ∈ D:

∀ (q, Λ) ∈ (E 4n × R + * ) H 2 T (q, Λ) = (q 2 + m 2 )(b 0 (Λ) + b 1 (Λ)(q 2 + m 2 ) (1+π 2 /18
) ) (here b 0 and b 1 are in general continuous bounded positive functions of Λ)

H 4 T (q, Λ) = -δ 3 (q, Λ) j=1,2,3 H 2 T (q j , Λ)∆ F (q j )
and ∀ n ≥ 5

H n+1 T (q, Λ) = - δ n (q, Λ) n(n -1) n(I ) j=1,2,3 H i j +1 T (q i j , Λ)∆ F (q i j ) (2.32)
We call these sequences H T (resp. every H n+1 T ) the "tree type sequences" (res. the tree functions H n+1 T ). For every n ≥ 5 the graphical representation of every H n+1 T is a finite sum of "tree graphs", with a four point bubble vertex associated with the corresponding δ n (q, Λ) connected by three simple free propagators ∆ F (q i j ) to three "bubble vertices". These bubbles represent each one of the three tree functions H i j +1 T of the corresponding partition in the sum (for example in fig. 1 it is one of the contributions in the sum of tree type term C n+1 ).

For further purposes, we introduce the particular tree type sequence H T 0 that we shall call "fundamental" defined as follows: Definition 2.5 The "fundamental tree type sequence" H T 0

∀(q, Λ) ∈ (E 4 (q) × R + * ) H 2 T 0 = (q 2 + m 2 )(1 + δ 10 (q, Λ)∆ F ) with δ 10 (q, Λ)∆ F = -ρ 0 + Λδ 3,min ([N 3 ] -[N 3 ](q 2 +m 2 )=0 )∆ F 1 + ρ 0 ∀(q, Λ) ∈ (E 12 (q) × R + * ) H 4 T 0 (q, Λ) = -δ 3,min (Λ) l=1,2,3 H 2 T 0 (q l )∆ F (q l )
and for every n ≥ 5 and ∀ (q, Λ)

∈ (E 4n (q) × R + * ) H n+1 T 0 (q, Λ) = δ n,min (Λ)C n+1 T 0 (q, Λ) 3Λn(n -1)
;

where :

C n+1 T 0 (Λ) = -6Λ n(I ) n ! i 1 !i 2 !i 3 ! σ sym (I) l=1,2,3 H i l +1 T 0 ∆ F (q i l ) (2.33)
Remark 2.2 Notice that (inspired by the Φ 4 0 solution) and taking into account the basic role of H T 0 in the following for the construction of the Φ 4 4 solution, the "minimal values" of the renormalization constants:

γ 0 = 1, a 0 = -δ 3,min [N 3 ]q 2 +m 2 =0 ; ρ 0 = Λδ 3,min [ ∂ ∂q 2 [N 3 ]] q 2 +m 2 =0
and that of the the splitting sequence {δ n,min } n≥3 of definition 2.3 have been used in the previous definition 2.33.

The Renormalized Φ-Convolutions

Definition 2.6 Using the previously defined fundamental tree type sequence H T 0 we recurrently construct the infinite family of the so-called Renormalized Φ-convolutions as follows:

We successively apply in an arbitrary way the Φ 4 4 -operations (defining the mapping M by definition 1.1) (cf. example fig. 3 andfig 4 ). At a certain order ν of this iteration we consider the corresponding result from an arbitrary H n+1 T 0 tree function. Graphically it is the sum of tree type functions with"bubbles", the corresponding images coming from successive applications of the Φ 4 4 operations on the vertices of every tree contribution of the original H n+1 T 0 tree function. We denote by Φ n(ν) n (q, Λ) such a bubble (with n(ν) + 1 external lines), and call it the Renormalized Φ-Convolution (R.Φ.C) associated with the H n+1 T 0 tree-type function.

Every Φ n(ν) n (q, Λ), depends on the set q = (q 1 , • • • , q n(ν) )(q ∈ E 4n(ν) (q) ) of the (remaining after the integrations) external independent momenta. It constitutes a candidate bubble vertex for new tree type sequence in B (cf. figure 4).

Using the general prescription of renormalization and integration of [8] and [23], we introduce the renormalization operator at every step of the above recursive construction. More precisely suppose that Φ n(ν) n (q, Λ) has been already well defined and we want to construct the newly composed convolution N

(n(ν)+2) 3 Φ n(ν) n .
We define:

[N (n(ν)+2) 3 Φ n(ν) n (q, Λ)] ≡ R (3) G [Φ n(ν) n (q, Λ) k=1,2,3 ∆ F ( k )] d 4L k (2.34)
Here G is the total graph representing the R.Φ.C. [N 4 operations on the "zero order" tree contribution of the tree function H 10 T 0 . It can constitute a bubble vertex of a tree contribution H 8 H 2 H 2 of third order R. Φ. C. H 10 T 0 . Here L = 5 and L = 12 so that 20-24=-4 is as expected the asymptotic Weinberg indicatrix of an H 8 point function the renormalization operator. For the precise momentum assignment we consider the product vector space defined by: E 4N (q,k) ≡ E 4n (q) ⊗ E 4L (k) with N = n + L. We associate these notations with the set of external independent (q) (resp. internal (k) or integration) variables of the given R.Φ.C. [N

(n =n(ν)+2) 3 Φ n n ] and R (3) G δ9 δ3 R.Φ.C.=H H δ3 δ3
(n ) 3 Φ n n ].
The integer L indicates the number of independent loops of G (i.e. the integration variables k ∈ E 4L (k) of the R.Φ.C.). We also use the notation L for the set of all internal lines of G.

The non renormalized integrand I G (q, k), is simply the product of the vertex functions (bubble vertices) and free propagators (simple internal lines) involved in the initial R.Φ.C, Φ n n and the product of free propagators associated with N

(n ) 3 so, I G (q, k) = v j H n j +1 T i∈L ∆ F ( i ) k=1,2,3 ∆ F ( k ). ( 2 

.35)

The argument i , of every free propagator means the total momentum carried by the corresponding internal line i ∈ L associated with the following linear application λ i : (q, k)

λ i ↔ i (q, k) (2.36)
The precise form of the function i (q, k) is given by the conditions of energy momentum conservation imposed on the momentum assignement at every vertex of G.

A definition analogous to that of 2.35 holds for the non renormalized integrand associated with every subgraph γ of G. The abbreviated notation for the renormalized integrand means precisely:

R (3) G Φ n n k ∆ F ( k ) = U F (G) (1 -t d(G) )Y (3) 
G (U F ) (2.37)
The sum

U F (G)
extends over all complete forests U F of G (with respect to a nested set S of subspaces S ⊂ E 4L (k) ) containing nontrivial renormalization parts γ subgraphs of G. The functions Y 

γ (U F ) for every γ ∈ U F ) are also recursively defined as in the refs. [8] [23]. Notice that the degree of Taylor operators d(G) (resp. d(γ)) coincides with the superficial degree of divergence of the graph G (resp. of γ). Below (cf. proposition 2.1) we shall give precise upper bounds for these numbers in terms of the asymptotic indices of the tree functions. In an analogous way we define the renormalized

Φ 4 operation [N (n -1) 2 Φ n n (q, Λ)].
Moreover we shall use here the definition of projection of a subspace S of E 4N (q,k) onto E 4L (k) established in [8] and [18] concerning the classes of symbols and the classes of admissible Weinberg functions which have been denoted by A (α,β,σ,ω) 4N

. We notice that (σ, ω) is a couple of sets of such subspaces in E 4L (k) and E 4N (q,k) respectively, where under differentiation the corresponding asymptotic indicatrices α, β decrease. We also recall the notation π(S) for the canonical projection of a subspace S of E 4N (q,k) onto E 4L (k) .

Before giving the main theorem for the convergence of every R.Φ.C we show an auxiliary statement. Let us start with some useful notations and definitions.

Definition 2.7 We denote by q j T the set of independent momenta of the tree function H n j +1 T associated with the vertex v j of a given graph G. We define the following linear mapping λ ν j :

(q, k)

λν j ↔ q j T (q, k) (2.38)
As previously, the function q j T (q, k) is precisely defined by the momentum assignment, following the prescription of [8], when all constraints of energy momentum conservation at each vertex ν j of G are taken into account.

We now state the following: of admissible Weinberg functions. The sets σ v j , ω v j are defined by:

σ v j = {S ⊂ E 4L (k) : S ⊂ Kerλ v j } ;
(2.39)

ω v j = {S ⊂ E 4N (k) : π(S) ∈ σ v j }. (2.

40)

For every S ⊂ E 4N (q,k) the corresponding asymptotic indicatrices are given by: 

α v j (S) = -(n j -3), if S ⊂ Ker λ v j 0 if S ⊂ Ker λ v j (2.41)
β v j (S) =    2ν (n j ) if S ⊂ Ker λ v j 0 if S ⊂
A (α G ,β G ,σ G ,ω G ) 4N
characterized by the following sets and indices:

σ G = i∈L σ i v j σ v j (2.43) ω G = {S ⊂ S 4N (q,k) : S ⊂ Ker λ i ∀ i ∈ L, π(S) ∈ σ G } (2.44)
and for every S ⊂ E 4N (q,k) :

α G (S) = v j α v j (S) + i∈L µ i (S) (2.

45)

Here ∀ i ∈ L, 

µ i (S) = {-2 if S ⊂ Ker λ i and 0 if S ⊂ Ker λ i } (2.46) and β G (S) = v j β v j (S) (2 
d(G) ≤ 2 ; (resp. d(γ) ≤ 2). (2.48) Proof of proposition 2.1
The proof is obtained by application of the previous definitions (in particular the definitions of the admissible classes of Weinberg ) and is a direct consequence of the main theorems in [8], and [18]. Notice that for every n ≥ 3 the function δ n (q, Λ) belongs to the class of Weinberg functions A (0,0,σ νj ,ω νj ) 4N

. We use the notation |L| for the total number of internal lines of G. We have:

d(G) = -2|L| + max S ν j α v j (S) + 4L ≤ 2 (2.49)
Taking into account the above results we notice that the conditions for the non renormalized integrand of G established in [8] are all verified. So we are allowed to apply directly the corresponding theorems of refs. [8], [17], [18] and [23] in order to obtain the following result that we present without proof:

Theorem 2.1 Every R.Φ.C. Φ n n (q, Λ), (q ∈ E 4n (q)
) with n external independent variables and L integration variables k ∈ E 4L (k) , (with Λ a fixed real positive number) verifies the following properties: (i) Defined as an integral of k ∈ E 4L (k) , it is absolutely convergent and it belongs to the class A (αn,βn) 4n of Weinberg functions with the following precise asymptotic indicatrices:

∀S ⊂ E 4n (q) : α n (S) = d(G) ; β n (S) = ν(n)
with ν an arbitrary big natural number depending on n respectively is defined as a consistent extension of the scheme presented previously for the R.Φ.C's. More precisely, the renormalized integrand (analog of formula 2.35 ) corresponding to the convolution [N

(r) 3 Φ (n) (r) ] reads: R (3) G Φ [Φ (n) (r) (H) k ∆ F ( k )] = U F (G Φ (H)) (1 -t d(G Φ ) )Y (3) G Φ (U F (H)) (2.51)
Here, the argument H means that the summation is multiple because the fine structure of the corresponding H ∈ B must be taken into account and every H n j +1function associated with the bubble vertex v j of G Φ , must be expanded in its terms R.Φ.C's (cf. def.2.6).

In other words, the total graph G Φ (H) is, in fact, a sum of disconnected graphs G * coming from the expansion of all bubble vertices in their disconnected components graphs associated with the R.Φ.C's involved in the definition of the corresponding H n j +1 's. Therefore the sum in 2.51 contains all possible nontrivial individual forests of every such component G * . Notice that now, the associated vertex functions are not in general tree functions. For simplicity we keep the same mode of notation for the number n of the initial function H n+1 (superscript) and respectively the number r of external independent variables (subscript) as in the definition 2.6 of the R.Φ.C's.

3 The Banach space B R ⊂ B Definition 2.9 We say that a sequence H ∈ B belongs to the linear subspace

B R ⊂ B, if ∀ n = 2k + 1, k ∈ N the corresponding H n+1 function is a (G.R.Φ.C.) Definition 2.10 (B R ⊂ B a Banach space) We introduce the following positive mapping on B R N : B R → R + H → H Here H → H where H = sup Λ,n,q    |H n+1 | M n ; | ∂ (0,1) ∂q 2 |N 3 H 4 || M (0,1) 3 ; |N 2 H n+1 | M(n,2) ; |γ| N γ    where: ∀ (q, Λ) ∈ E 4n (q) × R + * M 1 (q) = γ max (q 2 + m 2 )(1 + 6(q 2 + m 2 ) π 2 /54 ) N γ = γ max 3 i=1 M 1 (q i )∆ F (q i )| q 2 =0 (for γ max cf. def. 2.3) M 3 (q) = 6Λ 3 i=1 M 1 (q i )∆ F (q i ) M (0,1) 3 (Λ) = 6Λ sup q | ∂ ∂q 2 [N 3 Ĩ1,3 ]|M 1 ; |[N 3 Ĩ1,3 ]|M 1 with Ĩ1,3 = 2 i=1 M 1 (k i )[∆ F (k i )] 2 ∆ F (k 1 + k 2 + q)
(cf. also 2.34 , 2.35) and figures 3 and4)

by analogy M(3,2) = 6Λ[N (3) 2 Ĩ1,2 ] 3 i=2 M 1 (q i )∆ F (q i ) with Ĩ1,2 = M 1 (k)[∆ F (k)] 2 ∆ F (k + q) and for every n ≥ 5 M(n,2) = [N (n) 2 ]q=0 n(n -1)δ n,max (Λ)M n-2 M 1 (q 1 )∆ F (q 1 ) M n = n(n -1)δ n,max (Λ)M n-2 (q (n-2) , Λ)∆ F (q (n-2) ) 3 i=2 M 1 (q i )∆ F (q i ) (2.52) 
Now, one easily verifies that N defines a finite norm on B R , and that B R is a complete metric space with respect to the induced distance (of uniform convergence) so the following is established:

Proposition 2.2 B R
is a Banach space with respect to the distance associated with the norm N of definition 2.10.

We conclude this section with an essential result to be used in the subsequent sections. It ensures the good convergence, asymptotic behavior, Euclidean invariance and linear A.Q.F.T. (in complex Minkowski space) properties of the G.R.Φ.C's -H ∈ B R .

Theorem 2.2

The system of equations presented in def.1.1 of the introduction constitutes a well defined non linear mapping M : B R M → B R in the following sense : a) For every n, the good convergence of integrals, asymptotic behaviour, symmetry and Euclidean invariance of H n+1 (G.R.Φ.C's), ∀q ∈ E 4n (q) , are preserved by M(H). b) For every n, the corresponding Green's function H n+1 (q) (the image under M of H n+1 (q)), verifies the analyticity (primitive domain) and algebraic A.Q.F.T. ([9]) properties in complex Minkowski space.

c) The G.R.Φ.C s -H 2 functions, which depend on only one external variable q 2 , Φ

(r) (H) satisfy and conserve under the action of M the real analyticity character for every q ∈ E 4 (q) and at q 2 + m 2 = 0. The same property holds for all order derivatives of Φ

(n) (r) (H).
Proof of theorem 2.2 a) The proof follows directly by application of the previous definitions, of proposition 2.1, and of theorem 2.1 (the latter being applied to every graph

G * component of G Φ (H) in definition 2.8).
b) The verification of axiomatic field theory properties are obtained as a trivial application of a most general result of [23] concerning Φ 4 type renormalized convolutions.

c) The proof is a direct consequence of the properties a) and b).

3 The subset Φ R -The mapping M * -The Φ 4 4 iteration

1 The subset Φ R ⊂ B R
In this subsection we describe the subset Φ R ⊂ B R which is characterized by the splitting and sign properties (tree-structure), together with the physical conditions imposed by the renormalization (which is associated with the four-or threedimensional problem). The "splitting" or factorization properties are the analogous extensions of the properties displayed by the Φ-subset defined previously in the case of the zero-dimensional problem of [START_REF] Manolessou | Local Contractivity of the Φ 4 0 mapping[END_REF] and [START_REF] Manolessou | Numerical study of the local contractivity of the Φ 4 0 mapping[END_REF] . As it should become evident, the structure of Φ R given here can entirely be applied to smaller dimensions 1 ≤ r ≤ 3, with non-zero external momenta.

Definition 3.1 The subset Φ R ⊂ B R
We say that a sequence H ∈ B R belongs to the subset Φ R , if the following properties are verified:

1. ∀(q, Λ) ∈ (E 4 (q) × R + * )
H 2 (q, Λ) > 0, and ∃ a positive continuous function of Λ and q, δ 1 , which belongs to the class

A (0,β 1 ) (n) 
(with β 1 ∈ N arbitrarily large) of Weinberg functions and such that:

H 2 (q, Λ) = (q 2 + m 2 )(1 + δ 1 (q, Λ)∆ F ) with lim (q 2 +m 2 )=0
δ 1 (q, Λ)∆ F (q) = 0 (or lim

(q 2 +m 2 )=0 H 2 ∆ F (q) = 1)
Moreover H 2 min (q) ≤ H 2 (q, Λ) ≤ H 2 (max) (q, Λ) with H 2 (max) (q, Λ) = γ max ((q 2 + m 2 ) + 6Λ 2 (q 2 + m 2 )

π 2 54 ) H 2 min (q) = q 2 + m 2 (3.53)
2. For every n = 2k + 1, k ∈ N * the function H n+1 , belongs to the class A (αnβn) 4n

of Weinberg functions such that ∀ S ⊂ E 4n (q) the corresponding asymptotic indicatrices are given by:

α n (S) =    -(n -3) if S ⊂ Ker λ n 0 if S ⊂ Ker λ n β n (S) = nβ 1 ∀ S ⊂ E 4n (q)    (3.

54)

3. There is an increasing and bounded (with respect to n) associated positive sequence (cf. definition 2.2): {δ n (q, Λ)} n=2k+1,k∈N * , of splitting functions ∈ D which belong to the class A (0,0)

(n) of Weinberg functions for every n ≥ 3 such that H is a tree type sequence in the sense of definition 2.4. More precisely: i) ∀(q, Λ) ∈ (E 12 (q) × R + * )

H 4 < 0 H 4 (q, Λ) = -δ 3 (q, Λ) =1,2,3 H 2 (q , Λ)∆ F (q ) with δ 3 (q, Λ) ∼ q→∞ Λ
For every finite fixed q ∈ E 12 (q) lim Λ→0 δ 3 (q, Λ) Λ = 6

and ∀Λ ∈ R + * δ 3,min (Λ) ≤ δ 3 (q, Λ) ≤ δ 3,max (Λ)

(3.55)
ii) For every n = 2k + 1, k ≥ 2 and ∀(q, Λ) ∈ (E 4n (q) × R + * ):

H n+1 (q, Λ) = δ n (q, Λ)C n+1 (q, Λ) 3Λn(n -1) (where C n+1 is the tree term of definition 1.1):

C n+1 (q, Λ) = -6Λ n(I ) n ! i 1 !i 2 !i 3 !σ sym (I) l=1,2,3 [N (i l ) 1 H i l +1 ](q i l ) (3.56) with δ n (q, Λ) ∼ q→∞ Λ for every finite fixed q ∈ E 4n (q) : lim Λ→0 δ n (q, Λ) Λ ∼ 3n(n -1)
and ∀Λ ∈ R + * , δ n,min (Λ) ≤ δ n (q, Λ) ≤ δ n,max (Λ)

(3.57)
iii) ∀q ∈ E 4n (q) , n = 2k+1 (k ≥ 2) the n-point function verifies the following signs and bounds:

H n+1 = (-1) n-1 2 |H n+1 | |H n+1 min | ≤ |H n+1 | ≤ |H n+1 max | (3.58)
Here |H n+1 max | is recurrently defined as follows:

|H n+1 max | = δ n,max T n ∆ F ( n-2 i=1 q i )|H n-1 max | l=n-1,n H 2 (max) ∆ F (q l )
By analogy, using the preceding definition of |C n+1 ν,min (q, Λ)| :

|H n+1 min | = δ n,min Tn ∆ F ( n-2 i=1 q i )|H n-1 min | l=n-1,n H 2 min (q l )∆ F (q l ) (3.59)
4. The renormalization functions a, ρ and γ, appearing in the definition of M (cf.definition 1.1 ) are well defined real analytic functions of q 2 and Λ, and yield at the limits (q 2 + m 2 ) = 0 and q = 0 the physical conditions of renormalization required by the two-point and four point functions:

a(q, Λ) = [N (3) 
3 H 4 (q, Λ)] and ã(Λ) = lim

(q 2 +m 2 )=0 [N (3) 
3 H 4 (q, Λ)] with:

|a 0 (Λ)| ≤ |ã(Λ)| ≤ |a max |(Λ) (3.60) ρ(q, Λ) = ∂ ∂q 2 [N (3) 
3 H 4 (qΛ)] , and ρ(Λ) = lim

(q 2 +m 2 )=0
ρ(q, Λ)

with: ρ 0 (Λ) ≤ ρ(Λ) ≤ ρ max (Λ) (3.61) γ(q, Λ) = -6Λ l=1,2,3 H 2 (q l )∆ F (q l ) H 4 (q)
and γ(Λ) = [γ(q, Λ)] q=0 with γ 0 (Λ) ≤ γ(Λ) ≤ γ max (Λ)

(3.62) Remarks 3.1
1. We first remark that the function δ 1 does not belong to the class D of splitting sequences. It simply makes evident the logarithmic type contribution to the asyptotic behaviour of H 2 point function.

2.

The "splitting" or factorization properties ii) and iii) are general formulae which simply define the functions δ n and they can formally be written for every sequence H of B R .

The particular character of the subset Φ R comes from the fact that the splitting sequence {δ n } ∈ D, is such that ∀n = 2k + 1, k ≥ 1 the corresponding splitting function δ n (q, Λ) belongs to the class A (0,0)

(n) of Weinberg functions and verifies the limit and asymptotic properties of definition 3.1.

3.

Reminder: the bounds {δ n,min }, {δ n,max }, a 0 , a max , ρ 0 , ρ max , and γ 0 , γ max are introduced by definition 2.3.

4.

We point out that the symbol ∼ q→∞ is used as an abbreviated notation of the fact that both sides of the appropriate relations belong to the same class of Weinberg functions, or to put it differently, they have an asymptotically equivalent behavior.

2 The non triviality of the subset Φ R In Appendix 2.1 of "II" [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] we show the following:

Theorem 3.1 The subset Φ R is a nontrivial subset of B R . 3 
The "new" mapping M * on Φ R and equivalence with M Definition 3.2 Let H ∈ Φ R . We introduce the following mapping,

M * : Φ R M * -→ B R H → M * (H) (3.63) Let Φ (ν) (H T 0 ) ∈ Φ R then ∀Λ ≤ 0.05 and ∀ n = 2k + 1, k ≥ 1 the global term ("Φ 4 4 operation") B n+1 (ν) (H), of definition 1.1 : B n+1 (ν) (q, Λ) = -3Λ n(J ) [N (j 2 ) 2 H j 2 +2 (ν) N (j 1 ) 1 H j 1 +1 (ν) ](q, Λ)
verifies the following properties :

(3.68)

i) The "opposite sign" property:

B n+1 (ν) = (-1) n+1 2 |B n+1 (ν) | (3.69)
ii) It is a G.R.Φ.C. in the sense of definition 2.8 consequently it verifies Euclidean invariance and linear axiomaric field theory properties as follows from theorem 2.2.

iii) For every n = 2k + 1, k ≥ 1 the function B n+1 (ν) (q, Λ) , belongs to the class A (αnβ (n,ν) ) 4n

of Weinberg functions such that ∀ S ⊂ E 4n (q) the corresponding asymptotic indicatrices are given by:

α n (S) = -(n -3), if S ⊂ Ker λ n 0 if S ⊂ Ker λ n β (n,ν) = nβ (1,ν) ∀ S ⊂ E 4n (q) (3.70) iv) a) ∀ fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) |B n+1 (ν) | ≥ |B n+1 ν,min | with, |B n+1 ν,min | = R (0) G [H 2 ν (k + n-1 i=1 q i )[∆ F (k + n-1 i=1 q i )] 2 ∆ F (k)]d 4 k × 3Λn(n-1) 4 δ n,min Tn ∆ F ( n-2 i=1 q i )|H n-1 (ν) (q (n-2) )| l=n-1,n H 2 ν (q l )∆ F (q l ) (3.71) (reminder: q (n-2) = {q 1 , q 2 . . . q n-2 }) b) ∀ n ≥ 7 and fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) the sequence: δB n,ν 2k+1;k≥2 = |B n+1 ν,min | n(n -1)|H n+1 ν,max | (3.72)
increases with increasing n and for every fixed (q, n)

lim Λ→0 δB n,ν (Λ) = 0 (3.73) v) ∀ fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]), |B n+1 (ν) | ≤ |B n+1 ν,max | (3.74) b) ∀ fixed (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) the sequence δA n n=2k+1,k≥2 = |A n+1 ν,max | n(n -1|H n+1 ν,max | (3.81)
decreases with increasing n and for every fixed (q, n)

lim Λ→0 δA n (Λ) = 0 (3.82)
3. Proposition 3.4 (cf. Appendix 2.5 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF])

Let H ν ∈ Φ R then, for every n = 2k+1, k ≥ 1 and ∀ (q, Λ) ∈ (E 4n (q) ×]0, 0.05]) there exist positive continuous functions of (q, Λ), D n,ν,min , D n,ν,max , such that the function D n,ν (H) of definition 3.2 verifies the following properties:

i) It can be written as follows:

D n,ν (H ν ) = 3Λ| n(J ) [N 2 H j 2 +2 ν ][N 1 H j 1 +1 ν ]| |H n+1 ν | - |Λ[N (n+2) 3 H n+3 ν ]| |H n+1 ν | (3.83) or D n,ν (H ν ) = |B n+1 ν | -|A n+1 ν | |H n+1 ν | (3.84) ii) ∀ fixed (q, n), lim Λ→0 D n,ν (Λ) = 0 (3.85) iii) D 5,ν,min = |B 6 ν,min | -|A 6 ν,max | |H 6 ν,max | ≥ D 3,ν,min with D 3,min (H) = |B 4 min | -|A 4 max | |H 4 max | > 0 (3.86) and, ∀ n ≥ 7 D n,ν,min (q, Λ) ≤ D n,ν (H(q, Λ)) ≤ D n,ν,max (q, Λ) with D n,ν,min (q, Λ) = |B n+1 ν,min | -|A n+1 ν,max | |H n+1 ν,max | > 0 and D n,ν,max (q, Λ) = |B n+1 ν,max | |H n+1 ν,min | (3.87)
iv) Moreover for every fixed (q, Λ) the sequence:

D n,ν,min n(n-1) n=2k+1,k≥1
is monotonically increasing

D n,ν,min n(n -1) > D n-2,ν,min (n -2)(n -3) (3.88)
and there is a positive finite constant, δ ∞ , such that:

lim n→∞ D n,ν,min (q, Λ) 3 Λn(n -1) = 1 δ ∞ (3.89)
Remark 3.1 The proofs of propositions 3.2 3.3, 3.4 are given in Appendices 2.3 2.4 2.5 respectively of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF].

The following theorem shows recurrently that the sequence -Φ 4 4 -iteration is a subset of Φ R and automatically constitutes a neighbourhood of the fundamental sequence H T 0 .

Theorem 3.2 The "stability"

Under the condition: Λ ≤ 0.05, every order Φ ν (H T 0 ) of the Φ 4 4 -iteration belongs to Φ R .

Proof of theorem 3.2 The proof of theorem 3.2 is equivalent to the proof of the following propositions 3.5 and 3.6, verified when Φ (ν-1) (H T 0 ) ≡ H ν-1 belongs to Φ R .

The signs and bounds

A) Let Φ (ν-1) (H T 0 ) ∈ Φ R then the following properties of signs and bounds are verified by the corresponding ν t h order 2-and 4-point Green's functions.

Proposition 3.5

1. ∀ fixed q ∈ (E 4 (q) ) and ∀Λ ∈]0, 0.05] , the ν th order two-point function verifies:

H 2 (ν) (q, Λ) > 0, H 2 (ν) (q, Λ)∆ F ≤ 1 + 6Λ 2 (log(q 2 + m 2 )) β 1,(ν)
where β 1,(0) = 1 and recurrently ∀ν ≥ 1 : β 1,(ν) = β 1,(ν-1) 3 + 1 moreover:

H 2 min < H 2 (ν) ≤ H 2 (ν,max) with H 2 min = q 2 + m 2 H 2 (ν,max) = γ max ((q 2 + m 2 ) + 6Λ 2 (q 2 + m 2 ) 1/3 ν k=1 1/k 2 ) and lim ν→ ∞ H 2 (ν,max) ≡ H 2 (max) = γ max [(q 2 + m 2 ) + 6Λ 2 (q 2 + m 2 ) π 2 /54 ] (F or γ max cf.def. 2.3), (3.90) 
2. ∀Λ ∈]0, 0.05] , the ν th order splitting function δ 3,ν verifies:

δ 3,ν (q, Λ) ∼ q→∞ Λ for every finite fixed q ∈ E 12 (q) lim Λ→0 δ 3,ν (q, Λ) Λ = 6 
and δ 3,min (Λ) ≤ δ 3,ν (q, Λ) ≤ δ 3,max (Λ) (cf. def. 2.3)

(3.91)

3. ∀ fixed q ∈ E 12 (q) and ∀Λ ∈]0, 0.05] the ν th order 4-point Green's function verifies the following properties: of Weinberg functions such that ∀ S ⊂ E 4n (q) the corresponding asymptotic indicatrices are given by: H 2 ν (q l , Λ)∆ F (q l ) (3.97)

2. ∀q ∈ E 4n (q) the ν th order splitting function δ n,ν (n = 2k + 1 k ≥ 2) verifies:

For every finite fixed q ∈ E 4n (q) : lim Λ→0 δ n,ν (q, Λ) Λ ∼ 3n(n -1) and δ n,ν (q, Λ) ∼ q→∞ Λ moreover ∀Λ ∈]0, 0.05] δ n,min (Λ) ≤ δ n,ν (q, Λ) ≤ δ n,max (Λ) (cf. def. H 2 (max) (q l )∆ F (q l ) and recurrently ∀n = 2k + 1 k ≥ 3

|H n+1 ν,max | = δ n,max T n ∆ F ( n-2 i=1 q i )|H n-1 (ν) | (l=n-1,n) H 2 ν (q l )∆ F (q l )
and

lim ν→ ∞ |H n+1 ν,max | = |H n+1 (max) | = δ n,max T n ∆ F ( n-2 i=1 q i )|H n-1 max | l=n-1,n H 2 (max) ∆ F (q l )
By analogy, using the preceding definition of |C n+1 ν,min (q, Λ)| :

|H n+1 ν,min | = δ n,min Tn ∆ F ( n-2 i=1 q i )|H n-1 ν | l=n-1,n
H 2 ν (q l )∆ F (q l ) (3.101) Remarks 3.2

1. Notice that in the last formula we take into account the result of ref. [24, c] on the number T n of different partitions (I 1 , I 2 , I 3 ) inside the tree terms sums (cf. remarks 1.1). Precisely: ν (q l , Λ) and "true (n-1)-point functions" H n-1 ν (q l , Λ) at the order ν of the iteration.

The proof of the preceding propositions is given in Appendix 2.6 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] by application of propositions 3.2, 3.3 and 3.4.

In the next section we prove, by a contractivity argument, the convergence of the Φ 
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 14 Figure 1: Graphical representation of the global terms of the Φ 4 4 equations of motion

Figure 3 :

 3 Figure 3: Graphical representation of a "first order R. Φ. C." H 8 ν=1 -point function, coming from applying once [N (9)3 ]Φ4 4 operation, on the "zero order" tree contribution of the tree function H 10 T 0 .

10 8Figure 4 :

 104 Figure 4: Graphical representation of H 8 -type point bubble-function (third order H 8 ν=3point function R. Φ. C.), obtained after three successive applications of Φ 4 4 operations on the "zero order" tree contribution of the tree function H 10 T 0 . It can constitute a bubble vertex of a tree contribution H 8 H 2 H 2 of third order R. Φ. C. H 10 T 0 . Here L = 5 and L = 12 so that 20-24=-4 is as expected the asymptotic Weinberg indicatrix of an H 8 point function

( 3 )

 3 G (U F ) (and the corresponding, Y

Proposition 2. 1

 1 Given a R.Φ.C and the associated G-graph the following properties hold: a) Every vertex function H n j +1 associated with the bubble vertex v j of G, belongs to the class A (αv j βv j ,σv j ,ωv j ) 4N

  .47) c) Analogous result holds for the non renormalized integrand associated with every subgraph γ of G. d) The degree d(G) (resp. d(γ)) of the Taylor operators associated with G (resp. with γ) in formulas (2.45) is bounded as follows:

( 2 .Definition 2 . 8

 228 50) (ii) It satisfies Euclidean invariance and all linear axiomatic field theory properties of a general n + 1-point function in complex Minkowski space. The Generalized Renormalized Φ-Convolutions (G.R.Φ.C.) A Generalized R.Φ.C. (G.R.Φ.C.) is defined as the image of different Φ 4 4 operations on an arbitrary finite sum of R.Φ.C's. The corresponding to a G.R.Φ.C, G Φ graph contains sums of disconnected graphs associated to each one of the connected components R.Φ.C's.The renormalization operator R G corresponding to the operations N

H 4 ν

 4 < 0, |H 4 ν,min | ≤ |H 4 ν | ≤ |H 4 ν,max |Here H 4 ν,max is defined as follows: (q l )∆ F (q l ),and |H 4 ν,min | = δ 3,min l=1,2,3 H 2 ν (q l , Λ)∆ F (q l ) (3.92) B) Let Φ (ν-1) (H T 0 ) ∈ Φ R then ∀Λ ∈]0, 0.05]the following properties are verified by the corresponding ν th order tree type global terms, splitting functions and n-point Green's functions:Proposition 3.6 1. ∀ n = 2k+1 (k ≥ 2) the ν th order global "tree" term ('Φ 4 4 operation")C n+1 (ν) (q, Λ) = -6Λ n(I ) l=1,2,3 [N (i l ) 1 H i l +1 (ν) ](q i l , Λ)(3.93) (cf.definition 1.1) verifies the following properties: a. The "good sign" property: is a G.R.Φ.C. in the sense of definition 2.8 consequently it verifies Euclidean invariance and linear axiomatic quantum field theory properties. c. It belongs to the class A (αnβ (n,ν) ) 4n

  α n (S) = -(n -3), if S ⊂ Ker λ n 0 if S ⊂ Ker λ n (3.95) β (n,ν) = β (1,ν) n ∀ S ⊂ E 4n (q, Λ)| ≤ |C n+1 ν (q, Λ)| ≤ |C n+1 ν,max (q, Λ)| with : |C n+1 ν,max | = 3Λn(n -1)T n |H n-1 ν | (l=n-1,n) H 2 ν (q l , Λ)∆ F (q l ) |C n+1 ν,min (q, Λ)| = 3Λn(n -1) Tn |H n-1 ν | (l=n-1,n)

3 .∀

 3 ∀q ∈ E 4n (q) the ν th order n-point function (n = 2k + 1 k ≥ 2) verifies: a) n = 2k + 1 (k ≥ 2) |H n+1 ν,min | ≤ |H n+1 ν | ≤ |H n+1 ν,max | (3.100)Here H n+1 ν,max is defined as follows:H 6 ν,max = δ 5,max |H 4 (ν,max) | l=4,5 [H 2 ν ∆ F (q l , Λ)] lim ν→ ∞ |H 6 ν,max | = |H 6 max | = δ 5,max |H 4 max | l=4,5

for n = 3 , 2 .

 32 n = 5 T n = 1 and, ∀n ≥ 7 T n = [ (n-3) 2 48 ] + [ (n-3) 3 ] + 1 (where [.] means integer part ) and Tn = [ (n-3) 2 48 ] + [ The definition of |C n+1 ν,max | (resp. |C n+1 ν,min |) is given in terms of the "true 2point-functions" H 2

4 4 - 2

 42 iteration to the unique non trivial solution inside a precise closed ball (with center the fundamental sequence):S r (H T 0 ) ⊂ Φ R ⊂ B R .4 The local contractivity of M * and the Φ 4 4 nontrivial solutionWe define a closed ball S r (H T 0 ) ⊂ Φ R the center of which is the "fundamental" tree type sequence H T 0 ( introduced in section 3). We show the local contractivity of M * inside this neighbourhood of H T 0 and consequently the existence and uniqueness of a fixed point of the initial mapping M inside Φ R . For the construction of the solution we propose an iteration of the mapping M * starting from H T 0 .1 The closed ball S r(0) (H T 0 ) ⊂ Φ R {δ n,max -δ n,min } δ n,max ; max (k i )[∆ F (k i )] 2 ∆ F (k 1 + k 2 + q) (4.103) Here the notation ∂ (0,1) means either zero or first order partial derivative We define S r(0) (H T 0 ) = {H ∈ Φ R : H -H T 0 ≤ r(0)} (4.104)

  Ker λ v j and ν (n j ) ∈ N arbitrary large depending on n j

		
		(2.42)
		
	b) The non renormalized integrand I G (q, k) associated with G (cf. equation 2.35
	of definition 2.6) belongs to the class of admissible Weinberg functions

. i) a (q, Λ) = N

(3) 3 H 4 (q, Λ) ; ρ (q, Λ) = -Λ ∂ ∂q 2 [N (3) 3 H 4 (q, Λ)] ; γ (q, Λ) = -6Λ l=1,2,3 H 2 (q l )∆ F (q l ) H 4 (q) with ã (Λ) = a (q, Λ)| (q 2 +m 2 =0) ; ρ (Λ) = ρ (q, Λ)| (q 2 +m 2 =0) and, γ (Λ) = γ (q, Λ)| q=0

(3.64) ii) H 2 (q, Λ) = (q 2 + m 2 )(1 + δ 1 (q, Λ)∆ F (q 2 ))

Proposition 3.1 Let H ∈ Φ R . The so called "new" mapping, M * defined by the previous equations 3.63, 3.64, 3.65, 3.66, of definition 3.2, is equivalent to the mapping M (cf. definition 1.1 of the introduction).

The proof of proposition 3.1 is given in Appendix 2.2 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] 4 The Φ 4 4 -iteration and its stability under M * Definition 3.3 By successive application of the mapping M * to the fundamental sequence H T 0 we construct a sequence of G.R.Φ C's:

and call it the Φ 4 4 -iteration.

Before giving the statement of the "stability " of the sequence-subset

when the Φ 4 4 iteration belongs to Φ R up to the ν th order.

1 The properties of the global terms

given by definition 1.1:

(3.76) verifies the following properties: i) the "good sign" property:

ii) It is a G.R.Φ.C. in the sense of definition 2.8 consequently it verifies Euclidean invariance and linear axiomaric field theory properties as follows from theorem 2.2.

iii) For every n = 2k + 1, k ≥ 1 the function A n+1 ν (q, Λ) , belongs to the class A (αnβn) 4n

of Weinberg functions such that ∀ S ⊂ E 4n (q) the corresponding asymptotic indicatrices are given by:

ii) There exists a finite positive constant Λ * (≈ 0.04) such that when

iii) The unique nontrivial solution of the Φ 4 4 equations of motion lies in the neighbourhood S r(0) (H T 0 ) of the fundamental sequence H T 0 and is constructed as the limit of the Φ 4 4 -iteration.

Proof of theorem 4.1 (i) By definition, the ball S r(0) (H T 0 ) is a closed subset of the Banach space B R so it is also a compact and complete subspace.

(ii) In Appendix 2.6 of [START_REF] Manolessou | The "non triviality" of a Φ 4 4 model II Preprint EISTI February[END_REF] we give the proof of the local contractivity of M * inside the closed ball S r(0) (H T 0 ) ⊂ Φ R via the Φ 4 4 -iteration.

(iii) This result is a direct consequence of (ii).