
HAL Id: hal-02566657
https://hal.science/hal-02566657

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Polka Contention Manager for use in
Multicore Hard Real-Time Systems

Adrien Quillet, Audrey Queudet, Didier Lime

To cite this version:
Adrien Quillet, Audrey Queudet, Didier Lime. Analysis of Polka Contention Manager for use in
Multicore Hard Real-Time Systems. International Conference on Real-Time Networks and Systems
(RTNS’20), Jun 2020, Paris, France. �hal-02566657�

https://hal.science/hal-02566657
https://hal.archives-ouvertes.fr

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems

Adrien Quillet
adrien.quillet@ls2n.fr

LS2N, UMR CNRS 6004
Ecole Centrale de Nantes

Nantes, France

Audrey Queudet
audrey.queudet@ls2n.fr

LS2N, UMR CNRS 6004
University of Nantes

Nantes, France

Didier Lime
didier.lime@ls2n.fr

LS2N, UMR CNRS 6004
Ecole Centrale de Nantes

Nantes, France

ABSTRACT
Transactional memory (TM) draws the attention of both
academic and development groups; indeed this concept offers
an alternative to lock-based approaches, easing programmers’
work. Despite the large amount of investigations around this
topic, the question of the correctness of most TM implemen-
tations remains open. More specifically, the lack of upper
bounds on the execution time of transactions prevents the use
of TM in real-time systems. To address this issue, we intro-
duce new realistic assumptions relative to real-time systems,
which allow to ensure wait-freedom guarantees progress (i.e.
all transactions progress) when Polka contention manager is
considered. In that context, through a thorough formalization
of the system, we prove upper bounds both on the number
of abortions and on the execution time of transactions.

CCS CONCEPTS
• Computer systems organization → Real-time operating sys-
tems; Multicore architectures.

KEYWORDS
real-time systems, non-blocking synchronisation, software
transactional memory
ACM Reference Format:
Adrien Quillet, Audrey Queudet, and Didier Lime. 2020. Analysis
of Polka Contention Manager for use in Multicore Hard Real-Time
Systems. In 28th International Conference on Real-Time Networks
and Systems (RTNS 2020), June 9–10, 2020, Paris, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3394810.
3394825

1 INTRODUCTION AND MOTIVATION
Real-time systems are increasingly used in electronic devices
to control physical events. Those systems are designed to
satisfy three objectives: (i) logical determinism, so runs with

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
RTNS 2020, June 9–10, 2020, Paris, France
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7593-1/20/06. . . $15.00
https://doi.org/10.1145/3394810.3394825

the same inputs always produce the same results, (ii) temporal
determinism which guarantees that temporal constraints of
every system action will be satisfied, and (iii) reliability which
ensures the system is always available.

In the environment in which real-time systems operate,
events usually take place concurrently. In order to handle
them properly (i.e. to guarantee that all timing constraints
will be satisfied), they resort to concurrent programming: each
monitored event is managed by a processing entity called task.
As multiple tasks can run in parallel over different processor
cores, the underlying platform on which the system executes
must provide both synchronization and communication mech-
anisms. In particular, an important aspect is the guarantee of
data consistency. Resources shared between several tasks typ-
ically have a limit on the number of simultaneous accesses; as
a consequence it is possible that a task can not progress due
to an unavailable resource. The system must then efficiently
manage resources to avoid both deadlocks and starvation
while ensuring all the tasks still meet their deadlines.

One common way to protect concurrent modifications to
shared memory is to use locks which are well known to
be subject to priority inversion and deadlocks. Considering
multicore platforms, another issue inherent to the use of
such blocking mechanisms is that parallelism can be severely
impacted since concurrent tasks competing for the same lock
can be blocked, thus reintroducing some sequential execution
in the parallel application. Recently [21], spin locks were
studied for parallel real-time tasks in where each parallel task
is scheduled exclusively on several pre-assigned processors
(i.e., by the federated scheduling approach). This reduces the
need for locks or scheduling to synchronize concurrent access
(through shared resources may introduce locking as considered
by Dinh et al. [5]). The authors developed new schedulability
analysis techniques for parallel tasks with spin locks, and
analysed blocking times but the analysis is pessimistic.

Another way to manage shared resources is to use the con-
cept of transactional memory [16], which aims to significantly
ease development and maintenance of concurrent programs.
Transactional memory implementations exist both in hard-
ware (HTM - Hardware Transactional Memory), in software
(STM - Software Transactional Memory), or under schemes
that combine both hardware and software (Hybrid TM - Hy-
brid Transactional Memory). In HTM systems, transactional
memory support is implemented by modifying the data-cache
protocols to support version management and conflict detec-
tion. The close synergy of the hardware with the processor

https://doi.org/10.1145/3394810.3394825
https://doi.org/10.1145/3394810.3394825
https://doi.org/10.1145/3394810.3394825

RTNS 2020, June 9–10, 2020, Paris, France Quillet et al.

core and cache allow these systems to provide very high lev-
els of performance. Nevertheless, this type of TM system is
usually bound by some sort of capacity contraints, e.g. the
hardware can handle a specific fixed read-/write-set size. In
contrast, STMs allow to build very flexible prototypes, as the
full concurrency control is implemented in software. In return,
STMs have a reputation for being slower than HTMs. How-
ever, considering the conceptual benefits of STMs, we will
focus only on STMs in this paper. They allow programmers
to embed a sequence of operations applied to shared resources
into a transaction. Every transaction accesses shared data
in memory without interfering with other transactions, and
appears to them as executed atomically. To deal with in-
consistencies, transactional memories usually use contention
managers (CM) to resolve conflicts between transactions.
Contention managers allow some transactions to commit (i.e.
the data modifications are then made permanent), and force
other conflicting ones to abort (i.e. all the modifications are
discarded and the transaction restarts from the beginning),
based on their internal policy.

Because software transactional memories hide to developers
the way atomicity is obtained, it is essential to prove the
correctness of their mechanisms, especially when used in real-
time systems. In this paper, we introduce new assumptions
on the execution time of transactions. We formally prove
that the use of the lock-free contention manager Polka [24]
in such constrained systems is sufficient to guarantee that
every transaction progresses, bringing in upper bounds on the
execution time and the number of abortions of a transaction.

The rest of this paper is organized as follows. We first
present related works about transactional memories in Section
2. We then recall the main concepts of STM in Section 3.
Section 4 introduces the formalization of the system we study.
Section 5 focuses on Polka contention manager and contains
formal proofs about its progress property. Finally, Section 6
concludes the paper.

2 RELATED WORK
2.1 Transactional Memory
Herlihy et al. were the first to propose a hardware based
transactional synchronization methodology [16] that uses
the cache coherence protocol to detect conflicts. Since then,
the research community has produced many different HTMs
[4, 13, 14, 19] that are more efficient. Chip vendors have
increasingly begun to integrate HTM in their processors like
the AMD’s Advanced Synchronization Facility (ASF) [17].
Transactional synchronization extensions (TSX) whose per-
formance was recently analysed in [22] were also adopted by
Intel for its processors in the year 2012. However, since HTMs
require hardware facilities, they are not suitable for most of
multicore processors. Other software-based implementations
using common atomic instructions such as CAS (Compare-
and-Swap) or LL/SC (Load Linked/Store Conditional) [20],
were first proposed by Shavit and Touitou in [26]. By nature,
they are less efficient than HTM but they can be used with
all multicore processors.

2.2 TM Correctness and Timing Analysis
The first steps to formally verify TM systems were made
through Greedy [10] and FTGreedy [9] CM proposals. Guer-
raoui et al. proposed a new and robust CM that provides
provable properties (e.g. every transaction commits within
bounded time). They also introduced the notion of opacity
[11], a correctness criterion for TM implementations.This
idea was extended by Imbs et al. in [18]. Schoeberl et al.
proposed Real-Time Transaction Memory (RTTM) [25], a
new hardware-implemented synchronization paradigm for
hard real-time systems. Their demonstrate that, provided
the transaction conflict resolve time is bounded, tasks will
meet their deadlines. Nevertheless, they do not provide any
guarantees that transactions will complete successfully.

Sarni et al. presented Real-Time STM [23], a TM protocol
ensuring lock-freedom, a weaker property than wait-freedom,
that does not guarantee that all transactions will meet their
deadlines, thus being suitable only for soft real-time systems.

Upper bounds for the number of transaction retries in a
real-time system were provided by Schoeberl et al. [25] and
El-Shambakey et al. [6, 7]. However, the conditions were very
simple, with periodic tasks and one transaction performed
by each task.

Cotard et al. [3] proposed a new STM for hard real-time
systems, that relies on a wait-free protocol that enforces
progress of every task and that can be integrated in the
WCET of tasks during the timing analysis of the system.
However, the approach is restricted to transactions that ma-
nipulate objects in a single access mode, either read or write.

Barros et al. [1] addressed the response time analysis of
hard real-time tasks, which share STM data under parti-
tioned scheduling strategies. They assume that transactions
are serialised according to their arrival time and they are man-
aged by following a FIFO contention manager for real-time
systems (FIFO-CRT) [2].

Although those works are close in purpose to ours, none of
them prove the wait-freedom property (i.e. all trans- actions
progress) among existing CMs.

3 BACKGROUND MATERIAL
3.1 Software Transactional Memory Concepts
A transaction, as originally formalized in [8], is based on the
notion of synchronization point, which represents a durable
and consistent state of a computer system. This notion relies
on the four ACID properties [12]:

∙ Atomicity. The sequence of operations either all occur
(the transaction commits), or nothing occur (the trans-
action aborts), which makes the sequence of operations
indivisible.

∙ Consistency. The transaction starts and ends in a valid
system state.

∙ Isolation. A transaction being executed is unaware of
other executing transactions.

∙ Durability. Once a transaction has been committed, it
will remain so.

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems RTNS 2020, June 9–10, 2020, Paris, France

During its execution, a transaction will manipulate one or
several data, either in reading or writing modes. This set of
data is called the transaction dataset.

Definition 3.1. Two transactions are said in contention if
they both access a same resource during their execution and
one of them may update it.

Definition 3.2. Two transactions are said in conflict if they
performed an operation on the same resource and one of them
updated it.

An STM needs a data version management policy in order
to maintain old values, needed to abort the transaction, and
new values, needed to commit the transaction. Concurrency
control is based on a conflict detection policy which defines
the rules triggering the abortion of a transaction. There are
two approaches: (i) with the eager approach, conflicts are
detected and resolved as soon as they occur, (ii) with the
lazy approach, conflicts detection and resolution occur later,
generally before trying to commit the transaction. Finally,
a transactional memory typically has a contention manager
module [15], which is in charge of resolving conflicts between
transactions. Depending on its contention policy (see [24] for a
survey), the CM decides which of the conflicting transactions
can continue, and as a result, which transaction(s) must
abort.

3.2 Polka Contention Manager
The Polka contention manager [24] favors the transactions
which performed the greater number of operations. The cho-
sen criterion to quantify how much work has been done at a
given time is the number of data already accessed either in
reading or writing mode; it is called karma and is denoted by
𝑘. It is a component of the state of the transaction. Transac-
tions start with a zero karma which is incremented by one at
each first access to a data (first access is renewed each time
the transaction starts or restarts its operations) or at each
abortion of the transaction. When a transaction aborts, the
maximum number of times it may restart is bounded by the
difference in karma between itself and its enemy. Moreover,
Polka introduces an exponential backoff between successive
transaction restarts. Every aborted transaction waits for a
random duration that increases exponentially. When a trans-
action commits, its karma returns to zero.

4 MODELS AND TERMINOLOGY
4.1 System Model
We consider a platform made of 𝑚 identical processor cores
𝜋 = {𝜋1, . . . , 𝜋𝑚}, so the maximum number of task instances
that can run in parallel is 𝑚.

4.1.1 Time Representation. The system time sequence 𝑡 =
𝑡𝑖1≤𝑖 is a sequence of countable instants. We denote by T
the domain of 𝑡. At any time, the difference between two
subsequent instants 𝑡𝑖+1 and 𝑡𝑖 is 1; this minimum period is
called a time unit.

𝜋

𝑡1 𝑡

𝜋1

no
p

no
p

no
p

re
ad

𝑜

Figure 1: Execution model for a 4 time units operation

4.1.2 Objects. We assume that every shared resource man-
aged by an STM is actually manipulated with an object.
We denote by 𝑂𝒮 the finite set of system objects such that
𝑂𝒮 = 𝑂Σ ∪ 𝑂Σ, where 𝑂Σ and 𝑂Σ denote the finite set of
objects used only outside (resp. inside) an explicit transac-
tion. The final set of all possible values for system objects is
denoted by ϒ⊥ = ϒ ∪ {⊥} where ϒ represents the finite set of
all possible defined values for the objects whereas ⊥ stands
for the undefined value. The value of objects is given by a
function Val𝒮 : 𝑂𝒮 → ϒ⊥ such that:

Val𝒮𝑜 = 𝑥 iff x is the value of object o

4.1.3 Operations. Let Θ𝒮 denote the finite set of system
operations. We consider three possible operations:

∙ read𝑜: ∀𝑜 ∈ 𝑂𝒮 , it returns the value of object 𝑜 (i.e.
Val𝒮𝑜);

∙ write𝑜, 𝑥: ∀𝑜 ∈ 𝑂𝒮 , 𝑥 ∈ ϒ⊥, it writes the value 𝑥 in
object 𝑜;

∙ nop: it stands for the idempotent operation, thus leaving
the system in the same state as it was before.

We assume that each operation requires one time unit to
be performed. Note that every other kind of operations (e.g.
arithmetic ones) can be abstracted to a sequence of read(),
write() and nop() operations. In order to model an operation
that takes more than one time unit to execute, the operation
has to be preceded by nop() operations. As a result, to model
an operation that requires 𝑘 time units, it must be preceded
by 𝑘 − 1 idempotent operations, as illustrated in Figure 1.

4.2 Task Model
Let 𝑇𝒮 denote the finite set of system tasks. A task 𝜏𝑖 is a
tuple ⟨𝜋𝑖, 𝜑𝑖, 𝑇𝑖, Σ𝑖⟩, where 𝜋𝑖 is the processor core on which
all instances (or jobs) of 𝜏𝑖 will be executed, 𝜑𝑖 is the offset
of first activation of the task, 𝑇𝑖 is the minimum period
between two activations of the task and Σ𝑖 is the finite set of
transactions launched during every job.

Each system task 𝜏𝑖 produces an infinite number of suc-
cessive jobs J𝑖,𝑗 , with 𝑗 ∈ N*, as illustrated in Figure 2.
All jobs of a given task are assumed independent. Job J𝑖,𝑗

corresponds to the 𝑗th activation of task 𝜏𝑖. We denote by
𝑟𝑖,𝑗 ≥ 𝑟𝑖,𝑗−1 + 𝑇𝑖 the release time of job J𝑖,𝑗 . The release
time 𝑟𝑖,0 of the first job of task 𝜏𝑖 is equal to 𝜑𝑖.

Definition 4.1. A job is said active as soon as released.

RTNS 2020, June 9–10, 2020, Paris, France Quillet et al.

𝜋

𝑡1 𝑡

𝜋𝑖 J𝑖,1 J𝑖,2 J𝑖,3

𝜑𝑖
𝑇𝑖 𝑇𝑖 𝑇𝑖

𝑟𝑖,1 𝑟𝑖,2 𝑟𝑖,3 𝑟𝑖,4

Figure 2: Execution of a task 𝜏𝑖 = ⟨𝜋𝑖, 𝜑𝑖, 𝑇𝑖, Σ𝑖⟩

At any time, there exists at most one active job for a given
task. An active job can be preempted at some time 𝑡𝑛, except
if it is executing a transaction.

4.3 Transaction Model
First, we assume that a transaction only belongs to one task.

4.3.1 Formalization. A transaction 𝜎𝑖 is a tuple ⟨𝑏𝑖, 𝑁𝑖, Ω𝑖, 𝑂𝑖⟩,
where 𝑏𝑖 represents its start time, 𝑁𝑖 is the number of opera-
tions in the transaction, Ω𝑖 is its dataset with Ω𝑖 ⊆ 𝑂Σ and
𝑂𝑖 is the transaction private memory, which contains copies
of the objects used by the transaction. This private memory
is only visible to the transaction itself. Hence, a transaction
works on its own copies of the objects and if it successfully
commits, then the commit phase is completed by copying
the private modifications into the shared memory.

We denote by 𝜂𝑖 = ⟨𝜉𝑖, 𝑛𝑖, 𝜔𝑖, 𝑐𝑖, Val𝑖⟩ the state of 𝜎𝑖, where
𝜉𝑖 is the current status of 𝜎𝑖, 𝑛𝑖 is the actual number of
performed operations, 𝜔𝑖 is its finite set of already opened
objects with 𝜔𝑖 ⊆ Ω𝑖, 𝑐𝑖 is its internal clock starting at 0
and increased by one at each performed operation, and Val𝑖
from 𝑂𝑖 → ϒ⊥, is the function giving the value of an object
from its transaction private memory. There exists 5 different
transaction status:

∙ NotStarted is the status of a transaction that has never
started;

∙ Running is the status of a processing transaction which
has at least one more operation to perform;

∙ Checking is the status of a transaction which performed
all its operations, and is verifying that its modifications
will not leave the system in an inconsistent state;

∙ Aborted is the status of a transaction which has been
aborted;

∙ Committed is the status of a transaction that has com-
pleted its execution. All committed modifications are
visible to the entire system.

Definition 4.2. A transaction is said processing if its status
is either Running, Checking or Aborted.

Definition 4.3. A transaction is said active if its status is
either Running or Checking.

We denote by ExecΣ𝑡𝑛 the set of processing transactions
at time 𝑡𝑛, and by ActiveΣ𝑡𝑛 the set of active transaction
the same time.

We denote by Σ the finite set of system transactions and
by 𝒩 = {𝜂1, . . . , 𝜂|Σ|} the finite set of transaction states.

Let ΘΣ denote the finite set of operations specific to trans-
actions, such that it exists 5 different operations related to
transactions:

∙ start: starts transaction 𝜎𝑖, initializing all its parame-
ters properly.

∙ restart: restarts transaction 𝜎𝑖 after an abortion. This
operation resets all transaction parameters except its
start time which remains unchanged.

∙ check: brings transaction 𝜎𝑖 into checking phase. This
operation checks if all previously opened objects keep
the same values, thus detecting potential conflicts with
other transactions.

∙ abort: cancels all modifications made inside the trans-
action itself.

∙ commit: makes all modifications made by the transac-
tion visible for the entire system.

Note that depending on other currently executed transactions
and on the read-/write-set sizes, the execution time of check,
abort, and commit operations may vary.

Transactions can also perform any operation of Θ𝒮 . Ac-
cordingly, the domain of arguments of system operations is
extended to 𝑂𝒮 ∪ 𝑂1 ∪ . . . 𝑂|Σ|. The set of operations that
is possible to perform from a given status is illustrated in
Figure 3.

4.3.2 Properties. The system state resulting of the parallel
execution of transactions is consistent only if this execution
is serializable.

Definition 4.4. A parallel execution of 𝑛 transactions is
serializable if it is equivalent to a serial execution of these 𝑛
transactions.

We propose to distinguish the following notion of transac-
tion correctness.

Let TT (Turnaround Time) denote the upper bound on
the time during which transactions can remain active in
the system. This bound is set a priori by programmers.
For instance, considering a real-time application, this upper
bound may be set according to the real-time constraints of the
tasks, using a worst case execution time (WCET) analysis.

Definition 4.5. A transaction is said timely correct if the
maximum period between its (start()|restart()) and (abort() |
commit()) operations is less than or equal to TT. Otherwise
(i.e. this period is exceeded), the transaction is said timely
incorrect.

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems RTNS 2020, June 9–10, 2020, Paris, France

Since a transaction has to perform at least one system
operation other than nop() and three specific operations
(start(), check() and commit()) to be valid, the minimum
value of TT is 4 time units.

Let 𝜎𝑖 † 𝜎𝑗 (resp. 𝜎𝑖 ‡ 𝜎𝑗) denote the fact that transactions
𝜎𝑖 and 𝜎𝑗 are in contention (resp. in conflict). By extension,
we denote by 𝜎𝑖 †Enemies𝑖 (resp. 𝜎𝑖 ‡Enemies𝑖) the fact that
𝜎𝑖 is in contention (resp. in conflict) with every transaction
of the transaction set Enemies𝑖.

Definition 4.6. The sequence of operations performed be-
tween (start()|restart()) and (abort()|commit()) operations
(included) of a transaction is called cycle of execution of this
transaction.

Definition 4.7. A transaction 𝜎𝑖 progresses if, at a given
time 𝑡𝑛, 𝜎𝑖 ∈ ActiveΣ𝑡𝑛 and there exists 𝑡𝑚 > 𝑡𝑛 such as at
time 𝑡𝑚, the status of 𝜎𝑖 is Committed.

For ease of reference, notations previously presented are
summarized in Table 1.

5 SCOPING POLKA CM
In this section, we discuss how the karma values assigned by
Polka CM to transactions may vary along time. In particular,
we study the extreme cases for which transactions exhibit
minimal or maximal karma values.

Let us first recall how conflicts are resolved in Polka CM.
So, let us assume that at a given time there exists both a
checking transaction 𝜎𝑖 and a set Enemies𝑖 of transactions
conflicting with 𝜎𝑖. The following two cases are therefore
possible:

∙ ∀𝜎𝑒 ∈ Enemies𝑖 : 𝑘𝑖 > 𝑘𝑒: every enemy transaction
aborts and 𝜎𝑖 commits,

∙ ∃𝜎𝑒 ∈ Enemies𝑖 : 𝑘𝑖 ≤ 𝑘𝑒: 𝜎𝑖 sleeps for ∆𝑤 time units.
Meanwhile, if a transaction from Enemies𝑖 commits
then 𝜎𝑖 aborts, and if every transaction from Enemies𝑖

aborts, then 𝜎𝑖 commits. At the end of its sleeping
period, if 𝜎𝑒 is still active, then 𝜎𝑖 sleeps again only
if its maximum number of sleeping periods 𝑤max

𝑖,𝑒 =

Symbol Description

𝜋 Core set of the system
𝑇𝒮 Task set of the system
Σ Transaction set of the system

𝑂𝒮 Object set of the system
𝑂Σ STM-managed object set
𝑂Σ Non-STM-managed object set
𝜋𝑚 Core 𝑚 of the core set 𝜋

𝜏𝑖 Task 𝑖 of the task set 𝑇𝒮
J𝑖,𝑗 Jth job of task 𝑖

𝜎𝑘 Transaction 𝑘 of the transaction set Σ

𝑂𝑘 Private memory of transaction 𝑘

Ω𝑘 Dataset of transaction 𝑘

𝑏𝑘 Start date of transaction 𝑘

𝜉𝑘 Status of transaction 𝑘

𝑘𝑘 Karma of transaction 𝑘

𝑡𝑛 Time instant 𝑛

ActiveΣ𝑡𝑛 Set of active transactions at time 𝑡𝑛

ExecΣ𝑡𝑛 Set of processing transactions at time
𝑡𝑛

TT Turnaround Time
Table 1: Notations used in this paper

𝑘𝑒−𝑘𝑖 is not reached. The sleeping time ∆𝑤 is randomly
drawn from an interval growing exponentially with
each sleeping period, such that ∆𝑤 ∈ 1, 2𝑤𝑖,𝑒 , where
𝑤𝑖,𝑒 is the number of achieved sleeping periods. If
𝑤𝑖,𝑒 ≥ 𝑤max

𝑖,𝑒 and 𝜎𝑒 is still active, then 𝜎𝑒 aborts and
𝜎𝑖 commits.

NotStarted Running Checking

Aborted

Committed
start()

check()

read(), write(), nop()

abort()

abort()

restart()

commit()

start()

Figure 3: State-transition diagram of possible transaction status

RTNS 2020, June 9–10, 2020, Paris, France Quillet et al.

5.1 Illustrative Example
Consider a set of (𝑛+1) transactions, with 𝑛 slow readers and
one fast writer. The execution scenario is illustrated in Figure
4. Transaction 𝜎𝑤 writes into object 𝑜 and 𝑛 transactions
read the value of this object.

𝜎

𝑡1 𝑡

𝜎𝑤

𝜎1

..
.

𝜎𝑛

start write𝑜1
check abort

restart

start read𝑜1
read𝑜2

check
commit

start read𝑜1
read𝑜2

read𝑜3
check commit

Figure 4: Fast single-writer/Slow multiple-reader scenario

Considering lazy conflict detection (check() operation oc-
curs right before commit() operation), we can deduce the two
following commit rules:

∙ If the writer commits, then all readers whose read()
operation is performed abort;

∙ If a reader commits, then all readers commit and the
writer aborts if its write() operation is already per-
formed.

Let’s investigate Polka arbitration among competing trans-
actions. All transactions earn one karma unit for their ex-
ecution, and one more karma unit if they abort. At the
beginning of the execution, all karmas are equal to zero; the
writer will commit first because it runs faster than readers.
Its karma will then return to zero while the karma of all
readers will be of 2 (one for the performed operation, and
one for the abortion). The writer is a priori favored since it
reaches validation before any reader, but Polka contention
manager favors transactions that have opened the greater
number of objects, their karma being incremented by one at
each first object opening. As a result, if the writer’s karma is
lower than the karma of readers, the writer will sleep, waiting
for readers to commit (see Figure 4). The only chance for
readers to validate is if the writer total sleeping period is
strictly greater than the difference of karma between readers
and writer. If so, readers commit successfully while the writer
still sleeps; the writer is aborted, its karma is increased by
one and the karma of all readers return to zero.

The sleeping period being randomly drawn from an interval
growing exponentially, the more readers are aborted, the more
likely they are to validate, because the writer sleeping period
has a chance to exponentially grow.

Without studying more specifically Polka policy, we cannot
say if readers will eventually validate. They have more and
more chances to commit, but if the total sleeping period of
the writer indefinitely remains lower than the difference of

karma between the readers and the writer, then the writer
will indefinitely abort all readers. Hereafter, we focus on the
worst (i.e. slowest) and best (i.e. fastest) karma accumulation
for transactions in terms of speed.

5.2 Slowest Karma Accumulation
Lemma 5.1. In a system using a software transactional

memory whose contention manager is Polka, the slowest
karma accumulation at time 𝑡𝑛 of a timely correct transaction
𝜎𝑙 is given by:

𝑘𝑙 = ⌊ 𝑡𝑛 − 𝑏𝑙

TT ⌋ × 2 + 𝜖𝑙 with 𝜖𝑙 ∈ {0, 1}

Proof. Let 𝜎𝑙 denote the timely correct transaction whose
karma increases the slowest. According to Polka policy, the
slowest way to increase karma is to manipulate the fewest
possible objects, while taking the maximum amount of time
to do it. Since we study karma accumulation, it is assumed
that this transaction indefinitely aborts. Hence 𝜎𝑙 must have
a single operation to perform (so its dataset contains only
one object). The timing diagram for the execution of 𝜎𝑙 is
illustrated in Figure 5.

𝜋

𝑡1 𝑡

𝜋𝑙

st
ar

t𝜎
𝑙

𝜃1
Σ

ch
ec

k𝜎
𝑙

ab
or

t𝜎
𝑙

re
st

ar
t𝜎

𝑙

𝜃1
Σ

ch
ec

k𝜎
𝑙

ab
or

t𝜎
𝑙

𝑏𝑙

TT TT

Figure 5: Slowest karma accumulation by a transaction 𝜎𝑙

Transaction 𝜎𝑙 increases its karma by one not only when
it accesses its single object but also at each abort() operation.
As a result, its karma is increased by 2 every TT time units.
So, at given time, the karma of 𝜎𝑙 is double the number of
execution cycles of the transaction, in addition to the karma
𝜖𝑙 accumulated during the current execution cycle. □

5.3 Fastest Karma Accumulation
Lemma 5.2. In a system using a software transactional

memory whose contention manager is Polka, whose conflict
detection is lazy and in which all transactions are timely cor-
rect, the fastest karma accumulation at time 𝑡𝑛 of transaction
𝜎𝑤 is given by:

𝑘𝑤 = ⌊ 𝑡𝑛 − 𝑏𝑤

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝜖𝑤

with 𝜖𝑤 ∈ {0, . . . , 𝑛}

Proof. Let 𝜎𝑤 denote the timely correct transaction
whose karma increases the fastest. According to Polka policy,
the fastest way to accumulate karma is to access as many
various objects as possible in a minimum amount of time.
Because (start()|restart()) and check() operations do not in-
crease karma, a timely correct transaction accessing as many
objects as possible in TT time units eventually has a greater
karma than a transaction accessing a single object in one time
unit that is aborted and restarted over a period of TT time

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems RTNS 2020, June 9–10, 2020, Paris, France

𝜋

𝑡1 𝑡

𝜋𝑤

st
ar

t𝜎
𝑤

𝜃1
Σ 𝜃𝑛

Σ

ch
ec

k𝜎
𝑤

ab
or

t𝜎
𝑤

re
st

ar
t𝜎

𝑤

𝜃1
Σ 𝜃𝑛

Σ

ch
ec

k𝜎
𝑤

ab
or

t𝜎
𝑤

𝑏𝑤

TT TT

Figure 6: Fastest karma accumulation by a transaction 𝜎𝑤

units. As previously, it is also assumed that this transaction
indefinitely aborts.

Transaction 𝜎𝑤 thus accesses to a maximum number of
objects over its interval of correctness, keeping the remaining
time units to perform operations (start()|restart()), check()
and (abort()). The timing diagram for the execution of 𝜎𝑤 is
illustrated in Figure 6.

Transaction 𝜎𝑤 increases its karma by one for each per-
formed operation or abort() operation. Consequently, its
karma is increased by

(︀
TT − 2

)︀
every TT time units. So, at a

given time, the karma of 𝜎𝑤 is
(︀
TT − 2

)︀
times the number of

execution cycles of the transaction, in addition to the karma
𝜖𝑤 accumulated during the current execution cycle.

□

5.4 Achieving the Greatest Karma
Lemma 5.3. In a system using a software transactional

memory whose contention manager is Polka, whose conflict
detection is lazy and in which all transactions are timely
correct, the maximum possible karma value is

𝑘max
𝒮 =

(︀
min

(︀
|𝜋|, |Σ|

)︀
− 1

)︀
×

(︀
TT − 2

)︀
+ 𝜖

with 𝜖 ∈ {0, . . . , 𝑛}

Proof. Let us argue by contradiction, assuming that there
is no upper bound on the karma.

First, let us study the trivial case where there is only
one transaction in the system. A single transaction cannot
be in conflict with itself and thus cannot be aborted. As
a consequence, this single transaction always commits and

always achieves the greatest karma which is the number of
objects it accessed. Hence there exists an upper bound 𝜖 on
the karma equals to the number of objects opened by the
transaction during its execution.

Let now consider that there are at least two timely correct
transactions 𝜎𝑤 and 𝜎𝑤′ in the system, such that there is no
upper bound on their karma. Assuming that 𝑘𝑖𝑡𝑧 denote the
karma of a transaction 𝜎𝑖 at time 𝑡𝑧 , this can be expressed
by the following property:

∀𝑡𝑛,∃𝑡𝑚 > 𝑡𝑛 : (︀
𝑘𝑤𝑡𝑛 < 𝑘𝑤𝑡𝑚

)︀
∨

(︀
𝑘𝑤′𝑡𝑛 < 𝑘𝑤′𝑡𝑚

)︀
(1)

Let us prove this property is false.
The lack of upper bound on the karma means that there is

no upper bound on the number of abortions of a transaction.
As a consequence, there always exists a transaction which
karma is greater than the previous greatest karma value.
Note that the transaction with the greatest karma can vary
over time. To examine the evolution of karma, we consider
the worst-case execution for system transactions. We assume
that all transactions accumulate karma the fastest way and
share the same dataset; the timing diagram of their execution
is illustrated in Figure 6. To maximize contention between
transactions, we also consider the execution case illustrated
in Figure 7. The maximum number of concurrent transactions
is the minimum between the number of system transactions
and processor cores, and all transactions start at the same
time.

Let 𝜎𝑤 denote the transaction executed on processor core
𝜋𝑤. Transaction 𝜎𝑤 reaches its checking phase before any

𝜋

𝑡1 𝑡

𝜋𝑤

𝜋2

𝜋3

𝜋min
(︀

|𝜋|,|Σ|
)︀

−1

𝜋min
(︀

|𝜋|,|Σ|
)︀

TT (︀
min

(︀
|𝜋|, |Σ|

)︀
− 3

)︀
× TT TT TT

ch
eck

ab
ort

ch
eck

ab
ort

ch
eck

ab
ort

ch
eck

ch
eck

ab
ort

ch
eck

ab
ort

ch
eck

com
mit

sta
rt

ch
eck

ab
ort

ch
eck

com
mit

sta
rt

ch
eck

ab
ort res

tar
t

ch
eck

com
mit

sta
rt

Figure 7: Worst-case contention case for a fast accumulation karma transaction 𝜎𝑤

All transactions start at the same time and are based on the same model (as illustrated in Figure 6). As a result, if a transaction commits, it forces
the abortion of all other transactions.

RTNS 2020, June 9–10, 2020, Paris, France Quillet et al.

other transaction; all transactions having the same karma,
𝜎𝑤 has to sleep, waiting for other transactions to commit or
abort. According to the execution case, all transactions are
in conflict, so only one transaction will be allowed to commit.
The last transaction reaching its checking phase will commit,
and other transactions will abort, particularly 𝜎𝑤. After a
bounded number of abortions and always according to the
execution pattern illustrated in Figure 7, 𝜎𝑤 will possess the
greatest karma in the system. Let 𝜎𝑤′ denote the transaction
that possesses the second greatest karma in the system; it is
the transaction that committed first in the system. According
to Lemma 5.2, at time 𝑡𝑛, the karma of 𝜎𝑤′ can be expressed
as:

𝑘𝑤′ = ⌊ 𝑡𝑛 − 𝑏𝑤′

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝜖𝑤′

with 𝜖𝑤′ ∈ {0, . . . , 𝑛}

while the karma of 𝜎𝑤 is:

𝑘𝑤 = ⌊ 𝑡𝑛 − 𝑏𝑤

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝜖𝑤

with 𝜖𝑤 ∈ {0, . . . , 𝑛}

Since 𝜎𝑤 has executed one more execution cycle than 𝜎𝑤′ ,
and considering they have the same execution pattern, the
karma of 𝜎𝑤 can also be expressed as:

𝑘𝑤 = ⌊ 𝑡𝑛 − 𝑏𝑤′ − TT
TT ⌋ ×

(︀
TT − 2

)︀
+ 𝜖𝑤′

=
(︀
⌊ 𝑡𝑛 − 𝑏𝑤

TT ⌋ + 1
)︀

×
(︀
TT − 2

)︀
+ 𝜖𝑤

As a result, the maximal difference of karma between 𝜎𝑤 and
𝜎𝑤′ is

(︀
TT − 2

)︀
. We then distinguish two possible cases:

∙ case (i): 𝜎𝑤′ tries to commit first.
∙ case (ii): 𝜎𝑤 tries to commit first.

case (i): If 𝜎𝑤′ tries to commit first, then 𝜎𝑤′ will sleep,
waiting for 𝜎𝑤, because the karma of 𝜎𝑤 is greater than its
karma. The difference of karma between 𝜎𝑤 and 𝜎𝑤′ being(︀
TT − 2

)︀
, 𝜎𝑤′ will sleep at least

(︀
TT − 2

)︀
time units before

aborting 𝜎𝑤. Transaction 𝜎𝑤 being in checking phase too,
and considering its execution pattern, 𝜎𝑤′ only has one time
unit to abort 𝜎𝑤 to commit, i.e. TT−2 ≤ 1, that is equivalent
to TT ≤ 3. By definition, TT ≥ 4. As a consequence, 𝜎𝑤′

cannot commit before 𝜎𝑤.
case (ii): If 𝜎𝑤 tries to commit first, then 𝜎𝑤 will commit

because it has the greatest karma.
In both cases, the karma of 𝜎𝑤 at 𝑡𝑛 allows it to commit.

If 𝜎𝑤 can commit, its karma cannot indefinitely increase.
We can deduce the same fact for other transactions since
they all share the same execution pattern. As a consequence,
there exists an upper bound on the karma. According to the
execution pattern of transactions, the greatest karma is equal
to the number of concurrent transactions (not counting the
current transaction) times the karma accumulated during
an execution cycle (i.e.

(︀
TT − 2

)︀
) in addition to the karma

accumulated during its last cycle (at most 𝑛). This contradicts
Property 1. □

Lemma 5.4. In a system using a software transactional
memory whose contention manager is Polka, whose conflict
detection is lazy and in which all transactions are timely
correct, the maximum period needed by a recurring aborted
transaction 𝜎𝑙 to reach the maximum possible karma 𝑘max

𝒮 is
given by:

∆max
𝑙 =

(︀
⌊

𝑘max
𝒮
2 ⌋ + 1

)︀
× TT

Proof. According to Lemma 5.1, the slowest karma accu-
mulation is 2 karma units every TT time units for a timely
correct transaction that always aborts. According to Lemma
5.3, there exists an upper bound 𝑘max

𝒮 on the karma that
is possible to accumulate in the system. As a consequence,
there exists an upper bound on the time needed to reach this
karma limit.

Assuming the worst-case execution, a timely correct trans-
action increases its karma by 2 every TT time units. As a
consequence, after ⌊ 𝑘max

𝒮
2 ⌋ cycles of execution, the karma of

this transaction is near or equal to 𝑘max
𝒮 . Obviously, if it has

not already happened, the transaction will reach the karma
limit during its next cycle of execution. We obtain the upper
bound established in the Lemma. □

5.5 Polka: a Wait-free CM
Theorem 5.5. In a system using a software transactional

memory, which contention manager is Polka, and which con-
flict detection is lazy, if every transaction is timely correct,
then every transaction progresses.

Proof. We assume that in such a system, there exists
a timely correct transaction 𝜎𝑙 that never progresses, as
expressed by the property:

∃𝑡𝑖 : 𝜎𝑙 ∈ Actives𝑡𝑖 ∧ ∀𝑡𝑗 > 𝑡𝑖 : 𝜉𝑙 , Committed (2)

Let us prove this property is false.
Let Enemies𝑙𝑡𝑚 denote the set of transactions in conflict

with 𝜎𝑙 at time 𝑡𝑚. We need to study four different cases:
∙ 𝜉𝑙 = Checking ∧ 𝜎𝑙 ‡ Enemies𝑙

(i.a) ∀𝜎𝑒 ∈ Enemies𝑙 : 𝑘𝑙 > 𝑘𝑒

(i.b) ∃𝜎𝑒 ∈ Enemies𝑙 : 𝑘𝑙 ≤ 𝑘𝑒

∙ 𝜉𝑙 = Running ∧ 𝜎𝑙 ‡ Enemies𝑙
(ii.c) ∃𝜎𝑒 ∈ Enemies𝑙 : 𝜉𝑒 = Checking ∧ 𝑘𝑒 > 𝑘𝑙
(ii.d) ∃𝜎𝑒 ∈ Enemies𝑙 : 𝜉𝑒 = Checking ∧ 𝑘𝑒 ≤ 𝑘𝑙

(i.a). Transaction 𝜎𝑙 is in checking phase and its karma
is strictly greater than the karma of every transaction con-
flicting with it. Transaction 𝜎𝑙 is allowed to commit, and all
conflicting transactions are aborted. It contradicts Property
2.

(i.b). Transaction 𝜎𝑙 is in checking phase and there is at
least one transaction 𝜎𝑒 ∈ Enemies𝑙 having a karma greater
or equal to 𝜎𝑙’s one. Transaction 𝜎𝑙 sleeps, waiting for 𝜎𝑒. As
a result, there are four possible cases:

(1) Transaction 𝜎𝑒 commits. Transaction 𝜎𝑙 aborts. Trans-
action 𝜎𝑒 karma returns to zero and 𝜎𝑙 karma is steadily
increasing. According to Lemma 5.4, there exists a time

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems RTNS 2020, June 9–10, 2020, Paris, France

instant 𝑡𝑛 > 𝑡𝑚 such that 𝜎𝑙 reaches the karma limit,
i.e. ∀𝜎𝑒 ∈ Enemies𝑙𝑡𝑛 : 𝑘𝑙 > 𝑘𝑒. We refer to cases i.a
and ii.d.

(2) Transaction 𝜎𝑒 aborts. There are again two possible
cases:
∙ Transaction 𝜎𝑙 also aborts. A third transaction, in

conflict with both 𝜎𝑒 and 𝜎𝑙, commits. As a con-
sequence, both transactions 𝜎𝑒 and 𝜎𝑙 abort. Ac-
cording to Lemma 5.4, there exists a time instant
𝑡𝑛 > 𝑡𝑚 such that 𝜎𝑙 reaches the karma limit, i.e.
∀𝜎𝑒 ∈ Enemies𝑙𝑡𝑛 : 𝑘𝑙 > 𝑘𝑒. We refer to cases i.a
and ii.d.

∙ Transaction 𝜎𝑙 is still active. Transaction 𝜎𝑙 is al-
lowed to commit. It contradicts Property 2.

(3) 𝑤𝑙,𝑒 < 𝑤𝑚𝑎𝑥
𝑙,𝑒 , i.e. the number of sleeping periods of

𝜎𝑙, waiting for 𝜎𝑒, is not greater than the difference
between the karma of 𝜎𝑙 and 𝜎𝑒. Transaction 𝜎𝑙 sleeps
again, waiting for 𝜎𝑒. We refer to cases i.b.1, i.b.2 and
i.b.4.

(4) 𝑤𝑙,𝑒 = 𝑤𝑚𝑎𝑥
𝑙,𝑒 , the maximum number of sleeping periods

is reached. Transaction 𝜎𝑒 aborts and transaction 𝜎𝑙
commits. It contradicts Property 2.

(ii.c). There is at least one checking transaction 𝜎𝑒 in
conflict with 𝜎𝑙 having a karma strictly greater than 𝜎𝑙’s
one. Transaction 𝜎𝑙 aborts and 𝜎𝑒 commits (see Figure 8).
According to Lemma 5.4, there exists a time 𝑡𝑛 > 𝑡𝑚 such
that 𝜎𝑙 reaches the karma limit, i.e. ∀𝜎𝑒 ∈ Enemies𝑙𝑡𝑛 : 𝑘𝑙 >
𝑘𝑒. We refer to cases i.a and ii.d.

(ii.d). There is at least one checking transaction 𝜎𝑒 in
conflict with 𝜎𝑙 having a karma lower or equal to 𝜎𝑙’s one.
𝜎𝑒 sleeps, waiting for 𝜎𝑙. As a result, there are four possible
cases:

(1) Transaction 𝜎𝑙 commits. Transaction 𝜎𝑒 aborts (see
Figure 8). It contradicts Property 2.

(2) Transaction 𝜎𝑙 aborts. Transaction 𝜎𝑒 is allowed to
commit if it is not aborted too. We refer to case ii.d.4.

(3) 𝑤𝑒,𝑙 < 𝑤𝑚𝑎𝑥
𝑒,𝑙 , the number of sleeping periods is not

greater than the difference between 𝜎𝑒 and 𝜎𝑙 kar-
mas. Transaction 𝜎𝑒 sleeps again, waiting for 𝜎𝑙 (see
Figure 9). We refer to cases ii.d.1, ii.d.2 and ii.d.4.

(4) 𝑤𝑒,𝑙 = 𝑤𝑚𝑎𝑥
𝑒,𝑙 , the maximum number of sleeping periods

is reached. Transaction 𝜎𝑙 aborts and transaction 𝜎𝑒

commits (see Figure 9).
Let investigate this last case. By hypothesis, 𝜎𝑙 never
progresses, that is in this precise situation, transac-
tion 𝜎𝑒 always aborts 𝜎𝑙 by reaching the maximum
number of sleeping periods. Without loss of general-
ity, we assume the virtual worst-case execution for 𝜎𝑙:
this transaction accumulates karma the slowest way, as
described by Lemma 5.1. Transaction 𝜎𝑒 accumulates
karma the fastest way, as described by Lemma 5.2.
Since both transactions are timely correct, their execu-
tion time, including sleeping periods, cannot be greater
than TT. As a consequence, the maximum number
of sleeping periods is TT. This is expressed by the

following inequality:

𝑘𝑙 − 𝑘𝑒 ≤ TT (3)

with

𝑘𝑙 = ⌊ 𝑡𝑛 − 𝑏𝑙

TT ⌋ × 2 + 𝜖𝑙

𝑘𝑒 = ⌊ 𝑡𝑛 − 𝑏𝑒

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝜖𝑒

Since 𝜎𝑒 already aborted 𝜎𝑙 at least one time, it started
right after 𝜎𝑙, considering the worst-case execution. So
𝜎𝑒 karma can be expressed as:

𝑘𝑒 = ⌊ 𝑡𝑛 − 𝑏𝑙 + 1
TT ⌋ ×

(︀
TT − 2

)︀
+ 𝜖𝑒

= ⌊ 𝑡𝑛 − 𝑏𝑙

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝐶𝑒

with 𝐶𝑒 being a constant value which is equal to the
sum of all constants in the previous inequality. The
inequality 3 can be rewritten as:(︀

⌊ 𝑡𝑛 − 𝑏𝑙

TT ⌋ × 2 + 𝜖𝑙

)︀
−(︀
⌊ 𝑡𝑛 − 𝑏𝑙

TT ⌋ ×
(︀
TT − 2

)︀
+ 𝐶𝑒

)︀
≤ TT

𝑡𝑛 − 𝑏𝑙 + 𝜖𝑙 − 𝐶𝑒 ≤ TT
𝑡𝑛 ≤ TT + 𝑏𝑙 − 𝜖𝑙 + 𝐶𝑒

𝑡𝑛 ≤ 𝐶

with 𝐶 being a constant value which is equal to the
sum of all constants in the inequality. The system
time sequence 𝑡 being a strictly increasing sequence
without supremum, the inequality 3 is incorrect. As a
consequence, there is no transaction 𝜎𝑒 such that 𝜎𝑒

always aborts 𝜎𝑙. It contradicts the Property 2.
□

6 CONCLUSION AND FUTURE WORK
While software transactional memory performances are widely
studied, the question of the correctness of such mechanisms
remains open. The few papers that investigated this issue ac-
tually focused on the design of new contention managers and
on the modeling of transactions themselves, while there exists
STM implementations with empirically efficient CMs. Moti-
vated by this observation, we introduced new assumptions
on the execution time of transactions into real-time systems
in order to formally prove that, provided these systems use
the existing Polka CM, they can ensure the progress of all
transactions. Based on an fine-grain modeling of the whole
system, we also derived upper bounds on both the execution
time and the number of abortions of transactions.

Future work include the proposal of a robust variant of
Polka CM, by introducing static priorities that would allow
to relax the functional and timing constraints of transactions.
Indeed, in the case where a transaction becomes timely in-
correct, there is actually no guarantee that all timely correct
transactions will progress.

RTNS 2020, June 9–10, 2020, Paris, France Quillet et al.

𝜎

𝑡1 𝑡

𝜎𝑒2

𝜎𝑒1

𝜎𝑙

TT

sta
rt 𝜃1

Σ 𝜃2
Σ 𝜃3

Σ ab
ort

res
tar

t
𝜃1
Σ 𝜃2

Σ 𝜃3
Σ ch

eck
com

mit

sta
rt 𝜃1

Σ 𝜃3
Σ ab

ort
res

tar
t

𝜃1
Σ 𝜃3

Σ ch
eck

ab
ort

res
tar

t
𝜃1
Σ 𝜃3

Σ ch
eck

com
mit

sta
rt

𝜃1
Σ 𝜃2

Σ 𝜃3
Σ ch

eck
com

mit

Figure 8: Illustration of the proof of Theorem 5.5 (cases ii.c and ii.d.1)
𝜎𝑙 is necessarily timely correct: either 𝜎𝑙 aborts (𝑘𝑒1 > 𝑘𝑙) or 𝜎𝑙 commits (𝑘𝑒2 ≤ 𝑘𝑙).

𝜎

𝑡1 𝑡

𝜎𝑙

𝜎𝑒

TT

𝑤𝑚𝑎𝑥
𝑒,𝑙 = 𝑘𝑙 − 𝑘𝑒 sleeping periods

sta
rt

ab
ort

sta
rt

ch
eck

ab
ort

1𝑠
𝑡

sl
ee

pi
ng

pe
rio

d

res
tar

t
ab

ort
2𝑛

𝑑
sl

ee
pi

ng
pe

rio
d

res
tar

t

𝑖𝑡ℎ
sl

ee
pi

ng
pe

rio
d

(𝑤
𝑚

𝑎
𝑥

𝑒
,𝑙

)𝑡ℎ
sl

ee
pi

ng
pe

rio
d

res
tar

t
ch

eck
com

mit

𝑏𝑒 𝑏𝑙

Figure 9: Illustration of the proof of Theorem 5.5 (cases ii.d.3 and ii.d.4)
𝜎𝑙 is necessarily timely correct: 𝜎𝑒 will ultimately abort 𝜎𝑙 when reaching the maximum number of sleeping periods.

REFERENCES
[1] A Barros, P Meumeu Yomsi, and L-M Pinho. 2016. Response time

analysis of hard real-time tasks sharing software transactional
memory data under fully partitioned scheduling. In Proceedings
of the11th IEEE Symposium on Industrial Embedded Systems
(SIES). IEEE.

[2] A Barros and L-M Pinho. 2014. Non-preemptive scheduling of
real-time software transactional memory. In Proceedingsof the
27th International Conference on Architecture of Computing
Systems (ARCS). ACM.

[3] S Cotard, A Queudet, J-L Béchennec, Sébastien Faucou, and
Yvon Trinquet. 2015. STM-HRT: A Robust and Wait-Free STM
for Hard Real-Time Multicore Embedded Systems. ACM Trans.
Embedded Comput. Syst. 14, 4 (2015), 1–25.

[4] D Dice, Y Lev, M Moir, D Nussbaum, and M Olszewski. 2009.
Early experience with a commercial hardware transactional mem-
ory implementation. In Proc. 14th Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS). ACM, 157–168.

[5] Son Dinh, Jing Li, Kunal Agrawal, Chris Gill, and Chenyang Lu.
2017. Blocking analysis for spin locks in real-time parallel tasks.
IEEE Transactions on Parallel and Distributed Systems 29, 4
(2017), 789–802.

[6] M El-Shambakey and B Ravindran. 2012. STM concurrency
control for embedded real-time software with tighter time bounds.
In Proceedings of Design Automation Conference (DAC). IEEE.

[7] M El-Shambakey and B Ravindran. 2013. On real-time STM
concurrency control for embedded software with improved schedu-
lability. In Proceedings of the 18th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE.

[8] Kapali P. Eswaran, Jim N Gray, Raymond A. Lorie, and Irving L.
Traiger. 1976. The notions of consistency and predicate locks in
a database system. Commun. ACM 19, 11 (1976), 624–633.

[9] Rachid Guerraoui, Maurice Herlihy, Michal Kapalka, and Bastian
Pochon. 2005. Robust contention management in software trans-
actional memory. In Proceedings of the OOPSLA 2005 Workshop
on Synchronization and Concurrency in Object-Oriented Lan-
guages (SCOOL" 05).

[10] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. 2005.
Toward a theory of transactional contention managers. In Proceed-
ings of the twenty-fourth annual ACM symposium on Principles
of distributed computing. ACM, 258–264.

[11] Rachid Guerraoui and Michal Kapalka. 2008. On the correct-
ness of transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming. ACM, 175–184.

[12] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-
oriented database recovery. ACM Computing Surveys (CSUR)
15, 4 (1983), 287–317.

[13] Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional
memory. Synthesis Lectures on Computer Architecture 5, 1
(2010), 1–263.

[14] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2003.
Obstruction-free synchronization: Double-ended queues as an ex-
ample. In Distributed Computing Systems, 2003. Proceedings.
23rd International Conference on. IEEE, 522–529.

[15] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N
Scherer III. 2003. Software transactional memory for dynamic-
sized data structures. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing. ACM, 92–
101.

[16] Ma. Herlihy and J.E.B Moss. 1993. Transactional memory: Archi-
tectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer Archi-
tecture. 289–300.

[17] C Hung, J Yen, L En, S Diestelhorst, M Pohlack, and M Hohmuth.
2010. ASF: AMD64 Extension for Lock-Free Data Structures
and Transactional Memory. In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture.
IEEE/ACM, 39–50.

[18] Damien Imbs, José Ramón González De Mendivil Moreno, and
Michel Raynal. [n. d.]. On the consistency conditions of transac-
tional memories. Technical Report. Issue 1917, IRISA, University
of Rennes, France.

[19] C Jacobi, T Slegel, and D Greiner. 2012. Transactional memory
architecture and implementation for IBM system Z. In Proceedings

Analysis of Polka Contention Manager
for use in Multicore Hard Real-Time Systems RTNS 2020, June 9–10, 2020, Paris, France

of the 45th Annu. IEEE/ACM Int. Symp. Microarchitecture.
IEEE/ACM, 25–36.

[20] Eric H Jensen, Gary W Hagensen, and Jeffrey M Broughton. 1987.
A new approach to exclusive data access in shared memory mul-
tiprocessors. Technical Report. UCRL-97663, Lawrence Livermore
National Laboratory.

[21] Xu Jiang, Nan Guan, He Du, Weichen Liu, and Wang Yi. 2020.
On the Analysis of Parallel Real-Time Tasks with Spin Locks.
IEEE Transactions on Computers (Early Access) (2020).

[22] Lee Kangmin and Jo Heeseung. 2018. ParaTM: Transparent
Embedding of Hardware Transactional Memory for Traditional
Applications. IEEE Access Journal 6 (2018), 45417–45426.

[23] Toufik Sarni, Audrey Queudet, and Patrick Valduriez. 2009. Real-
time support for software transactional memory. In Embedded

and Real-Time Computing Systems and Applications, 2009.
RTCSA’09. 15th IEEE International Conference on. IEEE, 477–
485.

[24] William N Scherer III and Michael L Scott. 2005. Advanced con-
tention management for dynamic software transactional memory.
In Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing. ACM, 240–248.

[25] M Schoeberl, F Brandner, and J Vitek. 2010. RTTM: Real-
time transactional memory. In Proceedings of the 2010 ACM
symposium on Applied Computing. ACM, 326–333.

[26] Nir Shavit and Dan Touitou. 1997. Software transactional memory.
Distributed Computing 10, 2 (1997), 99–116.

	Abstract
	1 Introduction and Motivation
	2 Related Work
	2.1 Transactional Memory
	2.2 TM Correctness and Timing Analysis

	3 Background Material
	3.1 Software Transactional Memory Concepts
	3.2 Polka Contention Manager

	4 Models and Terminology
	4.1 System Model
	4.2 Task Model
	4.3 Transaction Model

	5 Scoping Polka CM
	5.1 Illustrative Example
	5.2 Slowest Karma Accumulation
	5.3 Fastest Karma Accumulation
	5.4 Achieving the Greatest Karma
	5.5 Polka: a Wait-free CM

	6 Conclusion and Future Work
	References

