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Improved PET/CT Respiratory Motion
Compensation by Incorporating Changes in Lung
Density

Elise C. Emond, Student Member, IEEE, Alexandre Bousse, Ludovica Brusaferri, Student Member, IEEE,
Brian E. Hutton, Senior Member, IEEE and Kris Thielemans, Senior Member, IEEE

Abstract—Positron Emission Tomography/Computed Tomog-
raphy (PET/CT) lung imaging is highly sensitive to motion.
Although several techniques exist to diminish motion artifacts,
few account for both tissue displacement and changes in den-
sity due to the compression and dilation of the lungs, which
cause quantification errors. This paper presents an experimental
framework for joint activity image reconstruction and motion
estimation in PET/CT, where the PET image and the motion are
directly estimated from the raw data. Direct motion estimation
methods for motion-compensated PET/CT are preferable as they
require a single attenuation map only and result in optimal signal
to noise ratio (SNR). Previous implementations, however, failed
to address changes in density during respiration. We propose
to account for such changes using the Jacobian determinant of
the deformation fields. In a feasibility study, we demonstrate
on a modified extended cardiac-torso (XCAT) phantom with
breathing motion—where the lung density and activity vary—
that our approach achieved better quantification in the lungs
than conventional PET/CT joint activity image reconstruction
and motion estimation that does not account for density changes.
The proposed method resulted in lower bias and variance in the
activity images, reduced mean relative activity error in the lung
at the reference gate (—4.84% to —3.22%) and more realistic
Jacobian determinant values.

Index Terms—PET/CT, Respiratory motion compensation,
lung, density

I. INTRODUCTION

ET lung imaging suffers from patient respiratory motion,
Paffecting the image resolution, localization, and quan-
tification due to the mismatch of the acquired PET data
with the attenuation map, typically computed from a single
snapshot CT acquisition. A common approach to compensate
for respiratory motion, known as motion-compensated image
reconstruction (MCIR), is to use image registration to compute
deformation fields between different respiratory states (deter-
mined using a respiratory signal [1]), in order to warp the
attenuation map and match the PET data, while performing
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iterative reconstruction. This has shown promising results,
particularly for improved tumor delineation in lung imaging.

Commonly used MCIR techniques rely on previous deter-
mination of the deformation fields from gated images, which
are then incorporated into the reconstruction [2]. A standard
option relies on registering gated PET images reconstructed
without attenuation correction [1] or, more recently, with
attenuation correction [3] and accurate time-of-flight (TOF)
information [4], leading to a reduction in localized image
artifacts. A second option exploits CINE-CT images to obtain
CT-based deformation fields, which should be more robust
because of better contrast and higher resolution. However,
this is contingent on having corresponding CT and PET
gates for good results (therefore requiring amplitude-based
respiratory gating). Also, because of the longer CT acquisition,
the radiation dose is increased, which cannot be justified in
some circumstances.

Instead of deformation fields determined from image regis-
tration, the deformation can also be estimated directly from the
acquired PET data. Joint reconstruction and motion estimation
(JRM) [5]-[9] is a reconstruction strategy in which, from the
entire PET acquisition (as well as a gated respiratory surrogate
signal and a single CT image), it is possible to estimate
an activity image and the deformation between (respiratory)
states. The input single CT image does not need to correspond
to one of the gates of the respiratory signal; the computed
activity image corresponds to the same respiratory state as the
attenuation map (obtained from the CT image). The estimated
deformation operator can warp both activity and attenuation
images to each gate of the respiratory signal.

The previous methods however usually do not account
for the change of density in the lungs, due to respiration.
This could be a source of error, especially as both activity
concentration and attenuation are affected. In good approx-
imation, the changes can be estimated from local volume
changes [10] (due to overall lung compression and dilation),
although the lung mass is not entirely preserved during the
respiration. Some fluid exchanges indeed contribute to an
additional change of total lung tissue mass [11], which can
be up to 10% over the respiratory cycle [12], where the
lowest mass corresponds approximately to end-expiration and
the largest to end-inspiration (likely due to the distension
of blood vessels following the dilation of the lungs). This
would also contribute to the variation of the lung density and
tracer concentration during respiration. Accounting for density



changes during respiration might be particularly relevant when
studying lung diseases such as fibrosis or tumors where the
diseased region of the lung is more rigid than other parts of
the lung. Therefore, we want to investigate here a method
which would comprise a mass-preserving deformation model,
which could help with both reducing data inconsistencies and
estimating motion more robustly. In this work, the volume
changes will be estimated by computing the “Jacobian de-
terminant” (sometimes also referred as “Jacobian”) of the
deformation field [13]. Mass-preserving image registration, via
incorporation of the Jacobian of the transformation field in the
process, has been utilized before [14]—[17], but the idea has not
been brought directly into a joint estimation of PET activity
image and motion so far.

This paper aims to demonstrate the feasibility of a recon-
struction algorithm for respiratory-gated PET data that can
take local density changes into account, when only a single
CT image is available. We provide an evaluation based on
simulated PET data of XCAT phantom images.

In a first section, the theory of mass-preserving registration
will be discussed, as well as the modifications necessary to
the existing PET JRM to incorporate mass preservation. The
method introduced will then be validated using simulated
XCAT data of lung acquisition, where density and activity
concentration changes are included within the lung.

II. THEORY

This section presents a method built upon [7]-[9] and
therefore similar notations will be used.

A. Motion-free PET Image Reconstruction

The activity and attenuation maps are respectively denoted
A €CT and pu € C*, where CT = CY(R3,R") is the set of
non-negative continuous functions defined on R>.

The set of detected prompts g; € N at a detection bin
i € [1,np,], where ny, is the number of detection bins (either
defined from the corresponding detector pair in non TOF case
or from the detector pair and the time bin in TOF case), follows
a Poisson distribution of expectation g;(A, 1) such that:

gi ~ Poisson(gi(A, 1)) , (1)

with
gi(A p) = Tai(p) Hix + bi , 2
where 7 is the duration of the acquisition, a;(u) is the

attenuation along the line of response L; corresponding to the
detection bin ¢, H; and a; are defined as

Hl-)\:/ A(r)hi(r)dr 3)
R3

a;(p) = exp (— /L pu(r) dr) , 4)

where h; R3 — RT is the system response function
corresponding to the detection bin ¢, which is compactly
supported such that (3) is well-defined, and b; is the number
of background events (either scatter or randoms) at the bin <.

and

The log-likelihood L, omitting the terms independent of A
and u, is given by:

ny

L()‘v M) = Z gi IOg gi ()‘7 M) - gl()\’ :u’) ’ (5)
i=1

where nj, denotes the number of detection bins and log(-)

the natural logarithm. Assuming the attenuation g is known

(e.g., from CT reconstruction), the activity image A can

be reconstructed by maximizing (5), for example with the

expectation-maximization (EM) algorithm [18].

B. Standard Approach

PET acquisitions are in practice longer than cardiac and res-
piratory cycles. However, if we assume the acquired PET data
can be binned into several ng “gates” such that g = {gg}?jl
where each g, € N" is a vector regrouping the counts
corresponding to gate ¢ at each bin—during which intra-gate
motion can be considered negligible in comparison to PET
resolution. The previous model from Section II-A can then be
used separately at each gate /,

Ve e [1,ng], [geli = gi,e ~ Poisson(gie(Ae, p1e)),  (6)

which depends on the activity distribution A, and the attenu-
ation distribution u, at gate ¢ through the expectation

Gio(Ae, ) = o ai(pe) Hide + big 7

where 7, corresponds to the duration of the binned respiratory
gate ¢ and b; , is the background term for the ¢-th gate at
the detection bin i. The corresponding log-likelihood A, to be
maximized is:

nh

Ag( e, o) = Zgi,e log Gi,e(Ae, pie) — Gie( Ny pie) - (8)

i=1

One approach to tackle motion blur is therefore to re-
construct a single image )y, from the gated PET data gy,
(8). However this approach suffers from low SNR as only
a fraction of the measured counts are used. To address this,
each gate ¢ can be reconstructed individually, followed by
image registration to a single reference gate and averaging,
but this approach requires gated attenuation maps (Cine-CT)
which is not always available in practice; and increases patient
dose. Alternatively, the motion between each of the gates
and the reference gate can be estimated (e.g., from CT or
magnetic resonance imaging (MRI)) and incorporated in the
reconstruction framework; it is referred to as MCIR.

C. Direct Approach

In this section we derive an extended version of the model
proposed in [7]-[9].

We define the warping operator W, : C* — C™ associated
to a diffeomorphism ¢ : R® — R3 such that:

Wof = foe, where f € CT . 9)

In addition, another warping operator can be introduced, using
the approximation that the mass is preserved in the lung
and both the changes in activity concentration and density



during the respiration are directly correlated to the change in
volume [10]. A modified “mass-preserving” warping operator
W, can therefore be defined, incorporating into the previous
W, the absolute value of the determinant of the Jacobian
matrix of ¢ in R3, denoted | det 7|, such that Vf € C*

Wof =|det T,| - W, f,
where the Jacobian matrix,

jgp : RS — M3,3(R)

@) o (FOE0Ew). an

is differentiable.

The definition of this operator is motivated by the considera-
tion of local mass preservation: if we consider a diffeomorphic
deformation ¢ which transforms a non-negative continuous
distribution f; into fs (i.e., fo = f1 o ), then:

/ i) dr = / | det(T, () | fo(r)dr,  (12)
R3 R3

where det(7,(r)) consequently reflects the volume changes.
At each gate ¢ € [l,ng], the corresponding motion
is y. The mass-preserving motion-compensated maximum-
likelihood is defined by replacing A, and y, by the deformed
reference images A\ and p in (8) then summing over the gates:
L(A, {‘pf}?ila ) = Z AeWp A W, 1)) -
=1

The addition of mass-preserving conditions within a cost
function (not necessarily using |7, |) has been used by various
authors, for CT [15], PET [16], [19], single photon emission
computed tomography (SPECT) [20], [21] and MRI data [22],
mostly for image registration. However, mass preservation
has never been used, to the best of the authors’ knowledge,
directly within a motion-compensating PET image reconstruc-
tion scheme, using a log-likelihood cost function to estimate

the motion between respiratory gates.

(10)

13)

D. Discretization

In this work, the discretization is achieved following the
scheme proposed in [5], [7]. Vectors derived from discretiza-
tion appear in bold. The discretized images corresponding to A
and p are XA € R™ and p € R™ respectively, where n., is the
number of voxels in the image, and f; = [f]; and p; = [p];
respectively correspond to the activity and attenuation at voxel
J € [1,ny].

We use B-spline functions for the deformation field [5], [7],
[23]. The discrete motion is expressed with an n. control point
grid {r,}"<, r, € R3 and with a B-spline coefficient vector
o= (a¥'={aX)", o = {aX )1 a? = {aZ}" ).
where a$ € R is the cubic B-spline coefficient in direction
C € {X,)Y,Z} and at control point r,,. The corresponding
motion ¢,, is defined at each location » € R? as on a subgrid
of the original image grid comprising n. control points of
coordinates {r, }¢ ,, such that:

(14)

where D is the distance between the control points, 7, is
the m-th control point and B(r) = b(z) - b(y) - b(z) where
r = (x,y, z) are the coordinates of a point in the grid and b
is the (uniform) cubic B-spline function. We assume here that
the control points are equally spaced in x, y and z directions
but the implementation could be extended to uneven spacing.

The discrete version of the warping operator WV, becomes
a matrix Wy € M, ., (R). Additionally, we define the
“discrete” determinant A, € R™ by sampling det J ., (r)
at each voxel.

We redefine the expected number of counts at a gate ¢ such
as Gie(X,0,pn) = Tra;(Wa,1b) [HWW)\] + s;¢, wWhere
H is the discretized PET system matrix and a;(p) is the
attenuation factor corresponding to the discretized attenuation
map L.

Finally, the discrete version of (13) is

L0, 1) =3 AW A Wa,n),

=1

5)

where 8 = {ay},2, and oy is the motion parameter at gate
L.

E. Joint Image Reconstruction and Motion Estimation

We propose to estimate the activity image A and the motion
parameter ensemble 6 by maximizing (15) with the addition
of regularization terms on A and 6

O(X,0, 1) £ L(X, 0, 1) + BUN) +7V(6),  (16)
where § and v are the penalty weights associated to the
(quadratic) penalty terms U () and V' (), respectively. Thus,
the discussed JRM tries to solve the following optimization
problem to estimate an activity image A and a set of defor-
mation parameters 6:

~

(X, ) € argmax ®(A, 0, p) .
2,0

A7)

The proposed method proceeds by alternating between A
and 6 updates, using block sequential regularized expectation-
maximization (BSREM) algorithm proposed by Ahn et
al. [24] for A—which will not be detailed here—and limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [25]
for &—for which we propose a summary in Appendix B. When
a mass-preserving model is used, it will be referred as “mass-
preserving JRM”, as compared to “standard JRM”.

With the mass-preserving case, the derivation of the gradient
of the cost function in the motion update needs to account for
the additional dependence in € due to the addition of Jacobian
determinant in the model. The gradient in 6 is somehow
similar to that of [7] with the addition of the analytical
derivatives of | Ay, | with respect to the B-spline coefficients
oy which are obtained in a a similar way as in [15]. Details
on derivation of the cost function are given in Appendix A
and B.



F. Image & Motion Estimation Regularization

1) Activity Image regularization: In standard JRM [7], a
quadratic prior was used to regularize image reconstruction.
In this work, U(A) is the relative difference prior [26] and
can be expressed as

RN

Jj=1veEN;

(A —A\)?
Av) + YA = Ao

(18)

where w;, in the inverse distance between the center of a
voxel j and the center of a voxel v and N is the neighbour-
hood of voxel j.

2) Deformation regularization: V(0) in (16) can be ex-
pressed as a sum of penalties over all the gates £ € [[1, ng]:

g

V(0) = R(a)

{=1

19)

where R is a penalty on the coefficients {cv},2 . In this work,
instead of only regularizing the deformation parameters, the
regularization is also performed on the Jacobian determinant
image. This should prevent the optimization in 6 to favor
a mass-preserving motion that matches with the noise—
as pointed out in [19] for mass-preserving registration—by
constraining the Jacobian determinant image to be smooth.
The smoothed total variation (STV) penalty [27] was chosen
here:

Z¢||F|Am L3+ ¢>0 o)

Rsrv (o)

where F' is the finite forward difference operator used to
approximate the gradient of an image and (¢ (chosen as 0.3)
is used as a smoothing factor, also enabling differentiation in
0. To ensure smooth deformation fields, a small regularization
on the B-spline coefficients was also added within V' (6):

Rdef af :_72 Z an Z

n=1.meN, Cce{X,Y,Z}

(of — )"

(2D
where Wy, ,,, is the inverse distance between the control points
n (e, 1, V2 or v/3) and m, N, is the neighborhood of a
control point n (within_the n. control points grid). The size
of the neighborhoods N,, was set to 3 x 3 x 3. The values
at the image borders were handled by adding padding to the
image, using the nearest values.

More details are given in Appendix B.

III. EXPERIMENTS

Five sets of lung XCAT images were generated, correspond-
ing to five different respiratory gates (ng = 5). The corre-
sponding activity and attenuation images are denoted {)\@}Zil
and {pe},2,, respectively (where ¢ = 1 is the end-inspiration
and / = 5 is the end-expiration), mimicking displacement
gating. The values in the activity images correspond to a
standard FDG acquisition 60-min post-injection acquired in
our imaging facility.

Additionally, to simulate density changes in lungs obeying
mass preservation, the activity distribution and density values

ﬂ

0 3,000
Bq-mL™!

500

Bg-mL™!

Fig. 1: Modified XCAT activity images at each respiratory gate
used for the simulation: original scale (left) and reduced scale
(right) for better visualization of the lung activity concentration
change, from end-inspiration (top) to end-expiration (bottom);
a red horizontal line was plotted to visualize respiratory
motion.

were varied uniformly in the lung, depending on the total vol-
ume change compared to mid-expiration, using XCAT gated
lung masks. As a result, compared to the mid-expiration state
(gate 3), the changes in density and activity concentration were
respectively as follows: gate 1: —11%, gate 2: —6.9%, gate
3: 0%, gate 4: +8.2%, gate 5: +11.5%. It should however be
noted that these changes do not correspond to the Jacobian de-
terminant of the true deformation fields from XCAT, therefore
the simulations include some model mismatch as would be the
case for patient data. For healthy patients, however, we do not
expect a uniform change in density and activity concentration
throughout the lung, as some regions are expected to ventilate
more than others as documented in [12], [28]. The resulting
images are shown in Figures 1 and 2.

After the activity and activity images were created, the
gated projection data were obtained via forward projection
of the activity images and separate attenuation correction
factors were computed for each gate. Scatters and randoms
were added with a level similar to a usual lung acquisition
(about 60% of the total number of detected counts). Poisson
noise was added to the projection data in the results presented
(number of prompts =~ 3 - 107), to simulate a standard FDG
lung acquisition in our imaging facility. A GE Discovery 710
scanner geometry was used to simulate the data (using GE
proprietary projectors in a MATLAB package). For all gates
¢, the background sinogram {slg}fzbl in (7) is considered to
be known accurately during the entire reconstruction.

The input attenuation map corresponds to the end-expiration
state ps, which means that the first gated activity image
reconstructed in the algorithm is perfectly aligned with the
attenuation map. The number of JRM iterations numJRMIter
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Fig. 2: Modified XCAT attenuation images at each respiratory
gate used for the simulation: original scale (left) and reduced
scale (right) for better visualization of the lung density change,
from end-inspiration (top) to end-expiration (right); a red
horizontal line was plotted to visualize respiratory motion.

was set to 3 (introduced in Appendix B A.).

In addition to the mass-preserving JRM presented here, the
“standard” JRM (i.e., without mass preservation, as in [7])
was used to reconstruct the data. A range of regularization
values ~ for the motion update (16) was tested, from weak to
strong visual smoothing of the Jacobian determinant images.
The image reconstruction parameters were kept identical for
all simulations (8 subsets). For each model and penalty weight,
30 different Poisson noise realizations were performed.

The image variance and squared bias in all attenuation
images and only in the lung were studied to select the best
regularization configuration for each model and to compare
the two models. The attenuation image squared bias is given
as:

Z 2\ %7

Blas
ng =1 | Z| =y

and the attenuation image variance as:

2
[K] atn
i = e D 3 (] )
JEV, k=1
(23)
where
LT, 0
atn K
miy == > (W] 4
K k=1 J
K = 30, NLK] = deul is the estimated y image at a
£ .
respiratory gate ¢ and at the r-th noise realisation, WV denoting
either the mass-preserving JRM warping operator (i.e., W =
W) or standard JRM warping operator (i.e., W =W).

& 10~
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(a) Entire image (b) Lung only

Fig. 3: Tradeoff between variance and the (squared) bias in
the © images, in (a) the entire image and in (b) the lung only,
between the two JRM models, using an edge-preserving JRM
regularization.

Similarly, we define the image squared bias and variance in
the activity images {A,},2, as follows:

2
K
Biasj = Z |V| Z < Z[ [N]} A ) , (25)
g /=1 ¢ JEV k=1
and
Ng 2
act
Vary = _1Z|W|ZZ({ ] —mﬂ) ,
JEVe k=1
(26)
where X
act 1 (k]
mi =5 2o [Ae L : 27
k=1
)\B{] = WA n])\["””] is the estimated activity image at a

respiratory gate ¢ and at the k-th noise realization and Al*
is the MCIR activity image.

These measures of variances and squared biases were used
to assess the best regularization configuration (using a scatter
plot), for each model.

We also define the mean relative error activity image
RD, € R™ at a gate ¢ such that at a voxel i:

myA) = [

[Ael;
All measures in the lung were made using the respiratory-

dependent masks from XCAT, which were eroded using a
small kernel.

[RD/|, = (28)

IV. RESULTS

The scatter plots for the bias-variance study for the atten-
uation map are given in Figure 3 and for the activity image
in Figure 4. The results show that using a mass-preserving
model in JRM reduces the image squared biases, especially
in the lung region of the activity image. The activity image
variances are also decreased.

From the previous bias-variance analysis, we choose to
compare the following results using a medium regularization.
Reconstructed activity images corresponding to the two dif-
ferent models on 6, are shown alongside the true activity



eg

— 14

X 3.2 —e— Mass-preserving 13 —e— Mass-preserving

OI‘ —e— Standard —e— Standard

| 3 12

g

T 28 11 W
= 26 \ \ L 10 \ \

f>€ 3 3.5 4 0 5 10

Bias? (Bq?-mL~2 x 10%) Bias2 (Bq?'mL~2 x 10%)

(a) Entire image (b) Lung only

Fig. 4: Tradeoff between variance and the (squared) bias in
the A images, in (a) the entire image and in (b) the lung only,
between the two JRM models, using an edge-preserving JRM
regularization.
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Fig. 5: Coronal views of (c) the true activity image A\* and
the motion-compensated images using either (a) the standard
model for Ag¢q or (b) the mass-preserving model for Ayp.

image in Figure 5 (at the reference gate, i.e., end-expiration).
Visually, the differences between the two reconstructed images
are not conspicuous. The mean activity & standard deviation
in the lung (using a slightly eroded lung mask given by
XCAT at end-expiration), averaged over all noise simulations,
was found to be 1559.6 + 99.7 Bq.mL~! in mass-preserving
JRM and 1533.1 +98.7 Bq.mIf1 in standard JRM, where the
true activity concentration is of 1612.1 Bq.mL~!. The mean
relative error in the lung mask at end-expiration is —3.22% for
mass-preserving JRM and —4.84% for standard JRM. Mass-
preserving JRM therefore performs better than standard JRM,
although the difference is small.

When we compute the mean relative error images
{RD,},2, for both JRM versions, we can see that including
mass preservation in the imaging model decreases the error in
the lung and outside of the lung over the different gates. The
images are shown in Figure 6.

Finally, we want to assess how closely the estimated Jaco-
bian determinant images correspond to the simulated activity
concentration and density change ratio images in Figure 7. The
values in the liver and in the cardiac region are improved for
the mass-preserving model,as they are closer to 1 (this value
corresponds to the simulated density and activity concentration
change ratio between all gates and end-expiration).

V. DISCUSSION

The results presented in this work show that incorporating
a mass-preserving condition within a reconstruction method,
such as joint reconstruction and motion estimation (JRM),
can reduce quantification errors, especially in the lungs. A
direct estimation of the activity image and of the deformation
fields between gates can also help with estimating motion more

Fig. 6: Mean relative activity error image at each gate for
standard JRM (left) and mass-preserving JRM (right), from
end-expiration (top) to end-inspiration (bottom).

Standard

Mass-Preserving Truth

Gate 1 1.25
Gate 2
1
Gate 3
0.75
- A A
Gate 4 \ , ‘ :
) % E3
Gate 5 \ '

Fig. 7: Coronal views of the Jacobian determinant images
(unitless), at each respiratory gate, computed from the defor-
mation fields estimated using either the mass-preserving model
(1st column) or the standard model (2nd column), compared to
the true activity concentration and density change ratios (3rd
column).

accurately, especially internally in the lung, while needing only
one CT acquisition and respiratory-gated PET data.

A bias-variance study over all gates was first done, from
a range of penalty weights for the regularization of the
deformation parameters. The scatter plots showed that both
bias and variance reduce in the gate-dependent activity im-
ages (i.e., after using the deformation operator applied to
the reconstructed image) when the mass-preserving model is
used— both inside and outside the lungs (e.g., in the cardiac
region or in the liver). Additionally, the mean relative error
images for all different gates were computed. The errors in the
lung decreased, especially for the gates which were the most



different to the reference end-expiration gate. In particular,
for medium regularization on the deformation parameters, the
mean relative error in the lung of the reconstructed activity
image at end-expiration decreased from —4.84% to —3.22%.
The Jacobian determinant images obtained from the defor-
mation fields were also more consistent with the simulated
density and activity concentration changes, with values closer
to 1 outside of the lungs.

Although we do not show large benefits when the mass-
preserving method is applied to the XCAT phantom, our
approach could have a larger impact for chest acquisitions
of patient data. A possible domain of application could be
data of patients suffering from diffuse lung diseases, such
as idiopathic pulmonary fibrosis or chronic obstructive pul-
monary disease; since the lung rigidity varies locally because
of the pathology, lung internal motion could be more precisely
estimated by considering mass preservation.

A drawback for joint reconstruction in PET is however
linked to rather slow convergence and therefore increased
computational time (in our settings, using an implementation
based on CPU projectors without multi-threading, it took about
11 times longer to process the data with JRM as compared
to standard MCIR, i.e., approximately two days), especially
when the activity image used to initialize the algorithm has
quantification issues (due to misalignment with the p map).
As suggested in [7], the initialization of the activity image
at the start of the alternating strategy is important for both
algorithm acceleration and convergence (as the likelihood is
not concave, it is necessary to start as close as possible to
the true activity image to ensure that it converges). Therefore,
it is recommended to initialize the activity image using a
gated reconstruction corresponding to the sinogram of the
respiratory gate which is the closest to the gate of the input
o map. Additionally, estimating coarse deformation fields
between all gates should be beneficial to accelerate the method
presented and could also be used for a less noisy activity
image initialization using MCIR. To do so, standard methods
such as registering non attenuation-corrected gated images
could be used [1]. Another alternative would be the use of
a reconstruction of type Maximum-Likelihood reconstruction
of Activity and Attenuation (MLAA) [29], for which the
attenuation sinogram can be estimated up to a constant [30]
in TOF PET (within the activity hull). When applied to
respiratory-gated data, although MLAA p maps are expected
to be very noisy, recent work on gated data have shown that it
could be possible to extract information on motion [31], when
deep learning is used to denoise the images [32].

Moreover, a parameterization of the deformation field using
cubic B-splines was used in this work. Although B-splines
have the advantage of being simple for derivation and com-
putational reasons, other deformation parameterization could
be more adapted for lung registration, for example to handle
sliding motion against the ribs. Possible approaches could be
to extend supervoxel techniques [33], [34] or to use “fluid ma-
terial” deformation fields, such as introduced by Christensen
et al. [35].

Finally, the method presented here could be extended to
estimate the values in the p map jointly with the defor-

mation fields and the activity image. Using the additional
constraint linked to the modulation of the attenuation and the
activity concentration changes with the Jacobian determinant,
it may be possible to estimate the attenuation sinograms
accurately, determining intrinsically the additive attenuation
sinogram [30] linked to standard MLAA TOF reconstruction.

VI. CONCLUSION

This study shows the feasibility of a mass-preserving
joint activity image reconstruction and motion estimation in
PET/CT, which could be also extended to PET/MR imaging.
Future work will involve validation on patient data.

APPENDIX A: DERIVATION OF THE DETERMINANT OF THE
DEFORMATION JACOBIAN MATRIX FOR B-SPLINE
REPRESENTATION

The element (k,1) of the 3 x 3 matrix J,_ (r) is given by:

" ol OB (17,
Toa s = Bra+ 3 22 a( D ) @
n=1

where dy, ; is the Kronecker delta for &, [ and g—g is the partial
derivative of B with respect to x;, C}, corresponding to X, Y,
Z for k=1, k=2, k = 3, respectively, and z; corresponding
tox,yorzforl =1,1= 2,1 = 3respectively. The derivatives
of a determinant of a matrix can be obtained via Jacobi’s

formula, with respect to a given aC*:

ddet J ., (1)
0aSk

(@) = tr (adj (Fou () W(a))

daS*
(30)

where tr(-) is the trace of the matrix and adj(-) is its adjugate.
For a given r, the partial derivatives of J,,_ (r) with respect
to aS* are equal to:

ajsaa(r) (a> _ l % T—="Tn
aagk D =1 8&31 D ’

By the chain rule, the partial derivative of |det 7, (r)| is
therefore:

0 |det T, (1)

aag’“ N
sen(det Ty, (1)) - tr (adj (T (1)) - 8‘7”) . (32)

daS*

€Y

where sgn(-) is the sign function. The non-differentiability
of |-| function in O is handled by adding a small number
to the Jacobian determinant. The analytical derivatives of
| det(J,,, ) | were validated against finite differences in terms
of absolute percentage error between the gradient and the
finite differences, normalized with respect to the maximum
absolute value of the gradient, for random B-spline coefficients
and € = 0.00001 used in finite differences. The mean and
maximum errors were found to be less than 3 - 10~!! and
4 - 10710 respectively.
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APPENDIX B: IMPLEMENTATION AND DERIVATION
DETAILS

A. Joint Reconstruction Outline

Joint reconstruction of activity image/motion estimation
consists of numJRMIter alternations between:

e Motion Update: maximizing the log-likelihood, from a
given activity image, with respect to the B-spline co-
efficients 0 to estimate the deformation between the
reference respiratory state (corresponding to the CT im-
age used to compute the input attenuation map) and
the PET respiratory gates (binned using a respiratory
surrogate signal). The optimization is performed for each
respiratory gate separately.

o Regularized Image Reconstruction: given the deformation
fields estimated during the previous step, MCIR is used to
obtain A, with a modified version of BSREM. Contrary
to [7], the image is always reinitialized to 1, before
each reconstruction.

The algorithm is initialized from a gated regularized image
reconstruction at end-expiration (according to the respiratory
trace). The first motion estimation is chosen to have more
iterations than following ones (here twice as many). A concise
pseudo-code is given in Algorithm 1 and some additional
details on the motion update and image update are provided
in following subsections B and C. A more detailed summary
of the implementation used in this work can be found in [8].

ALGORITHM 1
Joint Reconstruction of Motion and Activity

Input: p, gated projection data g

09 <0

A(©) + BSREM(g1, u, )

for r =1,..., numJRMIter do
0(") <« Motion estimation from (g, , 8"~ D A("=1) )
A" « MC-BSREM(g, 11, 8, B)

end for R R

Output: estimated PET image A, B-spline coefficients 6

B. Motion Update

The penalized log-likelihood ® (A, €, i) is maximized with
respect to @ during the motion update. Let 8%) be a current
estimate of @ at iteration k. (1) is obtained by performing
a maximization along a gradient ascent search direction ¢(*):

a1 — g(k) 4 5(k) (k) (33)
where

5§ = arg max BN, 0% + 6t )

(34)

and t(®) is a gradient ascent direction that incorporates the
inverse Hessian of ®, computed with a L-BFGS quasi-Newton
line-search algorithm, handling bound constraints [25]; al-
though any line-search method could be used. A Fortran
implementation [37] was used to compute ¢ and §* at each
motion estimation iteration. The step length (34) satisfies the

Wolfe conditions [38], i.e., guarantees sufficient increase of
(16).

To simplify the notation, dependencies on A and g will
be omitted in this appendix. For each gate ¢, the expected
number of counts at bin i g; ¢(Wa, A, Wa, 1t), are regrouped
in a vector g¢(a) € R"™. The likelihood L(A, 8, ) will be
denoted L(6) and J(-) will represent the Jacobian matrix in
Q.

Using the chain rule, the gradient of the log-likelihood in
oy is:

Va, L(0) = J(ge(ew)) " Ve(ge(ew))

where V(ge(aw)) = ge/ge(oy) — 1gne.

The latter is modified with the incorporation of the mass-
preserving warping operator YV instead of the regular warping
operator WV used in [7] (cf Appendix A):

(35)

J(ge(a)) = —7¢ diag{ Ha(Wa, k) Wa, A} LI (W, 1)
+ T HaWa, 1) (Wa, A)

where £ € M,, ,, (R) represents the line integral matrix
where an element (7, j) is the length of intersection of the line
connecting the two detectors corresponding to the bin ¢ with
voxel j, H,(p) = diag {exp (—Lp)} H and Vf € {p, A},
J(Wa, f) is the Jacobian matrix associated to W, f with
respect to oy. We have the following formula:

JWa, f) = diag{| A, [}J(Wa, f)
+ diag{Wa, F}J (| Aq, )

where J(Wa, f) is obtained as in [7] and J(|Aq,|) is
obtained by discretizing (32).

The gradient V®, corresponding to the regularized motion
estimation step, is equal to VL 4+ VV, where VL is the
concatenation of all gate-dependent gradients V4, L and VV
is the gradient of V.

C. Regularized Image Reconstruction

The image update maximizes the motion-dependent pe-
nalized log-likelihood (16), using BSREM [24], using the
relative difference prior introduced in [26]. This algorithm
was also modified as motion-compensated BSREM (MC-
BSREM), using the warping operators introduced in this work.
The step size for gated reconstructions (to initialize the joint

reconstruction) at a given iteration k£ was chosen as -

T5+1
and for MC-BSREM reconstruction as ni + 1+1, in order to
diminish the problem of using too large step Sizes at the edges
of the field of view when parts of the images are only present
in some gates. The parameters of the update are the number
of subsets numSubs and the penalty weighting factor 3; the
image update stops either when the median relative change
between two iterations is lower than 0.1% inside the XCAT
phantom or after 300/numSubs iterations.
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