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Abstract: 16 

Degraded tropical forests dominate agricultural frontiers and their management is becoming an 17 

urgent priority. This calls for a better understanding of the different forest cover states and cost-18 

efficient techniques to quantify the impact of degradation on forest structure. Canopy texture 19 

analyses based on Very High Spatial Resolution (VHSR) optical imagery provide proxies to assess forest 20 

structures but the mechanisms linking them with degradation have rarely been investigated. To 21 

address this gap, we used a lightweight Unmanned Aerial Vehicle (UAV) to map 739 ha of degraded 22 

forests and acquire both canopy VHSR images and height model. Thirty-three years of degradation 23 

history from Landsat archives allowed us to sample 40 plots in undisturbed, logged, over-logged and 24 

burned and regrowth forests in tropical forested landscapes (Paragominas, Pará, Brazil). Fourier 25 

(FOTO) and lacunarity textures were used to assess forest canopy structure and to build a typology 26 
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linking degradation history and current states. Texture metrics capture canopy grain, heterogeneity 27 

and openness gradients and correlate with forest structure variability (R2= 0.58).  Similar structures 28 

share common degradation history and can be discriminated on the basis of canopy texture alone 29 

(accuracy = 55%). Over-logging causes a lowering in forest height, which brings homogeneous textures 30 

and of finer grain. We identified the major changes in structures due to fire following logging which 31 

changes heterogeneous and intermediate grain into coarse textures. Our findings highlight the 32 

potential of canopy texture metrics to characterize degraded forests and thus be used as indicators 33 

for forest management and degradation mitigation. Inexpensive and agile UAV open promising 34 

perspectives at the interface between field inventory and satellite characterization of forest structure 35 

using texture metrics. 36 

Highlights: 37 

• We assessed canopy texture – structure relations along forest degradation gradients 38 

• Canopy textures capture 58% of degradation-induced variability of canopy structure 39 

• Degradation generates specific canopy textures linked with logging and fire history 40 

• Texture metrics can be used to evaluate the state of degraded forests 41 

 42 

 43 

Keywords: Canopy structure, Forest degradation, Remote Sensing, Texture, Tropical forest, 44 

Unmanned Aerial Vehicle.  45 

46 
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1. Introduction 47 

Forest degradation is a threat (Potapov et al., 2017) to the provision of  ecosystem services by tropical 48 

forests. Degradation causes loss of biodiversity through habitat disturbance and fragmentation 49 

(Barlow et al., 2016; Broadbent et al., 2008), erosion of hydrological and soil properties, the reduction 50 

of non-timber forest resources (Lewis et al., 2015; Thompson et al., 2009), and currently accounts for 51 

68.9% of overall carbon losses from tropical forests  (Baccini et al., 2017).  52 

The accumulation of forest disturbances such as selective logging and understory fires affects the 53 

states of the forest by destroying the canopy and the internal structure without triggering any changes 54 

in land use (Ghazoul and Chazdon, 2017; Putz and Redford, 2010). Degraded forests are therefore the 55 

consequence of complex degradation and recovery processes, which creates a gradient of varying 56 

structures within the forest landscape (Chazdon et al., 2016; Malhi et al., 2014).   57 

Measuring the current forest structure and its degree of degradation are crucial for effective but 58 

sustainable management of degraded forests to guarantee the conservation, management and 59 

betterment of their ecological values (Goldstein, 2014). 60 

However, the identification, characterization and measurement of forest degradation remains a 61 

scientific challenge, in particular in the remote sensing community (Frolking et al., 2009; Herold et al., 62 

2011; Hirschmugl et al., 2017; Mitchell et al., 2017). Among the wide range of remote sensing 63 

approaches, optical time series of medium resolution Landsat images have been used to derive forest 64 

states indicators and to reconstruct forest degradation history through the detection and 65 

quantification of disturbances within the canopy (Asner et al., 2009; Bullock et al., 2018; DeVries et 66 

al., 2015; Souza et al., 2013). These approaches are steps towards degradation monitoring and 67 

informing Reducing Emissions from Deforestation and Degradation (REDD+) systems (Goetz et al., 68 

2014) but do not provide quantitative information on the forest structure which is directly related to 69 

carbon stocks. Airborne Light Detection and Ranging (A-LiDAR) is the most successful technique to 70 

retrieve three-dimensional forest structural parameters and estimate aboveground biomass (AGB) 71 
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stocks (Asner et al., 2012; Longo et al., 2016; Rappaport et al., 2018) but the data are often costly to 72 

acquire and to replicate both in space and over time (Silva et al., 2017).  73 

In addition to the spectral properties of optical remote sensing, Very High Spatial Resolution (VHSR) 74 

sensors (images with less than 5m/pixel) also acquire information on the distribution of dominant tree 75 

crowns that define the forest canopy and also canopy gaps, thereby providing important indirect 76 

indicators of forest three-dimensional structure (Meyer et al., 2018). The spatial distribution of trees, 77 

the shapes and dimensions of their crowns and the characteristics of the inter-crown gaps interact to 78 

define the forest canopy grain and can be assessed through canopy texture analysis (Couteron et al., 79 

2005). Several studies have demonstrated the potential of texture methods to characterize VHSR 80 

canopy images (Couteron et al., 2005; Frazer et al., 2005). Among them, the FOurier-based Textural 81 

Ordination (FOTO) method has been used in a variety of tropical forests to characterize gradients of 82 

canopy grain, heterogeneity and crown size distribution (Barbier et al., 2010; Bastin et al., 2014; 83 

Couteron et al., 2005; Ploton et al., 2012; Singh et al., 2014). Case studies have shown that FOTO 84 

indices can correlate with forest structural parameters along gradients of natural variation (Couteron 85 

et al. 2005) of degradation (Ploton et al. 2012; Singh et al. 2014) or in landscapes mixing both (Bastin 86 

et al. 2014 ; Pargal et al. 2017). Lacunarity analysis, another textural approach, also captures spatial 87 

heterogeneity of forest canopies and additionally provides a quantitative measure of canopy 88 

‘gapiness’ that correlates with canopy cover and gap fraction (Frazer et al., 2005; Malhi and Román-89 

Cuesta, 2008; Ploton et al., 2017). However, the possible links between canopy texture and forest 90 

structure parameters are context dependent (Ploton et al. 2017), and relationships have to be verified 91 

and calibrated using reference data from either field plots or airborne canopy altimetry, and such data 92 

are not available in many tropical landscapes or regions. Moreover, one cannot expect the variety of 93 

stand structures generated by degradation processes to display unequivocal relationships with canopy 94 

texture variables (Rappaport et al., 2018). For instance, severe degradation may result in coarse 95 

texture (e.g. because of big gaps) as well as fine-grained aspects owing to small crowns in regenerating 96 

patches. In this sense, there is a lack in understanding and quantifying the consequences of forest 97 
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degradation on canopy texture. Using unmanned aerial vehicles (UAV), the aim of this paper is to 98 

demonstrate that texture information can efficiently characterize degraded forest types. Unmanned 99 

aerial vehicles are thus a new promising tool to acquire altimetry data and very high resolution images 100 

of the canopy (Koh and Wich, 2012; Zhang et al., 2016).  101 

Here, we used very high resolution UAV images to sample a broad range of degraded and intact forests 102 

conditions in an old deforestation pioneer front of the Brazilian Amazon. For each forest site, we 103 

combined degradation history from Landsat time series with UAV data including canopy elevation and 104 

grey-level images. Our large-area and diverse UAV coverage addressed two questions: (1) How do 105 

canopy textures correlate with forest structure parameters within a large range of degraded forest 106 

types? (2) How do disturbance type and frequency contribute to variability in texture metrics through 107 

heterogeneity, coarseness and openness canopy gradients? 108 

In so doing, our study aims to pave the way for interpreting canopy texture in VHSR satellite images 109 

from agile UAV-based ground truthing and consequently help decision makers improve the 110 

management of degraded forests.  111 

 112 

 113 

 114 

 115 

  116 



6 
 

2. Materials and Methods 117 

2.1. Study area 118 

The study was carried out in the municipality of Paragominas, located in the northeastern part of the 119 

State of Pará, Brazil, and covered an area of 19,342 km² (Fig. 1). The municipality experienced different 120 

colonization processes since its foundation in 1965, which led to significant deforestation with 121 

conversion of land to pasture for cattle ranching and forest degradation through overexploitation of 122 

timber. Deforestation was accentuated by the grain agro-industry in the 2000s, dominated by 123 

intensive soybean and maize cultivation mainly in the center of the municipality (Piketty et al., 2015). 124 

We demonstrated in previous studies that the history and processes of colonization spatially differ 125 

within Paragominas (Laurent et al., 2017). This led to a mosaic of forests in very different cover states 126 

within heterogeneous landscape mosaics dominated by different land uses (Bourgoin et al., 2018; 127 

Mercier et al., 2019). In this region, forest management plans with selective logging have rarely been 128 

adopted except in CIKEL Brasil Verde Madeiras Ltda forestry company (Mazzei et al., 2010). Forest 129 

suffered from two major anthropogenic disturbances. Unplanned logging with over-logging intensity 130 

is marked by repeated frequencies over time. Fire alters deeply the understory and generate high 131 

mortality rates for canopy trees (Fig. 1)(Hasan et al., 2019; Tritsch et al., 2016). 132 
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 133 

Figure 1: Location of the study site, Paragominas municipality, in Pará state in the Brazilian Amazon. Distribution of the 40 134 

forest plots covered using UAV. Illustrations of selective logging (A), over-logging (B) and fire (C) from Google Earth® 2017 135 

2.2. Data collection  136 

2.2.1. UAV surveys and processing 137 

Forty forest sites were selected in various forested landscapes to cover a large variation of disturbance 138 

types (Fig.1). Using visual interpretation from Google Earth® VHSR images validated by in-situ UAV 139 

observations, we distinguished between sites that experienced disturbances such as logging and fire 140 

and intact sites with no human-induced disturbance. We also used the management plan of the Cikel 141 

forestry company (Fig.1) that provides spatial information on undisturbed and selectively logged 142 

forests at different dates over the last 20 years.  143 

We used a DJI mavic pro UAV carrying its original RGB camera of 12.71 megapixel resolution (DJI, 144 

Shenzhen, China). The acquisition plan was designed with Pix4D Capture software (Pix4D, Lausanne, 145 

Switzerland). We used a single grid with 80% of front and side overlap between images and a constant 146 

flight altitude of 300 meters above ground level. The objective was to maximize the overlap between 147 

each image and the total surface area mapped. As a result, the average surface mapped in each forest 148 

plot was 24 ha (~600 by 400 meters) at 10 centimeters spatial resolution (Appendix C) for a total of 149 
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739 ha. In order to generate a high quality canopy height model, each flight was constrained by several 150 

conditions:  151 

i) Flat terrain was selected with imaged areas that overlapped with roads or agricultural fields 152 

to allow us to retrieve the ground elevation during the preprocessing step;  153 

ii) Acquisition in the morning (9 to 11 am) and afternoon (3 to 5 pm) was preferred to avoid 154 

zenithal effects (halo and low image contrast);  155 

iii) Either cloud free or totally cloudy sky conditions were necessary to avoid cloud shadows;  156 

iv) Absence of wind to low wind conditions were needed to generate crisp images of the forest 157 

canopy. 158 

Raw image data were processed to the highest density point cloud using structure from motion (SfM) 159 

followed by densification using multi-view stereo algorithms in the Pix4D software (Alonzo et al., 2018; 160 

Westoby et al., 2012). Final point cloud densities were ~27 pts.m-3 depending on the availability of 161 

viable tie points, and some other acquisition parameters (Table 1). Using the georectified point clouds, 162 

we corrected the raw images to generate RGB mosaics, which were then converted into single-band 163 

panchromatic grey level mosaics. Digital Surface Models (DSM) of the canopy (i.e. the top of the 164 

forest’s surface) at 0.10 m resolution were directly computed from the point cloud. We extracted the 165 

average ground elevation data in non-forest areas (e.g. roads, agricultural fields or canopy gaps) from 166 

the DSMs and derived canopy height models for each forest plot.  167 

 168 

2.2.2. Landsat time series to detect forest disturbances and reconstruct degradation history 169 

We acquired Landsat data from 1984 to 2017 (Appendix A) to detect forest disturbances along time 170 

and reconstruct degradation history for each forest site. The images at Level 1 (Tier 1 product) were 171 

pre-processed to surface reflectance by the algorithm developed by the NASA Goddard Space Flight 172 

Center (http://earthexplorer.usgs.gov/). We computed the Normalized Difference Moisture Index 173 

http://earthexplorer.usgs.gov/
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(NDMI) from the Short-Wave InfraRed (SWIR) and Near InfraRed (NIR) bands as follows (Gao, 1996): 174 

𝑁𝐷𝑀𝐼 =  𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅⁄  175 

This index previously used to monitor forest degradation (DeVries et al., 2015) allowed us to identify 176 

disturbance type and frequency (selective logging, over-logging and fire) at forest plot scale, using 177 

photointerpretation (Appendix B). The disturbance type was identified based on its spatial extent and 178 

shape and on the low NDMI values. Selective logging is marked by regular and spaced logging roads 179 

(Fig.1A), over-logging is marked by irregular logging roads (Fig. 1B) and fire presents open canopy 180 

structure and low values of NDMI (Silva et al., 2018; Tritsch et al., 2016). We also recorded the date of 181 

the most recent disturbance (Appendix C) which has a significant influence on the current forest 182 

structure (Rappaport et al., 2018). Figure 2 shows the diversity of forest degradation history of our 183 

sampling such as selectively logged forests, over-logged forests and over-logged and burned forests. 184 

 185 

 186 

Figure 2: Forest degradation history of the 40 forest plots based on the frequency of selective logging, 187 

over-logging, fire events and date of last disturbance (4 plots are not shown as they are secondary 188 

forests). 189 

2.3. Methods  190 

The data analysis was based on two steps: (1) use canopy texture metrics derived from grey-level UAV 191 

images to retrieve canopy structure metrics (based on canopy height models) derived from UAV 192 
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structure from motion within a large range of degraded forest types at 1 ha scale and (2) potential of 193 

canopy texture metrics to discriminate degradation history and the resulting changes in forest 194 

structures at the forest plot scale (Fig. 3). 195 

 196 

Figure 3: Workflow of the method used to evaluate the potential of canopy texture metrics to retrieve 197 

the canopy structure along the gradient of forest degradation and their relation with forest 198 

degradation history. 199 

 200 

2.3.1. Computation of forest canopy texture metrics from grey level UAV images at 1 ha scale 201 

We performed texture analysis of grey level canopy images using FOTO (Couteron, 2002) and 202 

lacunarity (Frazer et al., 2005) algorithms. We also used basic descriptors of statistical grey level 203 

distributions such as skewness and kurtosis. Each of the UAV canopy images was divided into canopy 204 

100*100 m windows (fixed grid) for texture analysis. This size was shown in previous studies to be 205 



11 
 

appropriate to capture several repetitions of the largest tree crowns (in our case 45 meters of 206 

maximum tree crown diameter) in forest stands (Ploton et al., 2017).  207 

The FOTO method is extensively described elsewhere (Couteron, 2002; Couteron et al., 2005; Ploton 208 

et al., 2017), hence we only give here a brief outline of the procedure. When applying FOTO, each of 209 

the windows originating from the UAV images is subjected to a two-dimensional Fourier transform to 210 

enable computation of the two-dimensional periodogram. ‘Radial-’ or ‘r-spectra’ are extracted from 211 

the periodogram to provide simplified, azimuthally-averaged textural characterization. Spectra are 212 

systematically compared using the two first axes of a principal component analysis (FOTO_PCA1, 213 

FOTO_PCA2), providing an ordination along a limited number of coarseness vs. fineness gradients. In 214 

this process, windows are treated as statistical observations that are characterized and compared on 215 

the basis of their spectral profile, i.e., the way in which window grey scale variance is broken down in 216 

relation to Fourier harmonic spatial frequencies (ranging from 50 to 240 cycles/km for this study). PCA 217 

captures gradients of variation between windows spectra opposing those concentrating most variance 218 

in low frequencies (i.e. coarse textures) and those in which high frequencies retain a substantial share 219 

of variance (i.e. fine textures).  220 

 221 

Lacunarity was defined following Frazer et al. (2005) and Malhi and Roman-Cuesta (2008). For each 222 

100*100 m window, a moving square box of size ‘s’ was glided by one pixel at a time and the sum of 223 

all pixel spectral radiance, called the mass, was computed at each gliding position. The frequency 224 

distribution of the mass divided by the number of boxes’ positions is computed, and Lacunarity at box 225 

size ‘s’ is the squared ratio of the first and second moment of this distribution. This process was 226 

repeated for 100 box sizes ranging from 1 to 99 m and the resulting lacunarity spectrum was 227 

normalized by lacunarity at size 1. Finally, the spectra were compared using the two first axes of a PCA 228 

(Lacu_PCA1 and Lacu_PCA2 respectively), to provide an ordination of windows along inter-crown 229 

canopy openness gradients. 230 
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Routines for both FOTO (http://doi.org/10.5281/zenodo.1216005) and lacunarity methods were 231 

developed in the MatLab® environment (The MathWorks, Inc., Natick, Massachusetts, USA).  232 

 233 

2.3.2.  Computation of forest canopy structure metrics from canopy height models at 1 ha scale  234 

From the canopy height model, six Canopy Structure Metrics (CSM) were computed in the same 235 

100*100m window grid previously described: mean elevation (mean), minimum (min), maximum 236 

(max), variance (var), Standard Deviation (SD) and Coefficient of Variation (CV) defined as the ratio 237 

between standard deviation and mean elevation. We then compiled the six Canopy Texture Metrics, 238 

noted CTM, (FOTO_PCA1, FOTO_PCA2, Lacu_PCA1, Lacu_PCA2, Skewness, Kurtosis) and the 6 CSM.  239 

 240 

2.3.3. Canopy texture - structure relations within a large range of degraded forest types at 1 ha scale 241 

The ability of CTM to predict forest canopy structures was tested using regression models for each 242 

CSM based on Random Forest machine learning (RF) (Breiman, 2001).  243 

The learning set is randomly partitioned into k equal size sub-samples with k=10. Each regression 244 

process is then applied where k-1 sub samples are used as training data and the remaining ones for 245 

validation. This process is repeated by changing the training/validation sub-samples in such a way that 246 

all learning samples are used for validation. Cross-validation is a common and sound procedure in 247 

machine learning processes (Arlot and Celisse, 2010; Kohavi, 1995). The R-squared, average Root 248 

Mean Square Error (RMSE) and relative RMSE were utilized to evaluate the performance of the model.  249 

The number of trees and the number of variables used for tree nodes splitting were randomly 250 

determined using the tune function implemented in the R randomForest package, version 4.6-14 (Liaw 251 

and Wiener, 2002). The number of tree was set to 500 to reduce computation times without notable 252 

loss in accuracy. 253 

 254 

2.3.4. Potential of canopy texture metrics to discriminate forest degradation histories at the plot scale 255 

http://doi.org/10.5281/zenodo.1216005
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The forest plot scale was used to combine canopy texture and canopy structure metrics with forest 256 

degradation history. We first classified forest plots according to their canopy structures (mean CSM 257 

calculated at the plot scale) using PCA and hierarchical clustering (Ward’s criterion). The number of 258 

clusters was optimized by calculating the inter-cluster variance (Ketchen Jr. and Shook, 1996). Each 259 

cluster of forest canopy structure was then related to forest degradation history by calculating the 260 

average disturbance frequency of over-logging, selective logging and fire events. We then used Linear 261 

Discriminant Analysis (LDA) to predict membership of forest structure clusters from averaged value of 262 

CTM at the plot scale. LDA algorithm tries to find a linear combination within the canopy textural 263 

metrics averaged at plot scale that maximizes separation between the barycenters of the clusters 264 

while minimizing the variation within each group of the dataset (Hamsici and Martinez, 2008; Kuhn 265 

and Johnson, 2013). We used MANOVA with Pillai’s Trace tests to evaluate the significance of the 266 

multivariate inter-cluster difference computed from the 6 CTM. All processes were computed using 267 

the R packages FactoMineR (Husson et al., 2010; Lê et al., 2008) and the MASS package (Venables and 268 

Ripley, 2002).  269 

 270 

3. Results 271 

3.1. Forest canopy texture metrics from grey level UAV images at 1 ha scale 272 

The two first factorial axes of the PCA accounted for 51.6% of the total variability of the r-spectra 273 

observed (Fig. 4b). FOTO_PCA1 expresses a gradient between coarse and fine texture corresponding 274 

to spatial frequencies of less than 90 cycles/km and more than 120 cycles/km, respectively (Fig. 4c). 275 

FOTO_PCA2 expresses a gradient leading from heterogeneous textures with the coexistence of low 276 

and high frequencies (negative scores) toward homogeneous intermediate frequencies in the range 277 

90-120 cycles/km (high scores). Fine textures correspond to homogeneous distribution of small tree 278 

crowns reflecting ongoing regeneration after probable over-logging. Intermediate textures along axis 279 

1 associate large and smaller tree crowns that characterize preserved forest with the natural 280 

distribution of high emergent trees and lower canopy trees.  The left part of the scatter plot groups 281 
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coarse textures corresponding to large gaps in the canopy related to logging activities. Finally, the two 282 

examples at the bottom of the plot show mixed coarse (remaining trees) and fine (low understory or 283 

shrub stratum) textures that characterize over-logged and recently burned forests.  284 

 285 

 286 

Figure 4: Canopy texture ordination based on the FOTO method applied to UAV-acquired grey level images. (a) Scatter plots 287 

of PCA scores along F1 and F2 and windows selected as illustrations. (b) Histogram of eigenvalues expressed as % of total 288 

variance. (c) Correlation circles with frequencies ranging from 50 to 240 (cycles/km).  289 

The first factorial axe of the PCA on the lacunarity spectra account for more than 70% of total 290 

variability (Fig. 5b). Lacu_PCA1 expresses a gradient of gapiness with large gaps appearing in the 291 

extreme left part of the scatter plot (Fig. 5a) and closed canopy forest with no gaps in the extreme 292 

right part. Large gaps are tree shadows projected over large canopy gaps. Homogeneous canopies, i.e. 293 

smooth grain and a closed canopy characterizing low degradation forests were found on the positive 294 

side of the second axis (Lacu_PCA2)(11% of total variability) and vice versa for heterogeneous 295 

canopies. These are highly degraded forests (over-logged at different ages and recently burned 296 

forests) with destroyed canopies and patches of small crowns linked to the understory or to 297 

regeneration. Other axes did not reveal other structures. Substantial analogy can be observed 298 

between the main texture gradients provided by FOTO and by the lacunarity analyses. 299 
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 300 

Figure 5: Canopy texture ordination based on the lacunarity method. (a) Scatter plots of PCA scores along F1 and F2 and 301 

windows selected as illustrations. (b) Histogram of eigenvalues expressed as % of total variance. (c) Correlation circles with 302 

sub-window sizes ranging from 2 to 102 pixels. 303 

3.2. Relationships between canopy textures and forest structure parameters at 1 ha scale 304 

The standard deviation and variance of canopy height were the CSM best explained by texture with a 305 

R² of 0.58 and 0.54 respectively (Table 1). These metrics pointing to the variability of canopy structure 306 

directly reflect the different processes of degradation and the associated gradients of canopy grain 307 

texture. Maximum and mean canopy height and coefficient of variation show lower relationship (resp. 308 

R² of 0.43, 0.38 and 0.31). The minimum height showed a low R² of 0.13 with CTM. 309 

Table 1: Random forest regression models for the prediction of canopy structure metrics (CSM) from canopy texture metrics 310 

(CTM) on grey level images. 311 

CSM R²  RMSE  Relative RMSE  

Minimum (m) 0.13 3.49 0.94 

Maximum (m) 0.43 5.66 0.76 

Mean (m) 0.38 4.88 0.79 

Variance  0.54 13.03 0.68 
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Standard deviation   0.58 1.01 0.65 

Coefficient of variation 0.31 0.17 0.83 

 312 

3.3. Potential of canopy texture metrics to discriminate forest degradation histories at the plot scale 313 

3.3.1. Clusters of canopy structures and related degradation history 314 

The clustering method allowed identifying six clusters of canopy structures (Fig. 6). Cluster 1 groups 315 

wide open and low canopy forests with a significantly lower average canopy height (9.9 m) than the 316 

other clusters and high Standard Deviation (SD) values (6.19 m). It groups forest plots that have mainly 317 

experienced over-logging (~1.4 events) and recent fire events identified between 2015 and 2017 (1.6 318 

in average). Cluster 2 groups 23-year-old secondary forests characterized by a homogeneous and low 319 

canopy (average height of 13.86m and SD of 2.28). Cluster 3 groups forest plots with homogeneous 320 

(SD of 5.10), low average canopy height (14.13m) mainly marked by over-logging (~1.5 events). Cluster 321 

4 has a heterogeneous canopy structure characterized by high standard deviation (SD of 7.03) which 322 

is explained by recent logging events detected in 2017 (~1.2 events) and other previous disturbances 323 

such as fire (~1 event). Clusters 5 and 6 have similar canopy height (~22 m) but variable canopy 324 

roughness (SD ranging from 6.05 to 7.59). Their degradation histories differ as cluster 5 groups 325 

recently selectively logged forest (~0.6 events) or over-logged forests (~1 event) while cluster 6 mostly 326 

groups undisturbed forest and old selectively logged forests (more than 10 years ago). However both 327 

clusters are marked by very low (~0.1 events for cluster 5) to none fire disturbances detected. Further 328 

explanation on the different steps of the method and on the statistical results can be found in 329 

Appendix D and E. 330 
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   331 

Figure 6: Three-dimensional plots of canopy height models of the 100 x 100 m windows selected to illustrate the six forest 332 

structure clusters. Radar chart shows the average frequency of over-logging, selective logging and fire disturbances detected 333 

in all forest plots within a given cluster.  334 

 335 

3.4.2. Linear discriminant analysis at the forest plot scale 336 

The two first discriminant components (LD1 and LD2) account for 93.6% of the total proportion of the 337 

trace i.e. the proportion of inter-cluster discrimination of the LDA based on texture (MANOVA test 338 

with p-value < 0.05)(Fig. 7a). The prominent first discriminant component is mainly correlated with 339 

FOTO_PCA1 (r=0.55 in LD1), FOTO_PCA2 (0.49 in LD1) and LACU_PCA2 (-0.79 in LD1) (Fig. 7b). The 340 

second discriminant component is mainly correlated with LACU_PCA2.  341 

In the LD1-LD2 plane, clusters 2 and 3 are mainly separated from the rest of clusters thanks to axis 342 

LDA1. Cluster 1, 4 and 5 are discriminated along LD2. Cluster 6 has less discriminating capacity, 343 

especially compared with cluster 5.  344 

 LDA results include misclassification errors corresponding to disagreement between texture-based 345 

and structural classifications of the plots (Fig. 7a). The confusion matrix shows an overall accuracy of 346 

55% and kappa index at 0.44 (Fig 7c). The LDA classification performed well for all clusters except 347 



18 
 

cluster 6 which has the highest misclassification rate with a high rate of confusion with cluster 5. Based 348 

on CTM, clusters 5 and 6 appeared to be similar because they mainly differ in their minimum height, 349 

which logically is difficult to predict from canopy texture metrics on 2D images. 350 

  351 

 352 

Figure 7: (a) Scatter plot showing the distribution of the 40 forest plots with color based on the color of canopy clusters on 353 

the linear discriminant plane (LD1-2). Inset: proportions of LDA trace (b) Correlation circle of CTM with respect to the two 354 

main components (axes) of the LDA (c) Confusion matrix between observed and predicted clusters for the 40 plots (LDA 355 

classifications)  356 

Clusters 2, 3 and 5 are distinguished along a gradient of canopy textural grain that spans from fine to 357 

coarse (FOTO-PCA1) (Fig. 8). Cluster 4 mainly presents the lowest FOTO-PCA1 and Lacunarity-PCA1 358 

values, which correspond to the coarse texture and large gaps, respectively, typical of recent logging 359 

events. Cluster 1 has on average the coarse grain and homogeneous texture (FOTO-PCA1 and -PCA2) 360 

that characterize low vegetation strata. Finally cluster 6 (well preserved forest) has intermediate 361 

canopy grain (FOTO-PCA1 and 2) and canopy openness (Lacunarity-PCA2).  362 

 363 
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 364 

Figure 8: Mean and SD values of CTM calculated within the 6 predicted clusters using LDA. 365 

 366 

  367 
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4. Discussion  368 

A better characterization of forest structure is crucial to tailoring forest management plans (Goldstein, 369 

2014). In this paper, we show that canopy texture metrics extracted from very-high spatial resolution 370 

optical images acquired by unmanned aerial vehicle are clearly related to forest canopy height models 371 

and can reveal different and complex degradation history. The canopy texture metrics provide 372 

complementary information on degraded forest states compared to other remotely sensed indicators 373 

based on vegetation photosynthesis activity (Asner et al., 2009; Bullock et al., 2018; Mitchell et al., 374 

2017). The canopy texture metrics can also be used in multidisciplinary approaches such as for the 375 

assessment of forest ecosystem services that require detailed information on forest structure (Barlow 376 

et al., 2016; Berenguer et al., 2014).  377 

 378 

4.1. Potential of canopy texture metrics to assess degraded canopy structures  379 

We showed that CTM can assess forest structure variability that reflects both horizontal and vertical 380 

heterogeneity induced by degradation. Through the expression of canopy grain and heterogeneity 381 

gradients, CTM provides reliable estimations of canopy roughness (standard deviation of canopy 382 

height) at 1 ha-scale. At the forest plot scale, we demonstrated the complementary of FOTO and 383 

lacunarity metrics in distinguishing between the different clusters. While FOTO and lacunarity express 384 

similar gradients of canopy texture (Figs. 4 and 5), the measure of canopy openness in lacunarity 385 

provide useful additional information to distinguish large canopy gaps from large crowns, as 386 

underlined by Ploton et al. (2017). However, the first axis of lacunarity reveals a gradient of canopy 387 

textures that could be influenced by sun-angle conditions during the UAV data acquisition. Early 388 

morning and late afternoon data acquisitions generate higher projected shadow, which drives the 389 

distribution of the data towards the negative values of the first axis. Data acquisition parameters (sun 390 

and sensor angles, clouds etc.) are known to be able to disturb grey level values and textures (Barbier 391 

and Couteron, 2015). One advantage of using UAV is that they allow better control of acquisition 392 

conditions than do satellites.  393 
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 394 

 4.2. Long-term forest degradation consequences on structure explained using current canopy 395 

textures 396 

In this study, we demonstrate the potential of single shot UAV-based canopy altimetry and texture to 397 

correlate with current structure that can reveal both past disturbances and recovery processes (Herold 398 

et al. 2011, Ghazoul and Chazdon 2017). At the forest plot scale (~24 ha), the average CSM and the 399 

variability of CSM enabled the identification of six forest clusters with specific degradation history. The 400 

link between long term degradation history and canopy structure has already been identified in 401 

previous studies that quantified carbon densities of Amazonian forests following successive logging 402 

and/or fire events (Berenguer et al., 2014; Longo et al., 2016; Rappaport et al., 2018). CTM proved to 403 

be able to differentiate between five types of degradation, although with some confusion between 404 

the less degraded forest types. 405 

Undisturbed forests have a high closed canopy, and are homogeneous in texture with an intermediate 406 

grain associating large and medium-sized tree crowns (cluster 6). Any logging event will disrupt the 407 

canopy and create a coarse texture with greater variation in canopy height (cluster 4). Under a 408 

management plan, logging intensity is moderate (< 5 to 8 trees/ha) and the recovery time (35 years in 409 

Brazil) is expected. In that case, the coarse texture will recover and will turn back into intermediate 410 

grain (cluster 5 or 6).  We showed that after seven years, the canopy texture of a logged forest 411 

resembles that of undisturbed forest (Fig. 6 and Appendix C). For unmanaged forests, subject to higher 412 

uptake, the time for the forest to recover a canopy texture of intermediate grain will be longer (e.g. 413 

plots 23 and 24). In the case of additional impacts (progressive disappearance of large crowns), the 414 

coarse canopy texture will also be maintained longer. Repetitive and intense logging have therefore 415 

triggered the complete harvesting of emergent trees, thereby weakening the capacity of forests to 416 

cope with further disturbances (Asner et al., 2002). During the recovery process, canopy is of low 417 

height and its texture is dominated by a fine and heterogeneous grain (cluster 3). 418 
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Additionally, we found that recent fire (single or multiple events) has a major impact on the damaged 419 

forest structure. The resulting highly degraded forests are characterized by coarse textures 420 

corresponding to large gaps and/or homogeneous regeneration stratum and highly damaged canopy 421 

(cluster 1). Moreover, most fires were detected in 2015, which correlated with the El Nino drought 422 

event (Berenguer et al., 2018). These findings underline the importance of the synergetic effects of 423 

logging and fire on forest structure (Dwomoh et al., 2019; Morton et al., 2013). We also found that 424 

fire was never detected (i.e. did not occur) in closed canopy and relatively low degradation forests. 425 

This confirms that heavily logged forests are more vulnerable to fire due to the presence of dead and 426 

dry vegetation resulting from logging. At a larger scale, this vulnerability is linked with the 427 

fragmentation of forest patches, which facilitates access to forest resources, accentuates dry edge 428 

effects and increases potential pressure caused by agricultural expansion (Briant et al., 2010; 429 

Broadbent et al., 2008; Silva Junior et al., 2018). The mitigation of fire occurrence through improved 430 

landscape management is therefore a priority in order to prevent further degradation and forest 431 

carbon losses (Berenguer et al., 2014).  432 

The results of the present study reveal possible ways to address questions concerning the future 433 

management of primary degraded forests by analyzing the structure and texture of their canopy in 434 

order to better differentiate forest states and the associated degradation history. This study also 435 

opens the way for further analysis of secondary forests in abandoned lands which will certainly play a 436 

crucial role in future scenarios of landscape restoration (Chazdon et al., 2016). 437 

 438 

4.3. UAV technology: from data acquisition to limitations and perspectives 439 

This paper reports the first large-scale application of low cost UAV to retrieve quantitative information 440 

on closed canopy forest structures. The UAV used is inexpensive (<2,000 US$) and a highly efficient 441 

cost/time ratio was found for data acquisition in the field. In a 20 minutes flight, around 25 hectares 442 

of forest was mapped at a resolution of 10 centimeters. Other studies using UAV produced results that 443 

are comparable with LiDAR in terms of point cloud densities (Chung et al., 2019; Dandois et al., 2015) 444 
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and estimations of forest structural parameters (Alonzo et al., 2018). Finally, the computation of CTM 445 

using open-source Matlab® routines is automatic and only requires the window size used for texture 446 

analysis as the user input. Window size can be adapted to forest canopy crown size and distribution, 447 

although limited variations do not alter the results much. Consequently, the workflow described here 448 

has great promise for future monitoring of tropical forest at low cost, which is interesting when 449 

airborne LiDAR is not affordable or available.  450 

However, UAV remain limited by their inability to cover regions as large as those covered by satellite 451 

images, and climatic conditions (wind, cloud shadows) are likely to disturb the consistency of image 452 

texture and thus the automatic mapping process. Finally, regulations strongly limit the use of UAV in 453 

certain countries. Nonetheless, UAVs appears to be an efficient tool at the interface between field 454 

inventory and satellite characterization of forest structure (Koh and Wich, 2012). Unmanned aerial 455 

vehicle acquired reference data could be the basis of upscaling chains that would allow the use of 456 

spaceborne data of decreasing resolution yet increasing swath and affordability so as to reach broad 457 

scale, wall to wall mapping of forest state indicators of known accuracy.  458 
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