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Abstract

We construct the Copula Recursive Tree (CORT) estimator: a flexible, consis-
tent, piecewise linear estimator of a copula, leveraging the patchwork copula for-
malization and various piecewise constant density estimators. While the patchwork
structure imposes a grid, the CORT estimator is data-driven and constructs the
(possibly irregular) grid recursively from the data, minimizing a chosen distance on
the copula space. The addition of the copula constraints makes usual denisty esti-
mators unusable, whereas the CORT estimator is only concerned with dependence
and guarantees the uniformity of margins. Refinements such as localized dimension
reduction and bagging are developed, analyzed, and tested through applications on
simulated data.

Keywords: CORT, piecewise linear copula, patchwork copula, density estimation trees, nonpara-

metric estimation, quadratic program, bagging.

1 Introduction

Although the estimation of copula [38, 26, 15] is a wide-treated subject, most performant
estimators available in the litterature are based on restricted, parametric estimation.

∗E-mail address: oskar.laverny@math.univ-lyon1.fr
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Vine copulas[37, 36, 35, 34, 40], although useful in high dimensions, often use parametric
models such as archimedean copulas as base building blocks. On one other hand, graphical
models [28, 17] assume a gaussian dependence structure and therefore are fast but under
restrictive assumptions. Classical nonparametric density estimators such as kernels [23,
45, 46, 47] or wavelets [21, 33, 18] are not suited to satisfy constraints such as the
uniformity of margins (one counter-example may be found in [8, 16]). We explore here a
specific class of non-parametric copula density estimators with tree-structured piecewise
constant densities, and design an estimator that lies in this class, the CORT estimator.

The CORT estimator is based on the density estimation trees from [42], which is a tree-
structured non-parametric density estimator, and on the framwork of patchwork copulas
from [14, 12, 13]. There already exist several others piecewise constant density estimators:
the cascaded histograms of [22], the Dirichlet-based Polya tree [39], the distribution ele-
ment trees by [31], the adaptative sparse grids of [41], the framework of gaussian mixtures
by [9], the bayesian sequential partitioning techniques by [29, 27] with their interesting
asymptotic consistency results, and the Wasserstein compression techniques provided by
[30] are all worth noting in the field of non-parametric piecewise density estimation. But
these models are built to estimate densities without taking into account uniformity of mar-
gins, and they do not always lead to proper copulas when applied on pseudo-observations
or true copula samples.

The CORT estimator has the particularity of being tree-shaped which ensures on one
hand that the computation of the estimated density and the distribution function on new
data points is fast, and on the other hand that storage of the model is efficent. Thus,
it could be used for tasks such as re-sampling a dataset outside of the already existing
points, or for compression purposes, when dealing with big-data dependencies. Finally,
under mild conditions, the estimator is a proper copula, where classical non-parametric
estimators, such as Deheuvel’s empirical copula, are not.

This paper is organised as follows. In Section 2 we describe the class of piecewise lin-
ear copulas and give some of their properties. In Section 3, we propose an estimation
procedure, allowing localized dimension reduction, and we establish a convergence result
for this procedure. In Section 4 we deal with ensemble models based on the CORT esti-
mator: Bagging techniques and out-of-bag generalisation statistics are developed in the
field of copula density estimation, and applied to the CORT estimator. Finally, Section 5
investigates the performance of the model by applications on some simulated examples,
and Section 6 concludes.

2 The piecewise linear copula

Let X “ pX1, ..., Xdq be a multivariate random vector of dimension d. We are interested
in the dependence structure between components of X. The concept of copula, whose
formalisation is due to [48], allows to study this dependence separately from the marginal
distributions. Consider that the distribution function (d.f.) F of the random vector X
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with marginal d.f.s F1, ..., Fd, and define the function C as:

Cpuq “ F
`

F´1
1 pu1q, ..., F

´1
d pudq

˘

, @u P r0, 1sd.

Then the distribution of the random vector X is characterised by the marginal distribu-
tions and the function C, called the copula. Sklar’s Theorem [48] states that a copula C
satisfying the previous equality always exists, and that it is uniquely defined provided that
the marginal random variables are absolutely continuous. In particular, it is unique if the
random vector is continuous. One can easily check that C is the distribution function of
a d-dimensional random vector with uniform margins. Furthermore, C defines the whole
dependence structure of the random vector and does not contain information about the
marginal distributions.

The estimation of the full distribution can then be splitted into the estimation of one-
dimensional margins, which is a wide-treated subject, and the estimation of the copula.
We are here concerned by the estimation of the copula, and we propose to work with a
piecewise linear distribution function. In the following, we will define the piecewise linear
copulas and then present some of their properties.

2.1 Definition

Let I “ r0, 1sd be the unit hypercube.

Definition 2.1 (Piecewise linear copula). Let L be a finite partition of I into subsets
called leaves, usualy denoted by `. The piecewise linear copula with partition L and
weighs p is defined by its distribution function:

@u P I, Cp,Lpuq “
ÿ

`PL
p`λ`puq (2.1)

where λ denotes the Lebesgue measure of a set, λ`puq “ λp`q´1λpr0,us X `q, and p is
a vector of non-negative weights summing to one. The corresponding density, which is
piecewise constant, is given by:

cp,Lpuq “
ÿ

`PL

p`
λp`q

1uP` (2.2)

where 1 is the indicator function.

This type of histogram has already been used, in the case of density estimation, with
different construction schemes and bin shapes, e.g with a Voronöı diagram [7, 19] or
a Delaunay tessellation [51, 25, 4] as partition, or more trivially with simple sets of
hyperboxes [42, 2, 29, 30].
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Remark 2.2 (Existence). Depending on the choice of the partition L and the weights
p, the distribution function Cp,L is not always a copula. However, if @` P L, p` “ λp`q,
then Cp,L is the independence copula. Therefore, for any partition, there exist at least
one set of weights making the model a proper copula. On the other hand, a partition
that is too complex might not have other solutions: the assumption of uniform leaves
and the marginals uniformity constraints restrict the shape of bins. For polytopial non-
hyperrectangular leaves, the independence copula is often the only solution.

Before analysing more precisely the copula constraints on such a model, we restrict our-
selves to the case of hyper-rectangular leaves, leading to the following definition:

Definition 2.3 (Suitable partition). Let a and b both be in I. Then, if a ď b (compo-
nentwise), we define the hyper-rectangular leaf pa, bs as pa, bs “ pa1, b1s ˆ ... ˆ pad, bds.
We call suitable a partition where every leave with strictly positive Lebesgue measure is
an hyper-rectangle.

Remark 2.2 is one of the reasons driving the definition of a suitable partition. Remark that
it is also why we chosed to extend the density estimation trees from [42] instead of another
piecewise constant density estimator: this algorithm produces a suitable partition.

If not specified, we consider by default that partitions we are dealing with are suitable.
In the next subsection, we propose some properties of this dependence structure.

2.2 Properties

The above formulation of a piecewise linear copula allows to obtain closed-form expres-
sions for classical quantities of interest in copula modeling. We recall some of those
quantites and then derive their expression for piecewise linear copulas.

The Kendall τ and Spearman ρ (see [38]) are common dependence measures that can be
computed from a copula. They are respectively defined as:

τ “ 4

ż

Cpuq cpuq du´ 1 and ρ “ 12

ż

Cpuqdu´ 3,

for a copula C and its density c. The piecewise constant expression of the density in the
piecewise linear class allows for simple computation of τ and ρ, although the expressions
can be somewhat cumbersome. Note that both τ and ρ are always in r´1, 1s.

Property 2.4 (Common dependence measures). Let Cp,L be a piecewise linear copula.
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its Kendall τ and Spearmann ρ are given in closed form by:

τ “ ´1` 2
ÿ

`PL
kPL

p`pk
λp`qλpkq

d
ź

i“1

ppbi ^ di ´ ai ^ ciq pbi ^ di ` ai ^ ci ´ 2ciq ` 2 pdi ´ ciq pbi ´ ai ^ diqq

ρ “ ´3` 6
ÿ

`PL
p`

d
ź

i“1

p2´ bi ´ aiq

where we denote ` “ pa, bs and k “ pc,ds, and ^ denotes the minimum operator.

Proof. We have:

ż

cp,LpuqCp,Lpuq du “
ÿ

`PL

ÿ

kPL

p`pk
λp`qλpkq

ż

`

λpr0,us X kq du

“
ÿ

`PL

ÿ

kPL

p`pk
λp`qλpkq

d
ź

i“1

ż

`i

λpr0, uis X kiq dui

where `i denotes the projection of ` onto the dimension i. Remark that:

λpr0, uis X rci, disq “

$

’

&

’

%

0, ui ď ci

ui ´ ci, ci ă ui ă di

di ´ ci, di ď ui

and hence (dropping the index i on u, a, b, c, d for clarity):

ż

`i

λpr0, us X kiq du “

ż b

a

0 1uăc du`
ż b

a

pu´ cq1căuăd du`
ż b

a

pd´ cq1dău du

“

ż b^d

a^c

pu´ cq1căuăd du`
ż b

a^d

pd´ cq1dău du

“

ˆ

pb^ dq2

2
´ pb^ dqc

˙

´

ˆ

pa^ cq2

2
´ pa^ cqc

˙

` pbpd´ cqq ´ ppa^ dqpd´ cqq .

The given expression for τ can now be retrieved easily. For ρ, one only needs to derive
the integral expression:
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ż

Cp,Lpuqdu “
ÿ

`PL

p`
λp`q

ż

λpr0,us X `qdu

“
ÿ

`PL

p`
λp`q

d
ź

i“1

ai
ż

0

0dui `

bi
ż

ai

pui ´ aiq dui `

1
ż

bi

pbi ´ aiq dui

“
ÿ

`PL

p`
λp`q

d
ź

i“1

0`
b2i ´ a

2
i

2
´ pbi ´ aiqai ` p1´ biqpbi ´ aiq

“
ÿ

`PL

p`
λp`q

d
ź

i“1

1

2
pbi ´ aiqp2´ bi ´ aiq

which concludes the argument since λp`q “
d
ś

i“1

pbi ´ aiq.

Matrices of bivariate dependence measures can be obtained by projection of the partition
on couples of dimensions and using the same formula on the projected models.

The above proofs showed that the closed form expression for piecewise linear copulas
facilitates some computations. This property will be exploited later, when introducing
penalisation techniques. Furthermore, these closed form expressions will be used to assess
the performance of the fitting procedure that will be described in the next section. Note
that the diagonal section of the copula is also easily computable.

3 Estimation

Suppose that we have a dataset pui,jqnˆd of (pseudo-)observations from an unknown

copula C. We seek parameters pp,Lq of c
pnq
p,L, an approximation of c in the piecewise linear

copula class, based on these n observations. To find the optimal parameters pp˚,L˚q, we
will adopt a two stage mechanism, considering first that the partition L is known.

3.1 Optimal weights p˚
L knowing the partition L

Suppose that a partition L is already constructed, and that we want to contruct weights
p to complete the approximation. As was done by [42] (see also [1, 3]), we will use an
Integrated Square Error (ISE) loss to build the weights. Given a copula density c, the
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ISE of an estimator ĉ is the squared L2 distance to c:

Ipĉq “ ‖ĉ´ c‖22 “
ż

pĉpuq ´ cpuqq2du.

We want to approximate the true copula density c by a copula in the piecewise linear
copula class, so we are looking for the solution of:

arg min
p,L

Ipc
pnq
p,Lq “ arg min

p,L
‖cpnqp,L‖

2
2 ´ 2 xc

pnq
p,L, cy (3.1)

since ‖c‖22 is irrelevant to the minimisation.

Remark 3.1 (Existence of the density). Remark that xc
pnq
p,L, cy “ E

´

c
pnq
p,LpUq

¯

, so that,

with a slight abuse of notation, we write xc
pnq
p,L, cy even if C does not admit a density.

Since c is unknown, using empirical observations pui,jq from the copula, E
´

c
pnq
p,LpUq

¯

can

be approximated by n´1
řn
i“1 c

pnq
p,Lpuiq. We then define the empirical loss.

Definition 3.2 (Empirical Integrated Square Error). Given observations from a copula
pui,jq, define the Empirical Integrated Square Error (EISE) of an estimator ĉ of the copula
density as:

Îpĉq “ ‖ĉ‖22 ´
2

n

n
ÿ

i“1

ĉpuiq.

We are looking to solve the following problem :

arg min
p,L

Îpcp,Lq. (3.2)

We start by funding the weights p˚L knowing the partition L.

Lemma 3.3. Let L be a partition of I. Then the weights p, solution of (3.2) are given
as the unique solution of the quadratic program with objective:

p1ALp´ 2p1ALfL (3.3)

The matrix AL and the vector fL are given by:

AL “
`

λp`q´11`“k
˘

`PL,kPL (size |L| ˆ |L|)

fL “

˜

1

n

n
ÿ

i“1

1uiP`

¸

`PL

(size |L|)

Where |L| denotes the cardinal of L. Note that AL depends only on the partition and
that fL represents the empirical frequencies in the leaves.
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Proof. Introduce first a new scalar product on R|L|: xx,yyL “
ř

`PL
x`y`
λp`q . We denote

by ‖.‖2L its associated square norm, and by dL its associated distance. Note that the
associated bilinear symetric endomorphism has matrix AL (defined above), a diagonal
and positive definite matrix.

Using the definition of AL, fL and x., .yL, the objective function in (3.2) rewrites:

Îpcp,Lq “ ‖p‖2L ´ 2 xp, fLyL “ p1ALp´ 2p1ALfL. (3.4)

Then, the unconstrained convex optimisation problem (3.2) corresponds to the projection
of fL onto r0, 1s|L| (convex, closed), with respect to the norm ‖.‖2L. It has therefore a
unique solution fL, since fL is already in r0, 1s|L|.

If we set the weights to be equal to the empirical frequencies fL, this result yields, for the
optimisation of L, a loss of the form:

´ ‖fL‖2L “ ´
ÿ

`PL

f2`
λp`q

. (3.5)

which is the loss that was directly used by [42]. But since we are here looking for a
copula, we need to include the copula constraints in the optimisation problem (3.2).
These constraints are usualy stated as in Definition 3.4.

Definition 3.4 (Copula constraints). For a function C from I to R to be a copula,
denoting µC its associated measure, there are three conditions:

@u P I,@i P t1, ..., du, Cpu1, ..., ui´1, 0, ui`1, ..., udq “ 0 (Ground constraint)

@u P I,@i P t1, ..., du, Cp1, ..., 1, ui, 1, ..., 1q “ ui (Marginal uniformity)

@a, b P I, µC pra, bsq ě 0 (d-increasingness)

Note that, if C is a distribution function of some random variable, the first and third
conditions are verified. Denote now by CL the subset of r0, 1s|L| containing vectors p such
that Cp,L satifies these constraints, for a given L. We have the following result:

Lemma 3.5. The set CL is closed, convex, non-empty and writes:

CL “ tp P R|L| : BLp “ gL and p ě 0u,

where, denoting ML the set of middle-points of leaves, the matrix BL and the vector gL
are given by:

B1 “ pλ`ipuiqqpi,uqPt1,...,duˆML, `PL (size ndˆ |L|)

B2 “ p1q`PL (size 1ˆ |L|)
g1 “ puiqpi,uqPt1,...,duˆML

(size nd)

BL “ pB1,B2q (size pnd` 1q ˆ |L|)
gL “ pg1, 1q (size pnd` 1q)
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Proof. The first constraint of Definition 3.4 is trivially satisfied by our model. We show
that the second constraint can be evaluated on only one point per leaf. Remember that the
piecewise linear copula is uniformly distributed on each leaf. Hence, for all i P t1, ..., du,
if on some point u “ pu1, ..., udq,

ř

`PL p`λ`ipuiq “ ui, then defining x such that u ` x
is in the same leaf as u will give us that

ř

`PL p`λ`ipui ` xiq “ ui ` xi since only one
leaf is active in the sum. Which means that the marginal uniformity constraint may be
evaluated on only one point per leaf, and hence is equivalent to:

@` P L, Du P `,@i P t1, ..., du,
ÿ

`PL
p`λ`ipuiq “ ui.

Then, if we choose evaluation points as middle-points of leaves to put the constraints in
matrix-vector form, we have the expression B1p “ g1 for these constraints.

Futhermore, we need to force the sum of weights p to be equal to 1 (so that the total mass
is 1), giving a last line of ones to BL and a last value of one to gL. The last constraint
is equivalent to positivity of weights, which gives the last part of the wanted expression
for CL. The closure and convexity of CL are then obvious, and Remark 2.2 ensures that
CL is non-empty.

Lemmas 3.3 and 3.5 lead to the following property, summarising the previous ideas.

Property 3.6 (Quadratic program). Let L be a suitable partition. Then the weights
minimizing the empirical integrated square error (3.3) under the copula constraints are
the unique solution of the following quadratic program:

arg min
p

p1ALp´ 2p1ALfL

s.t. BLp “ gL and p ě 0

where matrices AL,BL and vectors fL, gL have been defined in Lemmas 3.3 and 3.5.

Proof. Only the existence and the unicity remain to be proved. We have shown that
the problem was convex with a non-empty constraint space. Hence, it has a unique
solution.

Denoting PL,Spxq the orthogonal projection of a vector x onto a set S regarding the
distance dL, the quadratic program from Property 3.6 gives the optimal weights knowing
the partition as:

p˚L “ PL,CLpfLq.

The empirical frequencies fL, which are the unconstraint solution, can then be used as a
good starting point for a solver.

We concentrate in the following on the construction of the partition L.
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3.2 Locally optimal splitting point x˚
`,D

Suppose that we have already a suitable partition L and associated weights pL such that
CpL,L is a copula. For a given leaf ` P L, denote L “ `1, ..., `k a partition of ` into k new
leaves such that L2, defined by:

L2 “ Lzt`u Y L

is a new suitable partition. Then we have, as in [42], the following property:

Property 3.7 (Independence of surrogate loss). Define the surrogate loss associated to
the additional split from pp˚L,Lq to pp˚L2

,L2q as the difference of empirical integrated
squared errors:

Îpcp˚L2
,L2
q ´ Îpcp˚L,L

q.

Then the surrogate loss depends only on the partition L and data inside it.

Proof. Indexing the objects of Property 3.6 by the partitions they are constructed on,
note that the part of losses corresponding to Lzt`u cancels out.

This locality of the loss allowed [42] to use a recursive partitioning algorithm to fit the
model. We then only perform simple splits.

Definition 3.8 (Simple split and splitting dimensions). Denote x a given breakpoint in
the leaf ` and D Ď t1, ..., du the set of splitting dimensions. Then the simple split of ` on
x with dimensions D is defined as the partition Lp`,x,Dq given by:

Lppa, bs,x,Dq “ ˆ
jPD

tpaj , xjs, pxj , bjsu ˆ
jPt1,...,duzD

tpaj , bjsu

The full partition of I obtained after the split is denoted Lx,D “ Lzt`u Y Lp`,x,Dq.
When D “ t1, ..., du, we might omit it in the subscripts.

Remark 3.9 (Degrees of freedom). In a simple split on a set of dimension D, the
weighting of the new leaves is a quadratic program with 2|D| parameters responding
to |D| ` 1 linear constraints. Hence, there exists a tradeoff between complexity and
expressivity of the model in the dimension |D| of the breakpoints. We will exploit this
characteristic of the recursive procedure for sparsity purposes later on.

Remark 3.10. Note that the copula constraints will not allow for estimation with only
one-dimensional splits (|D| “ 1), as in [42], since there would be no degrees of freedom
in the weights. This represents a huge problem as multivariate splits often imply bigger
computational burden. Furthermore, the constraint themselves are not localized, but on
the global scale, hence including them forbids a parallel implementation. We will see later
that this issue can be avoided by delaying the constraint problem to a later stage of the
optimisation process.
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Note that, neglecting the constraints, knowing D, we are going to choose the splitting
point x˚`,D as:

x˚`,D “ arg min
xP`

´
ÿ

kPLp`,x,Dq

f2k
λpkq

(3.6)

In the next subsection, before giving a complete description of the fitting algorithm, we
will talk about the localized dimension reduction procedures that are possible with these
simple splits, and describe how we construct the splitting dimensions D.

3.3 Optimal splitting dimensions D˚

Suppose that we found x˚` to split a leaf ` in all the dimensions t1, ..., du. Before effectively
splitting the leaf, we will check if, by chance, some dimensions are uniform enough to avoid
being splitted further. We will choose the splitting dimensions D based on a statistical
test whose hypothesis writes:

Hypothesis 3.11 (Sparsity hypothesis Hj). Denoting U „ C, define for a given dimen-
sion j P t1, ..., du the sparsity hypothesis as:

Hj : pUj KK U´jq |U P ` and Uj |U P ` „ Up`jq

When Hj is accepted in a leaf `, we will reduce the dimension of the breakpoint x˚` in this
leaf and in all child leaves accordingly, by removing j from the set of splitting dimensions
D˚.

To check this hypothesis using the integrated square error, as analysed by [5], suppose
without loss of generality that ` is rescaled to I, containing n observations of the random
vector U „ F , for F the restriction of C to `, rescaled to I (note that F is not a copula).
This allows to remove the conditioning in the hypothesis. Then, define the test statistic
as follows.

Definition 3.12 (Test statistic). Denote by f
pnq
f ,L the piecewise constant density that will

be estimated on data U „ F , using the surrogate loss in (3.6), solution of the unconstraint

quadratic program from Lemma 3.3, and by ej,npxq “ E
´

f
pnq
f ,L pxq|Hj

¯

the expectation of

this estimate under Hj . The test statistic is given by:

Ij “ ‖ej,n ´ f pnqf ,L‖
2
2

where L, ej,n and f
pnq
f ,L are stochastic objects, depending on the independent and identi-

cally distributed (i.i.d.) random vectors U1, ...,Un.
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Remark 3.13. This test statistic does not test hypothesis Hj per se, but rather tests
Hj under the hypothesis of piecewise constant density. This is a weaker assertion but
it is enough to decide if local dimension reduction is possible or not given the current
estimation stage and the data. More classical tests for independence and/or uniformity
can be founded in [20, 53, 54, 11, 49, 24].

The statistic Ij has the nice property that it is constructed as a square distance, and
hence is always non-negative and is 0 only under Hj . On the other hand, it requires that
we compute the full patchwork distribution in the two cases (under Hj or not), which can
be costly. Instead, we can only compute the next split, which will reduce the computation
and simplify the statistic. The drawback is that the test is weakened. The next property
gives an empirical form of this statistic, using this simplification.

Property 3.14 (Empirical form of the statistic). On a sample of data pui,jqnˆd, we can
approximate the statistic Ij by:

pIj “
ÿ

kPLx˚,t1,...,duztju

¨

˚

˚

˝

f2k
λpkq

`
ÿ

`PLx˚,t1,..,du

`Ăk

ˆ

f2`
λp`q

´ 2
fkf`
λpkq

˙

˛

‹

‹

‚

(3.7)

Proof. Remark that the estimator will cut on the same breakpoints on dimensions other
than j whether or not we work under Hj . This gives the definition of the partitions, and

hence the expression for ej,n and f
pnq
f ,L , allowing to derive the expression of pIj .

The law of the statistic (3.7) under Hj cannot be computed explicitely. We use a Monte-
Carlo simulation to compute the p-value of the test. To that purpose, simulate n uniform
random variables to replace u.,j , and recompute the statistic (3.7), N times. Indeed, note
that under the null, the values of u.,´j can be held fixed.
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The full localized dimension reduction procedure is formalised in Algorithm 3.1.

Algorithm 3.1: Localised dimension reduction

Data: N P N, a leaf `, observations u1, ..,un P `, and a threshold probability α
Result: The splitting dimensions D˚

1 Obtain x˚` and Lx˚` ,t1,..,du
by greedily minimizing the loss in (3.6) on `.

2 foreach j P 1, ..., d do

3 Denote by s the statistic pIj given by (3.7).
4 foreach i P 1, ..., N do
5 Simulate n uniform random variables on `j and replace the jth coordinate

of the data by this simulation;
6 Denote si the value of the statistic from (3.7) on this new dataset;

7 end

8 Set pj “
1
N

N
ř

i“1

1săsi

9 end
10 return D˚ “ tj P 1, ..., d : pj ą 1´ αu

We will now formalise in the next subsection the complete estimation procedure.

3.4 Full estimation procedure

Suppose that we start from the independence copula, which writes Ct1u,tIu in our frame-
work. Then, if the sample of observations belonging to the sole leaf is too far from
independence, i.e if Hj does not hold for all j, we construct the first breakpoint by greed-
ily minimising the loss (3.6) over the splitting point x. Rescaling the new leaves to I
allows to start over and split again, until a proper stopping condition is reached: either
there is no points anymore in the leaf or the leaf passes the uniformity tests. A third
stopping condition is that the loss is no more reduced by splitting.

To fasten the computation, we decided to ignore the copula constraints while splitting,
and enforce them at the end on the construted partition to correct the empirical weights.
Later properties of convergence back up this decision, and this futhermore allows to
parallelize the splitting process. Experiments showed that the algorithm that enforces
the constraints at each split is much slower (since for the optimisation of the breakpoint,
sub-optimisation corresponding to the quadratic program of Property 3.6 must be run for
each evaluation) and does not provide much better results.
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More formally, Algorithm 3.2 below states the complete estimation procedure.

Algorithm 3.2: CORT estimation

Data: Observed ranks u1, ..,un P I
Result: Parameters p and L of the estimated piecewise linear copula

1 Initialize the tree by L “ tIu and pL “ t1u.
2 while there exist leaves ` P L that are still splittable do
3 foreach ` P L that is splittable do
4 Run Algorithm 3.1 in ` to find D˚.
5 if D˚ ‰ H then
6 Find x˚`,D˚ minimizing the surrogate loss (3.6).

7 Set L “ Lx˚
`,D˚

,D˚ .

8 end

9 end

10 end
11 Compute p˚L “ PL,CL

pfLq from Property 3.6.
12 return pp˚L,Lq.

The resulting estimator of the copula density, denoted by c
pnq

p˚L,L
, is called CORT for

Copula Recursive Tree. The current implementation of this algorithm is avaliable on
CRAN, as an R package1. Note that the conditions for a leaf to be splittable can vary:
by default, we consider that a leaf becomes non-splittable when it contains less than two
observations.

Remark 3.15. Before step 11 of Algorithm 3.2, the builded model is simply the density

estimate f
pnq
fL,L. This additional outcome of the fitting procedure will be used in the next

sections to perform fitting analysis.

Remark 3.16. If we restrict the breakpoint possibility to all points with coordinates

in
´

i
m`1

¯

iPt1,...,mu
where m divides the number of observations n, this gives us only md

candidates. This corresponds to a form of checkerboard copula, see [10] for more details.
Since the ISE loss we use is tractable enough, the breakpoint can be chosen by directly
minimizing the criterion over the continuous space I if the dimension of the problem is
not too big.

After talking about consistency of this estimation procedure, we will turn ourselves in
Section 4 to some possibles extensions, notably through bagging principles.

3.5 Consistency

We will show the consistency of the CORT estimator (in the L2 almost-sure sense). Recall
from [42, Theorem 1] the following result about the unconstraint estimator.

1See https://cran.r-project.org/web/packages/CORT/index.html
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Property 3.17 (Consistency of f
pnq
fL,L). Assuming the maximum diameter of leaves goes

to 0 as n goes to 8, we have:

P

ˆ

lim
n ÞÑ`8

‖f pnqfL,L ´ c‖
2
2 “ 0

˙

“ 1

A detailed proof, based on a generalisation by Vapnik-Chervonenkis [50] of the Glivenko-
Cantelli Theorem, can be found in [42]. Denote now by qL the volumes given by the true
copula on the leaves:

@` P L, q` “
ż

`

cpuqdu.

Then, one can easily check that qL P CL, and Property 3.17 leads to the following useful
corollary:

Corollary 3.18. dLpfL, qLq
2 Ñ 0, a.s.

Indeed, replacing c by a piecewise constant density with partition L and weights qL does

not change the value of ‖f pnqfL,L ´ c‖
2
2 and hence ‖f pnqfL,L ´ c‖

2
2 “ dLpfL, qLq

2.

Definition 3.19 (Integrated constraint influence). Define the integrated constraint in-
fluence as the following squared norm:

‖cpnq
p˚L,L

´ f
pnq
fL,L‖

2
2 “ dLpp

˚
L, fLq

2 (3.8)

In the simulation studies in Section 5, this quantity will be monitored via burn-in tech-
niques, to see how it behaves as n grows. Property 3.20 below gives the corresponding
theoretical result.

Property 3.20 (Asymptotical effect of constraints). As n ÞÑ 8, the integrated constraint
influence goes to 0.

Proof. Recall from 3.6 that pL˚ is the orthogonal projection of fL into CL. Since qL P CL,
we have that dLpfL,p

˚
Lq

2 ď dLpfL, qLq
2, which concludes the argument by Corollary

3.18.

The consistency of the estimator is now easy to obtain.

Property 3.21 (Consistency). For c the density of the true copula, assuming the diam-

eter of the leaves goes to 0 as n goes to 8, the estimator c
pnq

p˚L,L
is consistent, i.e:

P

ˆ

lim
nÞÑ`8

‖cpnq
p˚L,L

´ c‖22 “ 0

˙

“ 1
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Proof. Remark that ‖cpnq
p˚L,L

´ c‖22 “ dLpp
˚
L, qLq

2. Then, p˚L being the orthogonal pro-

jection of fL into CL and qL being in CL, we have dLpp
˚
L, qLq

2 ď dLpfL, qLq
2 and we

conclude by Corollary 3.18.

In the next section, we consider bagging methods to increase the perfomance of the model.

4 Bagging of density estimators

Two estimates ĝ1 and ĝ2 of a function g can be bagged into an estimate ĝ1`ĝ2
2 , candidate

for the estimation of g if the estimates are close to be uncorrelated. This principle gave rise
to the bagging algorithm in regression, developed by Breiman in [6]. In density estimation,
bagging can also be exploited: if the estimator has a high variance and a small biais, then
bagging it might yield a better result, regarding the biais/variance trade-off.

Recall that, while bootstrapping over n observations, the chance that an observation does
not appear in the bootstrap sample is given by

`

1´ 1
n

˘n
Ñ 1

e . Hence, asymptotically
36.8 percent of the dataset will end up out-of-bag. These samples can be used to check
for accuracy of the model, and sometimes to set hyper-parameters when some are needed.
Following the work of [6] in regression models, [43] formalized the cross-validation and
bagging process for density estimation. Note that usually, the leave-one-out method is
used in kernel density estimation to select hyperparameters (mainly the bandwidth), see
e.g [32], but the more involved out-of-bag procedure we propose is inspired by [52].

In the following, we denote by Ĉ the empirical copula of the whole dataset u, a n ˆ d
matrix.

Definition 4.1 (CORT Forest). Define up1q, ...,upNq as N bootstrap resamples of the
same size n, and ĉp1q, ..., ĉpNq (resp Ĉp1q, ..., ĈpNq) the densities (resp. d.f.) of the CORT
estimators on these resamples fitted by Algorithm 3.2. Define the CORT forest with
weights ω “ pω1, ..., ωN q as the mixture distribution with density :

ĉωpvq “
N
ÿ

j“1

ωj ĉ
pjqpvq @v P I.

For each observation ui in the original training set, we recall the out-of-bag density and
distribution function estimates as:

ĉoobω puiq “

N
ř

j“1

ωj ĉ
pjqpuiq1uiRupjq

N
ř

j“1

ωj1uiRupjq
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We define Ĉω and Ĉoobω accordingly. Note that ĉoobω is not a proper density as it may fail
to sum to 1 and it is only defined on the observation points. Because trees were fitted
independently to each other, this is however, on observation points, a good approximation
of the forest density itself. From ĉoobω , based on [32], [52] defines out-of-bag version of
common fitting statistics as follows.

Definition 4.2 (Out-of-bag statistics). Define respectively the out-of-bag empirical in-
tegrated square error, the out-of-bag Kullback-Leibler divergence and two out-of-bag
Cramer-von-Mises distances associated to the forest as:

Ĵpĉωq “ ‖ĉω‖22 ´
2

n

n
ÿ

i“1

ĉoobω puiq

K̂pĉωq “ ´
1

n

n
ÿ

i“1

ln
`

ĉoobω puiq
˘

M̂pĈωq “
1

n

n
ÿ

i“1

´

Ĉoobω puiq ´ Ĉpuiq
¯2

N̂pĈωq “
1

n

n
ÿ

i“1

Ĉωpuiq
2 ´ 2Ĉoobω puiqĈpuiq.

Note that K̂pĉωq is obtained as an empirical version of
ş

ln
´

cpuq
ĉoobω puq

¯

dCpuq. M̂pĉωq

estimates the Cramer-Von-Mises distance between the out-of-bag d.f. of the forest and
the empirical copula. On the other hand, N̂pĉωq keeps the true norm of the model, in the
same spirit as Ĵpĉωq, see [32, 52] for more details about these cross-validation tools.

We call Optimal the forest with the weights minimising Ĵpĉωq. We use an optimisation
program to find weights given the resampling and the trees:

ω˚ “ arg min
ω

Ĵpĉωq.

Note that this method makes out-of-bag observations contribute to the final estimation
through weights.

The forest estimation and the corresponding analysis are studied in the next section. Note
that the constructions of this section are the same if you use another base estimator than
the CORT estimator: in the next section, we will use these tools to compare bagging of
the CORT estimator with bagging of other copula estimators.

17



5 Investigation of performance

In this section, we will investigate the performance of the proposed estimation procedure
on several simulated datasets2. We will compare our results with several other models:

• Deheuvel’s empirical copula, hereafter denoted by “Empirical”.

• The empirical beta copula[44], hereafter denoted “Beta”.

• A Checkerboard copula[10] with m “ 10, denoted by “Cb(m=10)”.

• Another less-precise Checkerboard copula with m “ 5, denoted by “Cb(m=5)”.

Recall from [10] that a checkerboard copula with a parameter m is a piecewise linear
copula with a partition L composed of a regular grid of hypercubes with side length m´1.
See the reference for details about the empirical beta copula. They are all non-parametric
or semi-parametric models, with a straightforward estimation procedure3.

We will compare results of differents models in term of dependence measures, Kendall tau
and Spearman rho first. Then, we will look at predictive performance metrics defined in
the previous section, Ĵ , K̂, M̂ and N̂ , computed via a weighted bagging of each model.

Last but not least, to observe the predictive performance of the CORT forest, we designed
a cross-validation procedure: on 20 resamples of each dataset, we compute the Cramer-
Von-Mises and ISE errors on test samples, given respectively by:

P̂ pD̂q “
ÿ

iPT

´

D̂puiq ´ Ĉpuiq
¯2

Q̂pd̂q “ ‖d̂‖22 ´
2

|T |
ÿ

iPT

d̂puiq,

where T is the test dataset used to obtain D̂, a given copula estimator with density d̂.
Note that P̂ is focused on the distribution function and Q̂ on the density. We now present
results for the first dataset.

2To ensure reproducibility, we provide all the datasets in the R package cort, with the code and
parameters needed to resimulate them.

3The two checkerboard copulas are provided by the R package CORT, and the empirical beta copula,
as well as the empirical copula, are from the R package copula.
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Dataset 5.1 (Piecewise linear copula).
This dataset is a simple test: we simu-
late random samples from a density in-
side the piecewise copula class, and test
wheter or not the estimator can recover
it. For that, we will use a 2-dimensional
sample with 500 observations, uniform
on I, and apply the following function:

h1puq“

˜

u1,
u2`1

u1ď
1
4
`21

u1ď
1
2
`1 3

4
ďu1

4

¸

.

Figure 5.1: Plot of Dataset 5.1

This dataset has the particularity of belonging to the piecewise linear copula class. Figure
5.2 (a) shows a simulation from the fitted CORT estimator on Dataset 5.1.

(a) In black, lower left, the input data.
In red, upper-right, a simulation from the
estimated tree.

(b) On the left, K̂ and Ĵ in function of
the number of trees. On the right, the In-
tegrated Constraint Influence and square
norm of each tree against the weight of the
tree in the forest.

Figure 5.2: (Dataset 5.1) (a) The CORT estimator (b) Statistics of the forest.

We observe on Figure 5.2 (a) that the algorithm splitted the space as requested. The few
simulated points outside the four main boxes are there because the algorithm did not split
exactly on p 14 ,

3
4 q, p

1
2 ,

1
2 q and p 34 ,

1
4 q, and the constraints forced him to put some weight

on some leaves that do not contain points. Bagging the CORT algorithm on this dataset,
we obtain statistics given by Figure 5.2 (b). We observe that the out-of-bag statistics are
decreasing in the number of trees fitted, although the weighting of the forest did select
less than 10 trees over 500. Altogether, the algorithm sucedded into finding the right
breakpoints. A comparaison of the fit in term of dependence measure to other models is
available in Table 5.1.
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Table 5.1: Obtained dependence measures of several models on Dataset 5.1

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged
Cort

Kendall Tau
τ1,2 -0.534 -0.515 -0.465 -0.527 -0.525 -0.393

Spearman Rho
ρ1,2 -0.773 -0.757 -0.697 -0.766 -0.762 -0.604

On Table 5.1, we display pairwise dependence measures (Kendall τ and Spearman ρ) of
the obtained fits. To read these measures, consider the first column, corresponding to
the empirical copula, as the goal for other models. We observe that all models perform
correctly regarding dependence measures on this dataset, although the Cherckerboard
with m “ 5 (which has a pretty rough partition, not including the 1

4 multiples) has a
Spearman ρ a little too high. Furthermore, bagging the cort model gives the worst results.

Performing a standard weighted bagging procedure, we obtain fit statistics K̂, Ĵ , M̂ and
N̂ , displayed in Table 5.2. The experiment fits every model 500 times on resamples of
the dataset and then weights the resulting models to minimise Ĵ .

Table 5.2: Results of the bagging of each model on Dataset 5.1

Empirical Cb(m=10) Cb(m=5) Beta Cort

Ĵpĉωq 0.002 -3.16 -2.37 -2.98 -4.81

K̂pĉωq Inf -1.06 -0.743 -1.18 -0.837

M̂pĉωq 8.72e-06 4.13e-05 0.000281 1.58e-05 0.000633

N̂pĉωq -0.0277 -0.0277 -0.0275 -0.0277 -0.0262

Note that the Kullback-Leibler out-of-bag divergence K̂ is infinite for the empirical copula,
since is does not assign weights to points it did not see. We observe in baging results that
the predictive performance of the checkerboards is quite poor, that the forest based on
empirical Beta copulas is a lot better and that the CORT forest generalised even better
regarding the density-based measures Ĵ and K̂. Note that the bagging of empirical beta
copula is a very powerfull model.

Figure 5.3 gives a boxplot of P̂ Cramer-Von-Mises errors. Remember that for this exper-
iment, we compute each model on 20 resamples of the dataset: we obtain 20 P̂ values per
model.
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(a) Boxplot of log-normalised P̂ (b) Boxplot of log-normalised Q̂

Figure 5.3: (Dataset 5.1) Boxplots of resulting errors for 20 resamples for each model

On Figure 5.3, remember that smaller values of P̂ (d.f. based) and Q̂ (densiy based)
means a better model. We observe that, although the bagging procedure is not worth it,
the CORT estimator is very good on this example, both for density and d.f. estimation.
Unfortunately, it is not always the case, as shown by the following example on Dataset
5.2.

Dataset 5.2 (Another piecewise linear
copula). As for Dataset 5.1, we simulate
from a density inside the piecewise linear
copula class, by applying the function:

h2puq “

ˆ

u1,
u2
2
`

1

2
1u1Rr

1
3 ,

2
3 q

˙

to a 200ˆ 2 uniform sample, and taking
ranks.

Figure 5.4: Plot of Dataset 5.2

This second dataset is also in the piecewise linear class, but it splits the space in a ternary
way, which the recursive splitting procedure of the CORT estimator cannot reproduce. In
Figure 5.5 (a), you can observe simulation from the CORT copula and the CORT forest
fitted on Dataset 5.2.
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(a) In black, lower left, the input data.
In red, upper-right, a simulation from the
estimated tree.

(b) In black, lower left, the input data. In
red, upper-right, a simulation from the es-
timated forest.

Figure 5.5: (Dataset 5.2) (a) The estimated tree (b) The estimated forest.

Remember that the algorithm splits recursively on only one breakpoint. If the data is
splitted in a ternary way, as in Dataset 5.2, it will not succeed. Looking at details from
the fitting procedure, we see that the constraints forced the algorithm to return exactly
the independence copula (by setting weights of each leaf equal to its volume). Indeed,
while splitting, two splits in adjacent leaves are not synchronised: since the optimisation
routines are independent from each other, it is unlikely that they return the same break-
point value for a given dimension, meaning that weights will not be transferable between
the two zones: in our case, the constraints forced the weights back to independence. We
see that the forest tried to correct this behavior, but the result is quite bad. Tables 5.3,
5.4 and Figure 5.6 contains the same results as for the previous dataset.

Table 5.3: Obtained dependence measures of several models on Dataset 5.2

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged
Cort

Kendall Tau
τ1,2 0.006 0.005 0.004 0.014 0 -0.010

Spearman Rho
ρ1,2 0.010 0.011 0.009 0.021 0 -0.014

The dependence measures are here structurally 0: variations from Table 5.3 are therefore
irrelevant. Table 5.4 and Figure 5.6 shows the same results as for the previous model.
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Table 5.4: Results of the bagging of each model on Dataset 5.2

Empirical Cb(m=10) Cb(m=5) Beta Cort

Ĵpĉωq 0.00501 -1.48 -1.39 -1.21 -2.55

K̂pĉωq Inf -0.346 -0.271 -0.426 -0.311

M̂pĉωq 3.03e-05 5.16e-05 0.00016 7.38e-05 0.000907

N̂pĉωq -0.134 -0.134 -0.134 -0.134 -0.134

(a) Boxplot of log-normalised P̂ (b) Boxplot of log-normalised Q̂

Figure 5.6: (Dataset 5.2) Boxplots of resulting errors for 20 resamples for each model

Note that the out-of-bag ISE did not decrease during the fit of the forest, so that more
complexity was added without any gain. We also observe that many trees in the forest
have zero weights, they do not fit the data enough. Finally, Table 5.4 shows that the
predictive performance of the CORT algorithm is quite bad, and the boxplot of P̂ error
confirms this analysis: in this case, the empirical beta copula performs a lot better.

We now turn ourselves to the third dataset.

Dataset 5.3 (Modified Clayton). This
dataset is a simulation of 200 points
from a 3-dimensional Clayton copula
[26] with θ “ 7 (hence highly depen-
dent), for the first, third and fourth
marginals. The second marginal is
added as independent uniform draws.
Lastly, the third marginal is flipped, in-
ducing a negative dependence structure.

Figure 5.7: Plot of Dataset 5.3

Dataset 5.3 is based on the Clayton copula, a commonly used dependence structure
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in many fields of applications. The estimator developped in Algorithm 3.2 has several
options: the most important one is the inclusion, or not, of the localized dimension
reduction through Algorithm 3.1. Since here we have a completely independent dimension,
this option is worth it: it reduces by a factor of 2 the number of leaves, and hence the
complexity of the model, by setting the same second edge r0, 1s to each leaf. Figure 5.8
gives a representation of the tree and the statistics of the forest.

(a) In black, lower left, the input data. In
red, upper-right, a simulation from the es-
timated tree.

(b) On the left, K̂ and Ĵ in function of the number of
trees. On the right, the Integrated Constraint Influ-
ence and square norm of each tree against the weight
of the tree in the forest.

Figure 5.8: (Dataset 5.3) (a) Representation from the tree (b) Forest Statistics.

On the left of Figure 5.8 (b), the convex, decreasing shape of the Kullback-Leibler di-
vergence with respect to the number of trees shows that the generalisation error of the
forest decreases with the number of trees. The decreasing trend of the constraint influence
and the square norm of trees with respect to the assigned weights by the forest, on the
right of Figure 5.8 (b) shows how the weighting procedure selected trees. Table 5.5 shows
dependence measures obtained from the different models.
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Table 5.5: Obtained dependence measures of several models on Dataset 5.3

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged
Cort

Kendall Taus
τ1,2 -0.003 0.010 0.006 -0.014 0.000 -0.020
τ1,3 -0.796 -0.750 -0.673 -0.799 -0.780 -0.493
τ1,4 0.779 0.732 0.659 0.779 0.707 0.474
τ2,3 0.015 0.010 0.011 0.029 0.000 0.031
τ2,4 -0.024 -0.009 -0.010 -0.038 0.000 -0.045
τ3,4 -0.775 -0.728 -0.654 -0.773 -0.695 -0.566

Spearman Rhos
ρ1,2 -0.005 0.013 0.010 -0.023 0.000 -0.029
ρ1,3 -0.934 -0.915 -0.868 -0.936 -0.926 -0.648
ρ1,4 0.924 0.903 0.857 0.925 0.872 0.626
ρ2,3 0.023 0.014 0.016 0.045 0.000 0.047
ρ2,4 -0.035 -0.016 -0.016 -0.057 0.000 -0.068
ρ3,4 -0.922 -0.901 -0.853 -0.922 -0.862 -0.735

Table 5.6: Results of the bagging of each model on Dataset 5.3

Empirical Cb(m=10) Cb(m=5) Beta Cort

Ĵpĉωq 0.00501 -9.27 -7.69 120 -54.6

K̂pĉωq Inf Inf Inf -0.582 -1.97

M̂pĉωq 2.84e-05 2.51e-05 5.25e-05 3.38e-05 9.41e-05

N̂pĉωq -0.000666 -0.000669 -0.000641 -0.000657 -0.000639

The comparaison of Table 5.5 shows that, even if the CORT algorithm performs correctly,
the forest tends to be biaised in the dependence measures, toward more independence.
On the other hand, the predictive performance of the model from Table 5.6 is really high
on the density-based estimates (Ĵ and K̂), and is less good on the distribution function
based versions (M̂ and N̂). The boxplot of P̂ and Q̂ in Figure 5.9 confirms this analysis:
recall that P̂ is a distribution-based statistic, while Q̂ is density-based.
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(a) Boxplot of log-normalised P̂ (b) Boxplot of log-normalised Q̂

Figure 5.9: (Dataset 5.3) Boxplots of resulting errors for 20 resamples for each model

To understand more precisely what happened with the dependence measures, we ran a
burn-in experiment on Dataset 5.3: we fit trees on subsamples of increasing size. We can
then observe the burn in Kendall taus and Spearmann rhos, represented on Figure 5.10

Figure 5.10: (Dataset 5.3) Burn in of dependence measures: on the top row, Kendall’s tau;
on the bottom row, Spearman’s rho; on the left column, empirical values from subsamples
of increasing sizes; on the right column, values obtained by the fitted CORT esitmators on
the same subsamples. The size of the subsamples is in abscissa. Each line type correspond
to a couple of variables.

We see that the fitted values, on the right of Figure 5.10, are convergent but biaised
compared to the empirical observed values of the dependence measures directly computed
on resamples of the dataset, on the left. We also observe the high variance of the estimator,
which is one of the good reason to use a bagging procedure.
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The last dataset was produced based on a function h3 defined by :

h3puq “
´

u1, sinp2πu1q ´
u2
π
,
´

1`
u3
π2

¯´u3
2

1 1
4ěu1

´ sinpπx1q1 1
4ău1

¯¯

.

Dataset 5.4 (Simulated functional).
We choosed to produce a voluntarily
hard to estimate dependence structure,
by applying the above function h3 to
uniformly drawn 3-dimensional random
vectors. The dataset is the ranks of
ph3puiqqqiP1,...,500.

Figure 5.11: Plot of Dataset 5.4

Figure 5.12 shows the CORT estimator and the bagging statistics on this dataset.

(a) In black, lower left, the input data. In
red, upper-right, a simulation from the es-
timated tree.

(b) On the left, K̂ and Ĵ in function of the number of
trees. On the right, the Integrated Constraint Influ-
ence and square norm of each tree against the weight
of the tree in the forest.

Figure 5.12: (Dataset 5.3) (a) Representation from the tree (b) Forest Statistics.

Although the estimation on the second and third marginals is not very good, the statistics
of the forests are good, showing that the etimator get better and better while adding trees.
Indeed, on Figure 5.12 (b), left, we observe decreasing out-of-bag errors, but we also
observe on Figure 5.12 (b), right, a very skewed and fat-tailed density for the constraint
influence, meaning that certain trees did not produce very good partitions.
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Table 5.7: Obtained dependence measures of several models on Dataset 5.4

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged
Cort

Kendall Taus
τ1,2 -0.495 -0.491 -0.471 -0.500 -0.458 -0.451
τ1,3 0.089 0.042 -0.002 0.084 0.171 0.048
τ2,3 0.005 0.015 0.004 0.007 -0.109 0.013

Spearman Rhos
ρ1,2 -0.743 -0.737 -0.715 -0.747 -0.713 -0.674
ρ1,3 -0.156 -0.154 -0.146 -0.159 0.246 0.060
ρ2,3 -0.019 0.012 -0.001 -0.010 -0.177 0.020

Table 5.7 shows that the bivariate projections were not all treated as well as others by
the CORT algorithm: the values of τ1,2 and ρ1,2 are suprisingly quite good compared
to τ1,3, τ2,3, ρ1,3, ρ2,3, for the CORT stimator. Hopefully, the bagging corrects this biais
quite correctly.

Table 5.8: Results of the bagging of each model on Dataset 5.4

Empirical Cb(m=10) Cb(m=5) Beta Cort

Ĵpĉωq 0.002 -15.7 -7.22 -23 -23.3

K̂pĉωq Inf -2.52 -1.79 -3.12 -1.72

M̂pĉωq 1.69e-05 0.000172 0.000736 4.76e-05 0.00233

N̂pĉωq -0.0201 -0.0199 -0.0194 -0.0201 -0.0177

Finally, the predictive performance from Table 5.8 is still two-sided : the density-based
results are quite good, but the distribution-function based one are not very good. The
boxplot of Figure 5.13 confirms this analysis.

(a) Boxplot of log-normalised P̂ (b) Boxplot of log-normalised Q̂

Figure 5.13: (Dataset 5.4) Boxplots of resulting errors for 20 resamples for each model
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6 Conclusion

From a simple density estimation procedure designed by [42], we constructed a piecewise
constant, tree-shaped, recursive copula density estimator. We computed several closed-
form expressions for this estimator, and we gave an asymptotical result.

If, intuitively, constraining the space of potential weighting solutions will help the con-
vergence of optimisation routines, the copula constraints forced us to split the space in
more than one dimension, making the resulting estimation procedure complex with the
increasing dimension. The localised dimension reduction procedure helps reducing the
complexity.

The CORT estimator has good generalisation performance and is straightforward to use
since it does not have restrictive hypothesis on the true dependence structure. Although
the implementation we provide is very fast, a balance between computation time and
precision is avaliable in the number of trees you use in the bagging procedure. However,
more work needs to be done to correct defaults of the splitting procedure, which is not
able to understand certain kinds of dependence structures.
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