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Summary

At near-grounded glacier termini, calving can lead to the capsize of kilometer-scale unstable
icebergs. The transient contact force applied by the capsizing iceberg on the glacier front
generates seismic waves that propagate over teleseismic distances. The inversion of this seismic
signal is of great interest to get insight into actual and past capsize dynamics. However, the
iceberg size, which is of interest for geophysical and climatic studies, cannot be recovered
from the seismic amplitude alone. This is because the capsize is a complex process involving
interactions between the iceberg, the glacier and the surrounding water. This paper presents
a first step towards the construction of a complete model, and is focused on the capsize in
the open ocean without glacier front nor ice-mélange. The capsize dynamics of an iceberg in
the open ocean is captured by computational fluid dynamics (CFD) simulations, which allows
assessing the complexity of the fluid motion around a capsizing iceberg and how far the ocean
is affected by iceberg rotation. Expressing the results in terms of appropriate dimensionless
variables, we show that laboratory scale and field scale capsizes can be directly compared.
The capsize dynamics is found to be highly sensitive to the iceberg aspect ratio and to the
water and ice densities. However, dealing at the same time with the fluid dynamics and
the contact between the iceberg and the deformable glacier front requires highly complex
coupling that often goes beyond actual capabilities of fluid-structure interaction softwares.
Therefore, we developed a semi-analytical simplified fluid-structure model (SAFIM) that can
be implemented in solid mechanics computations dealing with contact dynamics of deformable
solids. This model accounts for hydrodynamic forces through calibrated drag and added-
mass effects, and is calibrated against the reference CFD simulations. We show that SAFIM
significantly improves the accuracy of the iceberg motion compared with existing simplified
models. Various types of drag forces are discussed. The one that provides the best results
is an integrated pressure-drag proportional to the square of the normal local velocity at the
iceberg’s surface, with the drag coefficient depending linearly on the iceberg’s aspect ratio.
A new formulation based on simplified added-masses or computed added-mass proposed in
the literature, is also discussed. We study in particular the change of hydrodynamic-induced
forces and moments acting on the capsizing iceberg. The error of the simulated horizontal
force ranges between 5% and 25% for different aspect ratios. The added-masses affect the
initiation period of the capsize, the duration of the whole capsize being better simulated
when added-masses are accounted for. The drag force mainly affects the amplitude of the
fluid forces and this amplitude is best predicted without added-masses.

Keywords: Fluid-Structure Interaction, Simplified Model for Fluid-Structure Interaction, CFD, Drag
Model, Added Mass, Glaciology, Iceberg Capsize

1 Introduction

A current concern in climate science is the estimation of the mass balances of glaciers and ice sheets.
The Greenland ice sheet mass balance contributes significantly to sea level rise, accounting for about
15% of the annual global sea level rise between 2003 and 2007 [Zwally et al., 2011]. However, it
is difficult to draw conclusions on general trends given the high uncertainties [Lemke et al., 2007] in
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these estimations, notably due to difficulties in estimating and partitioning the ice-sheet mass losses
[Van den Broeke et al., 2009]. Ice mass balance can be determined by calculating the difference between
the (i) surface mass balance, mainly determined by inland ice gains minus ice losses and (ii) dynamic
ice discharge, mainly made up of submarine melting and iceberg calving [Van Den Broeke et al., 2016].
One third to one half of the ice mass losses of the Greenland ice sheet are due to dynamic ice discharge
[Enderlin et al., 2014]. Note that dynamic ice discharge is a complex phenomenon, influenced by ocean
and atmospheric forcing and by glacier geometry and dynamics [Benn et al., 2017].

When a marine glacier terminus approaches a near-grounded position, calving typically occurs through
the capsize of glacier-thickness icebergs. Such buoyancy-driven capsize occurs for icebergs with a width-
to-height ratio below a critical value [MacAyeal and Scambos, 2003]. When drifting in the open ocean,
icebergs deteriorate through various processes such as break-up, wave erosion and solar or submarine con-
vection melting [Job, 1978, Savage, 2007], and release freshwater that can potentially affect overturning
ocean circulation [Vizcaino et al., 2015, Marsh et al., 2015]. [Wagner et al., 2017] explain that icebergs
mainly melt through wind-driven wave erosion that leads to lateral thinning and thus eventually a buoy-
ancy driven capsize of the icebergs. Moreover, iceberg drift simulations have shown that capsizing icebergs
live longer and drift further than non-capsizing icebergs [Wagner et al., 2017] .

When they capsize right after calving, icebergs exert an almost horizontal transient contact force on
the glacier front. This force is responsible for the generation of up to magnitude Mw ≈ 5 earthquakes that
are recorded globally [Ekström et al., 2003, Podolskiy and Walter, 2016, Aster and Winberry, 2017] and
can be recovered from seismic waveform inversion [Walter et al., 2012, Sergeant et al., 2016]. The study
of iceberg calving and capsizing with such glacial earthquakes data is a promising tool, complementary
to satellite imagery or airborne optical and radar sensors as it can provide more insights into the phys-
ical calving processes and iceberg-glacier-ocean interaction [Tsai et al., 2008, Winberry et al., 2020] as
well as it can track ice losses almost in real time. However, there is no direct link between the size of an
iceberg and the generated seismic signal [Tsai et al., 2008, Walter et al., 2012, Amundson et al., 2012,
Sergeant et al., 2016, Sergeant et al., 2018]. [Sergeant et al., 2018, fig. 6d] showed that a given cen-
troid single-force (CSF) amplitude, which is usually used to model the relevant signal, can be ob-
tained with icebergs of different volumes (their fig. 6d). [Olsen and Nettles, 2019, fig. 9] found a
weak correlation between the seismic data (CSF amplitude) and the dimensions of the iceberg, the
authors also suggested that taking into account hydrodynamics and iceberg shape could improve this
correlation. Different processes involving the interactions between the iceberg, glacier, bedrock, wa-
ter and ice mélange contribute to the type of calving, earthquake magnitude and seismic waveform
[Amundson et al., 2010, Tsai et al., 2008, Amundson et al., 2012].

To investigate in detail the link between iceberg volume, contact force and the generated seismic
signals, the use of a hydrodynamic model coupled with a dynamic solid mechanics model is required.
The iceberg-ocean interaction governs the iceberg capsize dynamics and thus controls the time-evolution
of the contact force which is responsible for the seismic waveform and amplitudes. Full modelling of
the glacier / ocean / bedrock / iceberg / ice-mélange system is beyond capabilities of most existing mod-
els because it requires complex and costly coupling between solid mechanics, contact dynamics and
fluid dynamics. Simplified models of capsizing icebergs proposed in the literature approximate ice-
bergs by 2D rectangular rigid solids subject to gravity and buoyancy force, iceberg-glacier contact force
and simplified hydrodynamic effects using either added-masses [Tsai et al., 2008] and/or pressure drag
[Burton et al., 2012, Amundson et al., 2012, Sergeant et al., 2018, Sergeant et al., 2019]. These mod-
els have been proposed to describe a specific aspect of the capsize: its vertical and rotational motion
[Burton et al., 2012] validated against laboratory experiments, or the horizontal force that icebergs exert
on the glacier fronts [Tsai et al., 2008, Sergeant et al., 2018]. To build a complete catalogue of seis-
mogenic calving events that can be used for seismic inversion and iceberg characterization, the model
must accurately describe the interaction between the iceberg, glacier and the ocean. At the same
time, its formulation should either remain sufficiently simple to enable fast simulations of numerous
events or, alternatively be based on the interpolation of the response surface constructed on numer-
ous full-model simulations. In particular, the horizontal force and the torque exerted by the fluid on
the iceberg should be modelled as accurately as possible, since it controls the horizontal contact force
[Tsai et al., 2008, Burton et al., 2012, Amundson et al., 2012, Sergeant et al., 2018].

The present paper aims (i) to provide insights in the complex interactions between a capsizing un-
constrained iceberg and the surrounding water in 2D using a reference fluid dynamics solver and (ii) to
reproduce the main features of this interaction using a simplified model formulation suitable for being in-
tegrated in a more complete model. For this, we use a Computational Fluid Dynamics solver (ISIS-CFD
Software for Numerical Simulations of Incompressible Turbulent Free-Surface Flows) to generate refer-
ence results for the capsizing motion. This model solves Reynolds Averaged Navier-Stokes Equations
(RANSE) and handles interactions between rigid solids and fluids with a free surface, but is not yet vali-
dated for modelling contacts between solids. This state-of-the-art solver has been extensively validated on
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various marine engineering cases [Visonneau, 2005, Queutey et al., 2014, Visonneau et al., 2016] but not
yet applied to kilometre-size objects subject to fast and big rotations like capsizing icebergs in the open
ocean, which give rise to high vorticity. Before applying ISIS-CFD to the field-scale iceberg capsize, we
evaluate how well it can reproduce small-scale laboratory experiments (typical dimension of 10 cm). We
compare here ISIS-CFD simulations to the laboratory experiments conducted by [Burton et al., 2012].

To obtain a model that can be easily coupled with a solid mechanics model, we propose a simplified for-
mulation (SAFIM, for Semi-Analytical Floating Iceberg Model) for the interactions between iceberg and
water. In this model, the introduced hydrodynamic forces account for water drag and added-masses, these
two effects being considered uncoupled and complementary. Such a description was initially proposed for
modelling the effect of waves on vertical piles [Morison et al., 1950] and has been widely used for mod-
elling the effect of waves and currents on bulk structures [Venugopal et al., 2009, Tsukrov et al., 2002].
The SAFIM’s hydrodynamic forces involve some coefficients that need to be calibrated to represent as
accurately as possible the effects of the hydrodynamic flow on the capsize motion. These coefficients were
calibrated on the reference results provided by ISIS-CFD.

The paper is organized as follows. Section 2 presents the reference ISIS-CFD fluid dynamics model and
its results are compared with those of laboratory experiments from [Burton et al., 2012]. The complexity
of the fluid motion surrounding the iceberg and the pressure on the iceberg are then discussed. The
similarities between the laboratory-scale and field-scale simulations are also presented. In Section 3,
we present the SAFIM model and discuss the differences with other models from the literature. In
Section 4, ISIS-CFD and SAFIM are compared for different case-studies, the error quantification and
fitting of parameters are discussed. Section 5 is an overall discussion: comparison of previous models,
the new SAFIM model and the reference ISIS-CFD model, followed by a discussion of different drag and
added-mass models, which is concluded by a sensitivity analysis with respect to physical properties of
geophysical systems.

2 CFD simulations of iceberg capsize

2.1 Problem set-up

In this paper, we investigate the capsize of unstable 2D icebergs in the open ocean, i.e. away from the
glacier front, other icebergs, and in absence of ice-mélange. Water and ice densities are noted ρw and
ρi. In our numerical simulations, for the field scale, we take the typical values of ρw = 1025 kg/m3

and ρi = 917 kg/m3. For the laboratory experiments, the densities are set to ρw = 997 kg/m3 and
ρi = 920 kg/m3, which would enable a direct comparison with [Burton et al., 2012]. A typical geometry
is shown in Fig. 1. The out-of-plane dimension L of the iceberg (i.e. along ey) is assumed to be sufficiently
large compared to the height and the width such that the problem can be considered essentially two-
dimensional. This assumption is discussed in Section 5.6.

In this two-dimensional set-up, icebergs are assumed to be rectangular with in-plane dimensions H and
W and an aspect ratio denoted by ε = W/H. Rectangular icebergs in a vertical position are unstable, i.e.
will capsize spontaneously, for aspect ratios smaller than a critical value [MacAyeal and Scambos, 2003]:

ε < εc =

√
6 ρi

ρw − ρi
ρ2
w

.

This critical aspect ratio is εc ≈ 0.75 for the field densities and εc ≈ 0.65 for the laboratory densi-
ties. For ε > εc, icebergs are vertically stable and will not capsize unless initially tilted sufficiently
[Burton et al., 2012].

The iceberg is assumed to be homogeneous and rigid, i.e. it does not deform elastically. The mass
of an iceberg per unit of thickness along ey is given by m = ρiH

2ε. Points G and B are the centre of
gravity of the iceberg and the centre of buoyancy, respectively. The iceberg position is described by the
horizontal and vertical positions of G, denoted xG and zG, respectively, and by the inclination θ with
respect to the vertical axis, which is collinear with the vector of the gravity acceleration. Hw is the water
depth.

2.2 ISIS-CFD solver

The ISIS-CFD solver, developed by LHEEA in Nantes (France), is a state-of-the-art solver
for the dynamics of multiphase turbulent flows [Queutey and Visonneau, 2007, Leroyer et al., 2011,
Guilmineau et al., 2017, Guilmineau et al., 2018], interacting with solid and/or flexible bodies
[Hay et al., 2006, Leroyer and Visonneau, 2005, Durand et al., 2014], and with a free surface. Today, it
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Figure 1: Simplified iceberg’s geometry: centre of gravity is G and the centre of buoyancy is B. The
forces acting on the moving iceberg are: the gravity force Fg, the hydrostatic fluid force Fs and the
hydrodynamic pressure sketched by the pink shaded area, the forces from the added mass is not indicated;
these efforts also induce a torque on the iceberg.

is one of very few available software products capable of solving problems as complex as interactions be-
tween solids and fluids with a free surface (water and air interface). The target applications of ISIS-CFD
are in the field of marine engineering, e.g. modelling the dynamic interactions between a ship and surface
waves [Visonneau, 2005, Queutey et al., 2014, Visonneau et al., 2016] or the complex flows and interac-
tions involved in the global hull-oars-rower system in Olympic rowing [Leroyer et al., 2012]. ISIS-CFD
solves the Reynolds Averaged Navier-Stokes Equations (RANSE) [Robert et al., 2019] and also disposes
few other turbulence models.

For the specific application of iceberg capsize (Fig. 1), two different turbulence equations were
tested and were found to give very similar results: k-w [Menter, 1993] and Spalart-Allmaras
[Spalart and Allmaras, 1992]. The code uses an adaptive grid refinement [Wackers et al., 2012] or an
overset meshing method (mandatory to deal with large amplitude body motion close to a wall for exam-
ple) to connect two non-conforming meshes. The mesh used here is a converged mesh with n = 43 000
elements. An example of a typical mesh is illustrated in Fig. 2. The coupling between the solid and the
fluid is stabilized with a relaxation method based on the estimation of the periodically updated added-
mass matrix [Yvin et al., 2018]. The lateral sides of the simulation box are put far from the capsizing
iceberg, and include a damping region, so that the reflected waves do not interfere with the flow near the
iceberg for the duration of the simulation.

In the field of application of the ISIS-CFD flow solver, the typical range of Reynolds numbers (Re)
extends from 106 for model-scale ship flow to 109 for full-scale ship flow [Visonneau et al., 2006], and the
local viscous contribution to the hydrodynamic force is as high as ≈ 50 % of the total drag force. Here, the
ISIS-CFD solver is applied to a significantly different geometry (rectangular shape of iceberg instead of
streamlined shape of ship), type of motion (big rotations instead of translational motion) and dimensions
(km-scale icebergs instead of tens of meters long ships). This application provides new challenges for
the ISIS-CFD solver: high vorticity and free surface motion, greater lengths and velocities together with
massive separations due to the sharp corners of the iceberg.
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x/H

z/
H

Figure 2: A portion of a typical mesh used for the simulation of iceberg capsize with ISIS-CFD. The two
axes represent the dimensionless horizontal position x/H and the dimensionless vertical position z/H.
The iceberg ε = 0.5 (in white) is in the centre of a squared domain (fine mesh in red) moving and rotating
with the iceberg over a background domain (coarser mesh in blue). The mesh is automatically refined
around the air-water interface (a finely meshed horizontal zone) and also around the solid/fluid interface.

2.3 Laboratory experiments

Since ISIS-CFD simulations is compared with laboratory data (Section 2.4), we briefly summarize here
the technical details of the corresponding experiments conducted by [Burton et al., 2012]. The laboratory
experiments consist in the capsize of parallelepipedic plastic iceberg proxies of density ρi = 920±1 kg/m3

in a long and narrow fjord-like tank 244 cm long, 28 cm wide and 30 cm tall, filled with water at room
temperature (ρw ≈ 997 kg/m3). To assess the effect of water depth Hw on iceberg-capsize dynamics,
two types of experiments were conducted in which the water height was varied from 11.4 cm to 24.3 cm.
The iceberg height was H = 10.3 cm, (H < Hw) and the width varied between W = 2.5 cm and
W = 10.2 cm, corresponding to aspect ratios ranging between 0.25 and 1. The length of the iceberg was
L = 26.6 cm, which is slightly smaller than the tank width to reduce edge effects so that the flow can
be considered as two-dimensional. The plastic icebergs were initially placed slightly tilted with respect
to the vertical position and were held by hand close to hydrostatic equilibrium. When the surface of the
water became still, several drops of dye were introduced around the plastic iceberg to visualize the water
flow. Then the icebergs were released to capsize freely. The capsizes were recorded by a camera located
outside the tank. Snapshots are shown in Fig. 3 (top row). Further experimental details can be found in
[Burton et al., 2012]. A selection of four experiments are presented here, corresponding to aspect ratios
ε = 0.246, ε = 0.374, ε = 0.496 and ε = 0.639.

Laboratory experiments show, to some extent, the fluid motion using dye at some specific locations.
The ISIS-CFD computational fluid dynamics model makes a valuable contribution to the understanding of
the complex motion of the fluid surrounding a capsizing iceberg since it computes the whole velocity field
in the fluid. Fluid velocity colour maps computed with ISIS-CFD are qualitatively compared with the
images of the laboratory experiments in Fig. 3 (a-f), the maps of the iceberg’s surface velocity computed
using the calibrated SAFIM model (see Section 3) are also shown in Fig. 3 (g,h,i). All results are shown
at the identical time moments centred at the time when θ = 90◦.

Results for the capsize of an iceberg of aspect ratio ε = 0.496 are shown for three different times:
in Figs. 3 (a,d,g) during capsize; in Figs. 3 (b,e,h) when the iceberg reaches the horizontal position for
the first time (θ = 90◦); and in Figs. 3 (c,f,i) some time later. The arrows represent the dimensionless
velocity |u′| = |u|/

√
gH, where u is the velocity field of the fluid. We observe a good qualitative

agreement between the position and inclination of the iceberg obtained by ISIS-CFD and the laboratory
experiments. Note that the iceberg is submarine when it reaches θ ≈ 90◦ for the first time (Figs. 3
(b,e)). The motion of the fluid - initially almost at rest - is visible all around the capsizing iceberg.
Large vortices, associated with the iceberg motion, are clearly visible throughout the capsize in Fig. 3
(top and middle row). The intense fluid motion represents an important amount of kinetic energy that
is eventually dissipated; this energy is transmitted by the motion of the iceberg, and this slows down the
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iceberg. Note also that the iceberg moves leftwards during the capsize.

Figure 3: Side view of experiments from [Burton et al., 2012] (a, b, c); colour map of the dimensionless
velocity u′ = u/

√
gH, where u is the velocity field of the fluid, in the water computed with ISIS-CFD (d,

e, f); dimensionless velocity along the surface of the iceberg with SAFIM (g, h, i). Three time moments
of the capsize (indicated on top of each column) are shown. The time scale is calibrated such that
t = 0 s corresponds to the first time when the iceberg reaches θ = 90◦, as in [Burton et al., 2012]. The
iceberg aspect ratio is ε = 0.496. The floor and walls are not shown in the snapshots. The corresponding
animation of ISIS-CFD simulation in available in supplementary material [S1].

2.4 Comparison of simulations with experiments

Here, we compare ISIS-CFD with the laboratory experiments by [Burton et al., 2012]. In Fig. 4, results
are provided for three different unstable icebergs: a thin ε = 0.246 iceberg, a medium ε = 0.374
iceberg and a thick ε = 0.639 iceberg. The horizontal position xG, vertical position zG and tilt angle
θ are plotted against time. As the plastic icebergs were initially positioned by hand, some variability
in the results are observed. To provide an estimate of the variability of the protocol, three experiments
with identical plastic icebergs and the same (nominal) initial conditions were conducted for each aspect
ratio. We selected these three aspect ratios because of the consistency of the experimental results. The
initial conditions in ISIS-CFD were chosen to fit the average values of the laboratory experiments. In
ISIS-CFD simulations, the icebergs were tilted by a small angle of 0.5◦ for the thin and medium iceberg
(black curves in Figs. 4(d,e)) and a larger angle of 15◦ for the thicker iceberg (black curves in Fig. 4(i)).
The icebergs were initially placed in a hydrostatic equilibrium. The water level in the tank Hw = 11.4 cm
or Hw = 24.3 cm was found to have a negligible effect on the iceberg motion: results are within the data
variability shown in Fig. 4. Therefore, the experiments with a constant water depth Hw = 24.3 cm are
compared with the ISIS-CFD simulations carried out for the same water depth.

We first analyse the motion of the iceberg during capsize. Once released, it tilts to reach the horizontal
position with associated upward and sideward motion. It then rises out of the water in a rocking motion
superimposed with a continuous horizontal displacement (Fig. 4). The thinner the iceberg, the faster
it moves in the horizontal direction with a quasi constant velocity at least for the first 1.5 s. This
horizontal motion is an important aspect of the iceberg capsize on which we would like to focus here.
Note that, besides gravity and buoyancy which cannot cause horizontal motion, the only external force
acting on the capsizing iceberg is due to the relative motion of water around the iceberg (the air has
a negligible effect here). These hydrodynamic forces are responsible for the horizontal iceberg motion.
They need to be captured accurately by the model as they contribute considerably to the contact force
generated between the iceberg and the glacier front when a just-calved iceberg capsizes [Tsai et al., 2008,
Sergeant et al., 2018].
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Figure 4: Horizontal position xG (a, b, c), vertical position zG (d, e, f) and tilt angle θ (g, h, i) of icebergs
of height H = 10.3 cm for ε = 0.246 (a, d, g), ε = 0.374 (b, e, h) and ε = 0.639 (c, f, i). Data are provided
for three laboratory experiments (solid black), ISIS-CFD simulations (solid red) and SAFIM simulations
(dashed blue). The origin of the time axis in all experiments and simulations is set to the time at which
the iceberg reaches the horizontal position for the first time, i.e. when θ = 90◦ (green stars and dashed
lines), as in [Burton et al., 2012]

Fig. 4 shows that ISIS-CFD results are in very good agreement with the laboratory data especially
in terms of the evolution of the tilt angle. The slight discrepancy on the vertical and rotational motion
computed by ISIS-CFD could be due to differences between the laboratory and simulation set-ups with
regards to the 2-dimensional approximation and the initial conditions as discussed above. Another reason
for this slight discrepancy could be related to the turbulence model treated by the RANS approach. The
generation of large vortices and separations are not initially induced by turbulent phenomena. We
observed that Euler approach (perfect fluid with no viscosity and thus no possible dissipation of energy
in turbulence phenomenon) captures similar flow topologies. However, the evolution of these vortices and
separations can be affected by turbulent effects for which the RANS approach is not specifically designed
for. Simulations using methods such as DES (detached eddy simulation) or LES (large eddy simulation)
could improve the accuracy but would require high computational costs.

2.5 From the laboratory to the field scale

In the previous section, ISIS-CFD simulations were shown to fit laboratory experiments very well. How-
ever, our aim is to reproduce the dynamics of the capsize of field-scale icebergs with dimensions of several
hundred metres, i.e. four orders of magnitude larger than for the laboratory scale. Also, as pointed out
by [Sergeant et al., 2018], the laboratory-scale Reynolds number Re = LU/ν ≈ 103, is six orders of mag-
nitude smaller than the characteristic Reynolds number Re ≈ 109 for the field scale (with L the typical
length, U the typical speed and ν the dynamic viscosity of the fluid). Global viscous effects are expected
to be more pronounced for laboratory-scale than for the field-scale capsize. Therefore, the question is
whether laboratory-scale experiments can be used to understand the kinematics of the field-scale iceberg
capsize.

We compare the horizontal force induced by the water to the iceberg during its capsize computed by
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ISIS-CFD for the two cases: (1) a field-scale iceberg of heightH = 800 m and (2) a laboratory-scale iceberg
of height H = 0.103 m, all other parameters being the same: the aspect ratio ε = 0.25, infinite water pool,
same densities of the water and the ice, taken to be equal to the field densities (Section 2.1). Results are
given in Fig. 5 using dimensionless variables, i.e. a dimensionless horizontal force F ′x = Fx/(mg) acting
on the capsizing iceberg and a dimensionless time t′ = t/

√
H/g. Note that this horizontal force F ′x acting

on the iceberg is the hydrodynamic force. However, in the case of iceberg-glacier interaction a similar
hydrodynamic force will contribute to the total contact force between a glacier and a capsizing iceberg.
We observed that the two curves corresponding to the two scales are very similar from the beginning of
the movement until t′ ≈ 15.6, which corresponds to θ ≈ 90◦. This similarity between the forces at the
laboratory and field scales can be explained using the Vaschy-Buckingham π theorem, assuming that the
effect of viscosity is negligible, as detailed in Appendix A. For times larger than t′ ≈ 15.3, the discrepancy
between laboratory and field scales is larger and dimensions start to play a more important role. This
discrepancy probably originates from the fact that after the buoyancy driven capsize, the iceberg motion
is driven by the evolution of complex vortices and different gravity-waves dynamics.

The other variables of the system (vertical force and torque acting on the iceberg and horizontal and
vertical displacement and inclination of the iceberg) are also similar for the laboratory and field scales.
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Figure 5: The horizontal dimensionless force F ′ = Fx/(mg) that the water exerts on the iceberg (ε = 0.5)
is plotted against a dimensionless time t′ = t/TH with the characteristic time TH =

√
H/g for both

laboratory (H = 0.103 m, TH = 0.102 s, in red) and field (H = 800 m, TH = 9.03 s, in blue) scales.
The iceberg inclination θ (grey curve with scale on the right) is plotted against dimensionless time t′,
the curve is the same for the lab scale and the field scale. The vorticity fields around the iceberg at
four different times are also shown: (a) initial phase of iceberg’s motion t′ ≈ 7.3, (b) time of maximal
force in the left direction t′ ≈ 12.2, (c) time of maximal force in the right direction t′ ≈ 15.6 and (d)
corresponds to the oscillations of the iceberg at later time t′ ≈ 17.1. The pink shaded area represents the
local hydrodynamic pressure. The colour maps are discussed in Section 5.3 and the phases (i) to (v) are
discussed in 2.5.
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Variable name Dimensionless variable
forces F ′ = F/(mg)
torque M ′θ = Mθ/(mgH)
positions r′ = r/H

time t′ = t
√
g/H

velocity u′ = u/
√
Hg

Table 1: Table of dimensionless variables, with N ′ denoting the dimensionless variable related to N
and with the iceberg linear mass density m = ρiH

2 ε G the centre of gravity of the iceberg and the
characteristic time TH =

√
H/g. Note that the dimensionless forces and torques can also be written

through a normalization by the characteristic mass m, length H and time TH with the following formulas:
F ′x = Fx T

2
H/(mH), F ′z = Fz T

2
H/(mH) and M ′θ = Mθ T

2
H/(mH2). See Section. 5.5 for a discussion on

a non-dimensionalization with a dimensionless time Tρ,H that depends on the densities.

Since it was demonstrated that the laboratory and field scales produce the same horizontal dimen-
sionless force, in the remaining simulations we will present only the dimensionless quantities obtained
from simulations of the laboratory-scale iceberg with H = 0.103 m, for densities corresponding to field
values, and in absence of sea floor. The laboratory scale was chosen because numerical convergence is
easier to achieve in ISIS-CFD for the laboratory scale than for the field scale. The sensitivity of the cap-
size to the densities will be discussed in Section 5.5. Also, the depth of the sea floor was observed to have
no significant effect on the capsize dynamics. Results for icebergs of different heights (but of the same
aspect ratio) can be deduced with a factor of proportionality given by the normalizations from Table 1.

In ISIS-CFD simulations and laboratory experiments, we observe five stages during the capsize:

1. In the initial phase (0 < t′ < 6), the horizontal force F ′x oscillates around zero with a negligible
amplitude (about 1% of its extremum amplitude). This stage is the initiation of the capsize with
buoyancy and gravity forces making the iceberg rotate and rise.

2. Then the absolute value of F ′x increases, first slowly and then faster until the first extremum
at t′ ≈ 12.2. This is explained by the fact that the induced vertical and rotational velocities and
accelerations of the iceberg produce a hydrodynamic force that has a non-zero horizontal component,
which is the only horizontal force acting on the iceberg. It induces a horizontal motion of the iceberg
towards the left for the anti-clock wise iceberg rotation considered here.

3. The absolute value of F ′x decreases to F ′x = 0 before t′ ≈ 14.4, which corresponds to θ ≈ 70◦

(Fig. 5). The horizontal motion of the iceberg triggers a horizontal resisting fluid force.

4. The force F ′x becomes positive and increases to an extremum at t′ ≈ 15.6, where the iceberg is
horizontal θ ≈ 90◦. Its amplitude is of the same order of magnitude than the first negative force
but the duration is shorter. Therefore, it decelerates the iceberg leftward motion, but does not
cancel it.

5. At the later stage (after t′ ≈ 15.6), F ′x oscillates around zero and is slowly damped. The iceberg
rocks around θ = 90◦ and drifts to the left while slowly decelerating.

The highest water velocities in the surrounding ocean are reached when the iceberg is close to θ = 90◦.
Dimensionless velocities are shown in Fig 6. We observe that for an iceberg of height H (here 800 m) :

• high velocities in the fluid ≈ 0.5
√
g H (here ≈ 42 m/s) are reached between times t′ = 10 (here

≈ 90 s) and t′ = 34 (here ≈ 307 s), see dark red regions in Figs. 6 (b,c,d)).

• at a distance of about H from the iceberg, the water flows at a maximum speed of ≈ 0.01
√
g H

(here ≈ 88 cm/s).

• at a distance of about 3.5H from the iceberg, the water flows at a maximum speed of ≈ 0.0005
√
g H

(here ≈ 4.4 cm/s).

Note that the maximum plume velocities measured in [Mankoff et al., 2016, Jouvet et al., 2018] are
horizontal velocities at the surface ≈ 3 m/s.

Moreover, we observe that the iso-lines for the velocities are roughly semi-circles centered on the
iceberg, with a radius slightly higher in horizontal direction.
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(c) t'=15.6 (d) t'=24.9

(a) t'=7.3 (b) t'=12.2|u'| :

Figure 6: Iso-lines of the absolute value of the dimensionless velocity |u′| = |u/
√
gH| in the fluid sur-

rounding the iceberg with aspect ratio ε = 0.5 (grey rectangle). Captions (a), (b) and (c) correspond to
the same times as in Fig. 5 (a-c). Figure (d) at time t′ = 24.9 shows the vanishing fluid motion. An
animated figure is available in supplementary material [S2].

3 Empirical model SAFIM

3.1 General formulation

The reference ISIS-CFD model has the advantage of being very accurate for fluid-structure interac-
tions but it cannot readily model contacts between deformable solids. As explained in the introduc-
tion, we aim to construct a simpler fluid-structure interaction model that can be more easily cou-
pled with dynamic solid-mechanics models. Thus we propose a simple empirical model that can be
used to estimate the horizontal force applied to a capsizing iceberg. This model was initiated in
[Sergeant et al., 2018, Sergeant et al., 2019] and is extended and validated in this study.

As proposed by [Tsai et al., 2008], [Burton et al., 2012] and [Sergeant et al., 2018], one possible way
to construct such a simple model of a capsizing iceberg consists in solving equations of a rigid iceberg
motion subject to relevant forces and torque while discarding water motion. The general equations of
iceberg motion for such simplified models can be written in two dimensions as:

(m+mxx)ẍG +mxz z̈G + Jxθ θ̈ = Fd · ex (1)

mxzẍG + (m+mzz)z̈G + Jzθ θ̈ = (Fg + Fs + Fd) · ez (2)

JxθẍG + Jzθ z̈G + (I + Iθθ)θ̈ = (Ms + Md) · ey (3)

where I = ρiH
4ε(1 + ε2) is the moment of inertia of the iceberg with respect to its centre of gravity G

and around an axis parallel to ey (multiplying I by the iceberg thickness along ey gives the inertia for the
three-dimensional case). Such a formulation accounts for the hydrostatic force Fs and the corresponding
torque Ms computed at G, the gravity force Fg, overall hydrodynamic effects expressed by the force Fd
and the associated torque Md at G and so-called added-masses mxx, mzz, Iθθ, mxz, Jzθ and Jxθ that
account for the mass of water that must be accelerated during the iceberg motion.

Hydrodynamic forces that oppose the motion of the iceberg are commonly called drag forces Fd.
The corresponding drag torque Md accounts for a particular distribution of the drag pressure along the
iceberg surface. The drag force usually scales with the squared relative velocity between the water and
the solid with a factor of fluid density and it acts in the opposite direction of this velocity. Note that the
friction drag can be neglected here, as shown in Appendix A.

When the water motion is not computed, the added-mass (AM) should also be included in the model.
Added-masses introduce some additional inertia to the moving iceberg. This effect is known to be
significant when the density of the fluid is comparable or bigger than the density of the solid, such as for
ice and water. The matrix of added-masses, which is symmetrical [Yvin et al., 2018, Molin, 2002], has
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Ref. Added-mass (AM): Drag:

[Tsai et al., 2008] mxxT
= 3πρwL

8

(
H2 cos(θ)2 +W 2 sin(θ)2

)
Fd = 0

mzzT = 0 Md = 0
IθθT = ρw

24 (H2 −W 2)2

mxz = 0, Jxθ = 0, Jzθ = 0

[Burton et al., 2012] mxx = 0 FdB · ex = −νx|ẋ|2sign(ẋ)

mzz = 0 FdB · ey = −νy|ẏ|2sign(ẏ)

Iθθ = 0 MdB · ez = −νz|θ̇|2sign(θ̇)
mxz = 0, Jxθ = 0, Jzθ = 0

Table 2: Dynamic fluid forces proposed by [Tsai and Ekström, 2007] and [Burton et al., 2012] for iceberg
capsize modelling

the following form:

[mAM ] =

mxx mxz Jxθ
mxz mzz Jzθ
Jxθ Jzθ Iθθ

 (4)

Added-mass effects are of two types: a force associated with an added-mass can arise in a given direction
due to (1) an acceleration in that direction, which corresponds to the diagonal terms mxx, mzz and Iθθ
in Eq. (1-3), and (2) an acceleration in another direction, which is accounted for by the coupled terms
mxz, Jzθ, Jxθ.

Within this framework, models proposed by [Burton et al., 2012] and [Tsai et al., 2008], summarized
in Table 2, differ in the way they account for the drag and the added-mass. In the formulation proposed by
[Tsai et al., 2008], pressure drag and the associated torque are not considered and only some of diagonal
terms are taken into account in the added-mass matrix. In the formulation by [Burton et al., 2012],
added-mass effects are neglected. As for the drag effects, they are assumed to depend only on individual
components of the velocity of G and on the angular velocity, for example the drag along ex only depends
on the velocity ẋG. As a consequence, both models predict that an iceberg initially at rest (ẋG = 0)
will not experience any horizontal movement along ex during its capsize. As discussed above, this result
contradicts experimental and ISIS-CFD results.

3.2 SAFIM

To better reproduce the motion of capsizing icebergs, we have developed a new model along the lines
of previous propositions by our group [Sergeant et al., 2018, Sergeant et al., 2019]. The model is refer-
enced as SAFIM for Semi-Analytical Floating Iceberg Model. In addition to the previously used drag
formulation, this new model uses a drag coefficient varying with the aspect ratio and integrates a tunable
added-mass effects. As will be shown, SAFIM reproduces the main results of ISIS-CFD. For example, it
predicts the horizontal movement of capsizing icebergs initially at rest.

A particular feature of the drag model in SAFIM is that it is based on the local velocity of the iceberg’s
surface through which the drag pressure could be approximated as p = ρwvnsign(vn)/2, where v is the
local velocity of the iceberg surface, vn = |v ·n| is the corresponding normal velocity, and n is the local
normal to the surface of the iceberg. Therefore, the total drag force and the drag torque are evaluated
as integrals of local pressure over the submerged part of the iceberg Γs:

Fd = −α1

2

∫
Γs

ρwv
2
nsign(vn)n dΓ, (5)

Md = −α1

2

∫
Γs

ρwv
2
nsign(vn)(r − rG) ∧ n dΓ, (6)

where , r is the local position vector and rG is the position vector of the iceberg’s centre of mass; the
wedge sign ∧ denotes a vector cross product. We consider here a quadratic dependence of the local drag
force on the normal velocity, this is discussed in Section 5.3. The integral expressions for the drag force
and torque are given in Appendix B. The factor α of the order of unity is the only adjustable parameter
of the drag model. It can be adjusted with respect to the reference CFD simulations or experiments. We
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recall that in the original papers of [Sergeant et al., 2018, Sergeant et al., 2019], this factor was set to
α = 1 by default. However, due to the complexity of the fluid flow, the optimal value of α may change
with the geometry of the iceberg.

This formulation, rather than attempting to describe the local pressure accurately, which is difficult
based on geometrical considerations only (section 5.3; [Sergeant et al., 2018]), aims at providing a good
approximation of the global forces and torques acting on the rotating iceberg. As opposed to the simplified
drag model of [Burton et al., 2012] - in which the drag force and torque depend only on the velocity of the
centre of gravity - the hydrodynamic forces Fd and the torque Md depend here on the iceberg’s current
configuration zG, θ (which determines the submerged part), and on the three velocities ẋG, żG, θ̇, (which
together with the inclination angle θ determine the local normal velocity). This makes it possible to
produce a horizontal force acting on the iceberg during capsize even for icebergs initially at rest. Another
advantage is that a unique fit-parameter α is required to represent the drag effect, contrary to three
independent fit parameters used in [Burton et al., 2012]. This makes it possible to easily generalize the
model to more complex iceberg geometries.

As for the added-masses in SAFIM, we will consider two possibilities: simplified added-masses and
computed added-masses. The simplified added-masses option is based on analytical formulas for the
diagonal terms of the added-mass matrix. The coupled terms of added-mass are taken to be equal to
zero: mxz = 0, Jzθ = 0, Jxθ = 0. The formulas used are taken from [Wendel, 1956] for fully or partly
submerged solids and were adapted to a capsizing body. The horizontal and vertical added-masses take
the following forms:

mxx =
1

4
Cx π ρwH

2
eff(zG, θ) (7)

mzz =
3

16
Cz π ρwW

2
eff(zG, θ) (8)

where Heff and Weff are the effective height and width defined as the projection of the submerged part
of the iceberg along the horizontal and vertical axes, respectively (see Fig. 1 and Appendix B.2) which
depend on the vertical and angular positions of the iceberg. Therefore, the added masses mxx and mzz

evolve during the capsize. On the other hand, the added moment of inertia Iθθ is assumed to depend
only on the height of the iceberg, so it remains constant during the capsize:

Iθθ = 0.1335Cθ π ρw

(
H

2

)4

. (9)

In order to adjust the added-mass effect used in SAFIM to reproduce the reference ISIS-CFD results, we
introduce three calibration factors in the above equations: Cx, Cz and Cθ (see Section 4 for calibration).

Computed added-masses are calculated using a computational fluid dynamics solver. This is done by
applying a unit acceleration on the iceberg for the considered degree of freedom, which leads to a simplified
expression of the Navier-Stokes equations (eq. (16) in [Yvin et al., 2018]). Then we obtain an equation
for the pressure (the eq. (18) in [Yvin et al., 2018]) which can be solved on the fluid domain using a
numerical method such as the finite element, boundary element method or finite-volume method (used in
this study [Queutey and Visonneau, 2007]). The integration of the induced pressure on the emerged part
of the iceberg in response to a unit acceleration along x, z or rotation around y gives the corresponding
column of the symmetrical added-mass matrix including both diagonal and coupled entries. Similarly to
the simplified added-mass, the values of the computed added-mass also depend on the iceberg position
and they therefore evolve during the capsize. For the computed added-masses, the coupled terms are
non-zero, giving rise to a coupling between horizontal, vertical and rotational accelerations.

To solve the motion equations (1-3) with SAFIM, the Störmer-Verlet integration scheme is used.
Since SAFIM has only three degrees of freedom, the integration over time is very fast, only a few seconds
compared to few hours for ISIS-CFD on a single CPU. The time step in SAFIM that ensures a sufficiently
accurate results is ∆t = 0.1 s in the field scale and ∆t = 0.001 s in the laboratory scale. In both cases,
this step corresponds to a dimensionless time step of ∆t′ = ∆t/

√
H/g ≈ 0.01.

4 Performance and limitations of SAFIM

4.1 SAFIM’s calibrations

The validation of the proposed model should be suited to the final objectives: (1) an accurate reproduction
of the forces exerted by the water on the iceberg during capsize; (2) the ease of implementation in a finite
element solver for simulation of the whole iceberg-glacier-bedrock-ocean system (left for future work), (3)
suitability of the model for the entire range of possible geometries of icebergs encountered in the field. In
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this context, we consider 2D icebergs with rectangular cross-sections (Fig. 1). We use typical densities
observed in the field. As discussed in Section 5, the considered density has a non-negligible effect on the
calving dynamics. We apply SAFIM to the same four geometries as described in Section 2.3, with initial
tilt angles given in Section 2.4 and Table 3.

To compare SAFIM and ISIS-CFD results, we compute the mismatch in the time-evolution of the
horizontal forces Fx (L2 norm) during the capsize. The phases of the capsize that we focus on are phases
(ii) and (iii) (defined in Section 2.5). The reason we do not seek to perfectly model the initial phase
(i) with SAFIM is discussed in Section 5.2. Also, SAFIM is designed to model the capsize phase but
cannot model the very end of the capsize (θ > 80◦), i.e. phase (iv), nor the post-capsize phase (v). In
these phases, forces induced by complex fluid motion, which are difficult to parametrize, are expected to
dominate gravity and buoyancy forces.

For SAFIM with a drag force and no added-masses, the mismatch is defined as:

E1 =

∫ t2
t1
|FxISIS

(t)− FxSAFIM
(t−∆t)|2 dt∫ t2

t1
|FxISIS(t)|2dt

(10)

with Fx being the total horizontal force acting on the iceberg, t1 such that Fx(t1) = 1/6Fmin and t1 < tmin

and t2 such that Fx(t2) = 1/6Fmin and t2 > tmin , with Fmin being the first extremum of the force and
tmin the time at which it occurs. In Fig.5, t′1 = 10.3 and t′2 = 14.2. This time interval is within phases
(ii) and (iii). Since without added-mass the initial phase of capsize cannot be accurately reproduced, for
the comparison purpose, the SAFIM response is shifted artificially in time so that the first extremum of
the curve fits that of ISIS-CFD. This time shift ∆t is discussed in Section 5.2.

For the SAFIM model with a drag force and added-masses, a more demanding mismatch is used,
which reads as:

E2 =

∫ t3
0
|FxISIS(t)− FxSAFIM(t)|2 dt∫ t3

0
|FxISIS

(t)|2dt
(11)

where t = 0 is the beginning of the simulation and t3 the first time for which the horizontal force crosses
zero Fx(t3) = 0 after tmin, which corresponds to t′3 = 14.4 in Fig.5. This time interval includes phases
(i), (ii) and (iii). The force is not shifted in time as for E1. Errors (10) and (11) are computed for a
parametric space of drag and added-mass coefficients as detailed in Appendix C. The optimized values
of the coefficients α, Cx, Cz and Cθ are chosen such that the errors E1 and E2 are minimized.

4.2 Effect of drag and added-mass

We analyse the horizontal force produced by SAFIM in order to understand the effects of the drag
force and added-masses on the dynamics of the iceberg capsize. To do so, the dynamics of an iceberg
with an aspect ratio ε = 0.246 were simulated by SAFIM with and without drag and with and without
added-masses and compared to the results of ISIS-CFD (Fig. 7) :

case 0: no drag and no coupled terms in the added-mass matrix: the horizontal force predicted by SAFIM
is equal to zero F ′x = 0, ∀ t, as expected. For the sake of clarity, this case is not plotted in Fig.7.

case 1: drag and no added-mass (no AM) is shown in Fig. 7 for two values of the drag coefficient α = 1
(purple curve) and α = 0.85 (blue curve). The value α = 0.85 is the optimized value of α obtained
by minimizing the error E1. The force has a slightly higher amplitude (around t′ ≈ 8.5) and
duration with α = 1 than with the optimized drag coefficient α = 0.85. Even though the amplitude
and shape of the SAFIM horizontal force are very similar to the ISIS-CFD results, the full capsize
occurs earlier with SAFIM. When the SAFIM curves are shifted in time by ∆t′ = 2.7 (cyan curve
in Fig. 7), the previous SAFIM force fits well ISIS-CFD. The shape is the same and the error on
the waveform is E1 = 5.2%, with a relative error on the first force extremum of 4%. A comparison
of SAFIM with the optimized α-factor, SAFIM with α = 1, and ISIS-CFD is given in Appendix D,
for the four aspect ratios.

case 2: drag and simplified added-mass: when coefficients for the drag and added-masses are taken all
equal to 1 the horizontal force is very different from the reference ISIS-CFD results (orange curve
in Fig. 7). The duration of the capsize is largely over-estimated and the amplitude is strongly
underestimated. The optimized drag and added-mass coefficients that give a minimum error E2 are
α = 1.1 for the drag, Cθ = 0.75 for the added moment of inertia and zero factors (Cx, Cz) = (0, 0).
The corresponding results (yellow curve in Fig. 7) are in a very good agreement with the reference
results (E2 = 10%) both for the shape and for the time corresponding to the force extremum
t′ ≈ 11.45. The added moment of inertia (coefficient Cθ) slows down the initial rotation of the

13



Bonnet et al. Modelling Iceberg Capsize in the Open Ocean

iceberg. However, the amplitude of the force extremum is slightly underestimated by 8%. The
accuracy of the formula of the simplified added-masses with coefficients equal to 1 is discussed in
section 5.4.

case 3: no drag and computed added-masses: SAFIM (dark green curve in Fig. 7) fits the reference results
quite well in amplitude but not in time and predicts a huge second minimum.

case 4: drag and computed added-masses: when correcting the drag coefficient to α = 3.0, which minimizes
the error E2, SAFIM fits better in time, reproducing the initial slow change of the force, but the
amplitude and the shape still do not fit ISIS-CFD (black curve in Fig. 7). Similarly to the simplified
added-masses, the computed added-masses slow down the initial rotation of the iceberg.
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SAFIM, = 1.0, simplified AM (Cx, Cz, C ) = (1, 1, 1), t ′ = 0
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SAFIM, = 0.0, computed AM, t ′ = 0
SAFIM, = 3.0, computed AM, t ′ = 0

Figure 7: Computed horizontal force F ′x = Fx/(mg) applied on the iceberg versus dimensionless time
t′ = t/

√
H/g for a reference ISIS-CFD simulation and for SAFIM simulations with different drag and

added-mass parameters.

This analysis suggests that the drag force has mainly an effect on the amplitude of the first force
extremum and that the added-masses have an effect on the duration of the initiation of the capsize. Also,
optimized coefficients of drag and added-masses improve the model significantly compared with the case
with all coefficients set to 1. Further discussions on the pros and cons of the SAFIM models are given in
Section 5.1.

4.3 Effect of the iceberg’s aspect ratio

We will now analyse the forces and the torque acting on the four selected geometries of icebergs computed
by ISIS-CFD and SAFIM. The evolution of the dimensionless horizontal force F ′x, vertical force F ′z, torque
M ′θ, horizontal displacement x′G, vertical displacement z′G and inclination θ obtained by ISIS-CFD and
SAFIM are plotted in Fig. 8 for SAFIM best-fitted results obtained with drag and without added-masses
and in Fig. 9 for SAFIM results with drag and simplified added-masses. SAFIM models use optimized
parameters indicated in Table 3 for each aspect ratio.

We will first discuss the sensitivity of the forces computed with the reference model ISIS-CFD to the
aspect ratios ε. We observe that the amplitude of the first extremum of both the horizontal force F ′x and
the vertical force F ′z decreases with increasing aspect ratio. Consequently, the amplitude of the horizontal
acceleration ẍG = Fx/m = gF ′x, also decreases with increasing aspect ratio. This is consistent with the
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observed slower horizontal displacement of icebergs with larger aspect ratios as reported in Section 2.4.
Also, the durations of the capsize do not differ much in the four cases.

• drag and no added-masses (case 1): The minimal error E1 increases with the aspect ratio (from
5% for ε = 0.246 and up to 24% for ε = 0.639). The optimal drag coefficient α increases in an
approximately affine way with the aspect ratio (Fig. 10a) as:

αopt(ε) ≈ −1.6 + 8.8ε

with the coefficient of determination equal to R2 = 0.98. This linear regression is valid within the
range of studied aspect ratios 0.246 ≤ ε ≤ 0.639. Note that this formula should not be used for
ε < 0.18 for which the drag coefficient would be negative, which is physically meaningless.

• drag and simplified added-masses (case 2): The minimal errors E2 for SAFIM with drag and
simplified added-masses are greater than the errors E1 with drag and no added-masses Fig. 10(b).
As for E1, the error E2 increases with the aspect ratio (from 10% for ε = 0.246 up to 26% for
ε = 0.639). Note that for all the four studied cases, optimization of the error requires keeping only
one non-zero added-mass coefficient, namely the added moment of inertia coefficient. The simplified
added-masses allows a slow initiation of rotation, which can be explained by an added moment of
inertia of the surrounding fluid.

• drag and computed added-masses (case 4): In that case, SAFIM predicts the time and amplitude
of the extremum of the force and the torque less accurately than the two previous cases: the error
E2 > 34% for all the four studied cases (Fig. 10b). The corresponding results are not shown here.

5 Discussion

First we will discuss the performance of SAFIM in Sections 5.1 and 5.2, then the modelling choices in
Sections 5.3 and 5.4 and finally the sensitivity of the model results to geophysically meaningful variations
of parameters in Sections 5.5, 5.6 and 5.7.

5.1 SAFIM performance and comparison with existing models

The advantages of the formulated and validated SAFIM model with drag and without added-masses is
that (1) it can be readily implemented in a finite element model like the one in [Sergeant et al., 2018],
(2) it requires only one parameter, the drag coefficient αopt(ε) ≈ −1.6 + 8.8ε, (3) it quite accurately
reproduces the shape and amplitude of the horizontal force. The drawback of this model is that it does
not correctly simulate the kinematics of the iceberg capsize, especially the time needed to reach the peak
force (see discussion in Section 5.2). In addition, the evolution of the torque and vertical force is not well
reproduced.

The advantage of SAFIM with drag and simplified added-masses is that it correctly reproduces the
time of the force extremum (no shift in time is needed) and it reproduces the torque and the vertical
force better than SAFIM with drag and no added-masses. Its drawback is that it underestimates the
amplitude of the first extremum of the horizontal force by ≈ 10%.

SAFIM with drag and computed added-masses gives less accurate results than the two other versions.
Assuming that the computed added-masses are physical and accurate [Yvin et al., 2018], the drag model
in SAFIM is not suitable with that added-mass formulation since it does not make it possible to reproduce
the dynamics of the iceberg.

The proposed SAFIM model well predicts the first part of the horizontal force applied by the fluid on
the iceberg, either when using a drag force only (i.e. no added-masses) and shifting the curve in time or
when using a drag force and simplified added-masses (and no shift in time). However, the evolution of the
force after the capsize (θ > 80◦) is not well modelled. This is probably due to the fact that the evolution
of the local fluid pressures is governed by a complex fluid motion around the iceberg (see Section 5.3)
which is hard to parametrize without full fluid dynamics computations. The duration and amplitude of
the positive peak in the force is however comparable to that of the first minimum of the force (see e. g.
for ε = 0.374 Fig.8).

An advantage of SAFIM over previous models [Tsai et al., 2008, Burton et al., 2012] is that, thanks to
a special form of the drag force, it can describe the horizontal movement of a capsizing iceberg triggered by
its rotation. As shown in [Sergeant et al., 2018], SAFIM can distinguish between a top-out and bottom-
out capsize, when used to simulate the contact force between a capsizing iceberg and a rigid glacier front.
A qualitative explanation of the emerging non-zero horizontal force given by the drag force is given in
Appendix B.
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Figure 8: Capsize simulations for SAFIM with drag, without added-masses and with time shits, and
for ISIS-CFD: evolution of the dimensionless total horizontal force F ′x, vertical force F ′z and torque M ′θ
on the iceberg (a, c, d, e), of the horizontal x′G and vertical z′G positions of G and of the inclination
θ of the iceberg (b, d, f, g). Results are given for icebergs with ε = 0.246 (a, b), ε = 0.374 (c, d),
ε = 0.496 (e, f) and ε = 0.639 (g, h). SAFIM curves were shifted (green arrow) by the dimensionless
time ∆t′ = ∆t

√
g/H. The SAFIM drag coefficient α and time ∆t′ are indicated in the titles.

We calculate the error in SAFIM with a drag coefficient α = 1 for all aspect ratios and without
added-mass (Fig. 10). Exactly the same model was used in [Sergeant et al., 2018, Sergeant et al., 2019],
but for modelling an iceberg capsizing in contact with a glacier front. The error E1 is about two times
greater than when taking the optimum value of the α coefficient for each aspect ratio, and the amplitude
and duration of the first negative part of the force is underestimated - except for the thinnest iceberg with
ε = 0.246, for which the opposite is true. Note that this error is only relevant for a freely capsizing iceberg.
In future work, the errors for an iceberg capsizing in contact with a glacier front should be estimated
but this will require a reference model for fluid-structure interactions that can track the contact between
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Figure 9: Same as in Fig. 8 but for SAFIM with drag, simplified added-masses and no time shift (∆t′).
SAFIM drag coefficient α and added-mass coefficient Cθ are indicated in the titles.

solids, which is a challenging problem [Mayer et al., 2010].

5.2 Initiation of the capsize

In the previous sections, the drag parameter for SAFIM without added-masses was optimised by im-
plementing an artificial time shift of the SAFIM force curve with respect to ISIS-CFD. This was done
because, as already mentioned, SAFIM without added-masses is not able to predict the accurate duration
of the initiation of the capsize, where the motion is slow and the horizontal force is close to zero.

Various reasons suggest that this initial phase may not be relevant in the global context of the ultimate
objective of the project, i.e. estimation of the short time-scale volume loss on marine-terminating icebergs.
To achieve this objective, we need to compare the modelled contact force with the inverted seismic source
force. The very beginning of the seismic force has a too small signal-to-noise ratio, therefore it is the first
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(b) SAFIM with drag: minimum error on Fx against  
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Figure 10: (a) Optimized values of the drag coefficient α for different iceberg’s aspect ratios, which were
determined for SAFIM with and without added-mass, only added moment of inertia was used in the
simplified added-mass model, and a full added-mass matrix was used for the computed added-mass; (b)
the minimal error of the horizontal force corresponding to different models for different iceberg’s aspect
ratios. The optimal parameters and corresponding minimal errors are also given in Table 3

peak of the force that is used as a reference to compare the seismic force and the modelled force. Also,
because this force evolves very slowly at the beginning, it will not be responsible for the generation of
seismic waves with a period of 50 s that is predominantly observed on glacial earthquake seismograms
[Ekström et al., 2003, Tsai and Ekström, 2007, Tsai et al., 2008, Sergeant et al., 2018]. Another reason
for ignoring the beginning of the capsize is that the duration of the initial slow rotation (phase (i)) of the
iceberg is strongly dependent on the initial angle of inclination of the iceberg which is hard to constrain
in the field data and, when it is sufficiently small, has little effect on the capsize (phases (ii), (iii), (iv)).
The initiation phase of the capsize may also depend on the asymmetrical geometry of the iceberg, its
surface roughness and the 3-D effects (see sections 5.6 and 5.7).

Nevertheless, if we consider a complete glacier / ocean / bedrock / iceberg / ice-mélange system,
the initial detachment of the iceberg can result in various other effects such as basal sliding or vertical
oscillations of the glacier tongue, which can produce a seismic signal. Therefore the superposition of
these phenomena can be erroneous if the timing is not well reproduced. To solve this issue, simulations
of the complete glacier / ocean / bedrock / iceberg / ice-mélange system with a full fluid dynamics
model coupled with a model for dynamics of deformable solids would seem to be unavoidable, however,
as already discussed, it lies beyond actual computational possibilities of the softwares that we dispose.

5.3 Drag force and local pressure field

Following [Burton et al., 2012], a linear drag model with a local pressure proportional to the normal
velocity |vn| was also tested in SAFIM. It results in the following modification to equations (5) and (6):

Fd = −α1

2

∫
Γs

ρw|vn|sign(vn)n dΓ, (12)

Md = −α1

2

∫
Γs

ρw|vn|sign(vn)(r − rG) ∧ n dΓ. (13)

Such a drag model yields worse results than the original model with quadratic dependency when compared
with the reference ISIS-CFD model. In addition, other drag models were tested with linear and quadratic
pressure dependency on the velocity, with a non-uniform parameter α on the surface of the iceberg and
with drag depending on the sign of the local normal velocity vn. Of all drag models tested, the most
accurate was the model with quadratic dependency on the normal velocity and with a constant α-factor
over the whole surface of the iceberg. However, to better fit the reference results, the α-factor was
made dependent on the iceberg’s aspect ratio, which is an important difference with the original model
presented in [Sergeant et al., 2018].
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To go further in our understanding of the forces generated by the fluid, we analyse the hydrodynamic
pressure distribution on the sides of the iceberg, computed by ISIS-CFD and defined as pdyn = ptot−psta,
with ptot the total fluid pressure and psta the hydrostatic pressure computed for the reference still water
level (z = 0). In particular, we attempted to establish a link between the spatial distribution of the
hydrodynamic pressure on the iceberg and the local features of the fluid flow, notably with the normalized
vorticity (see Fig. 5) which is defined as: ω = −

√
H/g ey · (∇∧u), with a negative value (blue) accounting

for a vortex rotating clockwise and a positive (red) value for a counter-clockwise vortex. On the four
snapshots presented in Fig. 5, we also plot the dimensionless hydrodynamic pressure p′dyn = pdyn/(ρiH g).
The hydrodynamic pressure is plotted as a shaded pink area outside the iceberg for a negative pressure
and inside the iceberg for a positive pressure. Note that these values are about two orders of magnitude
lower than the average hydrostatic pressure. The dynamic pressure is higher at locations where there is a
vortex close to the surface of the iceberg such as on the corner furthest right in Figs. 5(b) and 5(c), on the
bottom part of the left side and in the middle on the right side of the iceberg. This observation suggests
that the dynamic pressure field is highly dependent on the vortices in the fluid. Such an evolution of
complex vortex motion cannot be reproduced within SAFIM and requires the resolution of the equations
of fluid motion as in ISIS-CFD. Note that the high values of the pressure on the top side of the iceberg
in Figs 5(c) and 5(d) are due to an additional hydrostatic pressure produced by the wave that is above
the reference sea level.

Using ISIS-CFD simulations, we made an attempt to correlate the local hydrodynamic pressure pdyn
with the normal velocity vn via a power law as is the case in SAFIM:

|pdyn| = b|vn|a. (14)

in order to optimize the drag law used here (in SAFIM, the coefficients are a = 2 and b =
−α sign(vn) ρw/2). This attempt was not successful. We observed that the values of a and b vary
significantly along the sides of the iceberg and with time particularly on the top part of the long sides
of the iceberg and close to the corners. Also, we tried to correlate the dynamic pressure for a = 2, as in
SAFIM, without success. Nevertheless, the choices made in SAFIM ensures rather accurate overall drag
forces and torques acting on the iceberg due to dynamic pressure.

5.4 Accuracy of the added-mass

The simplified added-masses, defined by Eqs. (7), (8), (9), with only diagonal terms in the added-mass
matrix, will now be compared with the reference computed added-masses. Both added-mass matrices
depend on the current iceberg position, and therefore they should be updated at every time step. These
matrices are calculated for the iceberg’s motion computed by ISIS-CFD. We show the time evolution of
the added-masses and the added moment of inertia, for the capsize of a laboratory-scale iceberg with
H = 0.103 m and ε = 0.246 in Fig. 11(a-c) and ε = 0.496 in Fig. 11(d-f).

The simplified horizontal and vertical added-masses are in very good agreement with the corresponding
computed added-masses: relative error (with the L2 norm) of 21% on mxx for ε = 0.246 and 23% for
ε = 0.496; relative error of 11% on mzz for ε = 0.246 and 13% for ε = 0.496. The simplified added
moment of inertia Iθθ is assumed to be constant in our model whereas the computed one varies in time
and has a smaller value: relative error of about 30%.

For the aspect ratio ε = 0.246, the horizontal added-mass mxx decreases from ≈ 2.5m at the beginning
down to ≈ 0.2m, where m is the iceberg mass, whereas, symmetrically, the vertical added-mass mzz

increases from ≈ 0.2m at the beginning up to ≈ 2.5m at the end of the capsize. The horizontal added-
mass mxx measures the resistance of the fluid to a horizontal acceleration ẍG of the iceberg. The iceberg
has a longer submerged vertical extension (of the order of H) at the beginning than at the end (of the
order of W ) of the capsize, thus it needs to displace a greater volume of the fluid in a horizontal motion at
the beginning than at the end of the capsize (θ > 90◦). Therefore, a greater added-mass mxx is expected
at the beginning of the capsize. The vertical added-masses mzz, sensitive to the horizontal extension of
the iceberg, experience the opposite variations in time. The computed added moment of inertia is equal
to the moment of inertia of the iceberg I at the beginning. Then it increases to 1.25 I and decreases
below the iceberg’s moment of inertia to 0.9 I (see Fig. 11).

For the aspect ratio ε = 0.496, the variations of the dimensionless added-masses are different in
amplitude but with rather similar evolutions.

For other geometries, the added-masses (resp. inertia) are also of the same order of magnitude as
the masses (resp. inertia) of the iceberg as found here for rectangular icebergs. For example, in the
case of a two-dimensional thin ellipse with an aspect ratio of b/a, with a the along-flow dimension and
b the cross-flow dimension, [Newman, 1999] gives the added-masses and added moment of inertia. For
b/a = 0.2, the transverse added-mass is equal to 0.9 times the mass of the displaced volume of fluid (i.e.
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Figure 11: Time evolution of dimensionless horizontal added-masses (a) and (d), horizontal added-masses
(b) and (e), added moment of inertia (c) and (f). The dashed cyan curves are the simplified added-masses
and moment of inertia and the solid green curves are the computed added-masses and moment of inertia.
Values are given for a laboratory-scale iceberg (H = 0.103 m) with field densities and aspect ratio
ε = 0.246 in (a), (b) and (c) and ε = 0.496 in (d), (e) and (f). For each aspect ratio ε, the values are
normalized by the mass of the iceberg m = ρiH

2ε and the inertia of the iceberg I = ρiH
4(1 + ε2)/12.

The non-constant added-masses are given for the positions of the iceberg in the ISIS-CFD simulations.
The values of the simplified added-masses are plotted for all coefficients equal to 1: Cx = Cz = Cθ = 1.

the submerged volume of the solid times the density of the fluid) and the added moment of inertia is equal
to 0.7 times the inertia of the displaced volume of fluid. For similar densities for the fluid and the solid,
the added-masses and the added moment of inertia are close to those of the solid. The optimized values
of the coefficients for the simplified added-masses and moment of inertia in SAFIM are given in Table 3.
These values are not in agreement with the reference computed added-masses. However, as discussed in
section 5.1, the SAFIM model with the simplified added-mass matrix gives better results than SAFIM
with the computed added-mass matrix. For ε = 0.246, note that the optimized simplified added moment
of inertia (Cθ = 0.75) is close to the computed one. However, the simplified added moment of inertia is
not in agreement with the computed one for higher ε.

The optimized value Cz = 0 is consistent with the choice of mzz = 0 in [Tsai et al., 2008] even though
it is not equal to the computed vertical added-mass. The optimized coefficient Cx = 0 gives mxx = 0. The
horizontal added-mass mxx from [Tsai et al., 2008] varies similarly to the computed added-mass. The
added moment of inertia Iθθ with the formula in [Tsai et al., 2008] is constant throughout the capsize
and different from the optimized added moment of inertia. However, the formula for added-masses and
added moment of inertia from [Tsai et al., 2008] were given for the simulation of an iceberg capsizing in
contact with a wall, which may significantly affect the values of the added-masses.

5.5 Effect of water/ice densities

The laboratory experiments discussed in Section. 2.3 were conducted with water and ice densities slightly
different from those in the field (see Section. 2.1).

As shown in Fig. 12, the dynamics of the iceberg computed by ISIS-CFD with field densities is sig-
nificantly different from those obtained with laboratory densities: the amplitude, duration and initiation
of the capsize are very sensitive to changes in densities. This sensitivity is also very well reproduced
by SAFIM with drag and no added-masses. Note that no change in the drag coefficient α is needed to
accurately reproduce this effect with SAFIM.

In Section 2.5, we pointed out the similarity between laboratory scale and field scale simulations if the
same water and ice densities were used in both. To obtain the dimensionless variables, we used the time
scale TH =

√
H/g, length scale H and mass scale m (see Table. 1). However, as shown in Fig. 12, using

different densities yields great differences in the horizontal force. Here, we explain how a simulation of a
laboratory-scale iceberg with laboratory densities can be related to a simulation of a field-scale iceberg
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Figure 12: Horizontal force acting on a capsizing iceberg (H = 0.103 m and ε = 0.246) computed by
ISIS-CFD and SAFIM for two different sets of densities: laboratory densities (blue and cyan curves)
ρw = 997 kg/m3 and ρi = 920 kg/m3 and field densities (red and yellow curves) ρw = 1025 kg/m3 and
ρi = 917 kg/m3.

with field densities. We use the same approach as in Section 2.5, with length scale H and mass scale m
but we introduce a time scale depending on the densities as proposed by [Tsai et al., 2008] (ignoring the
factor 2π):

Tρ,H =

√
Hρi

g(ρw − ρi)
. (15)

In Fig. 13, we plot the dimensionless horizontal force F ′x = Fx T
2/(mH) with respect to the dimensionless

time t′ = t/T for time scale T = TH and for time scale T = Tρ,H and for three aspect ratios ε = 0.25,
ε = 0.375 and ε = 0.5. For the time scale TH which does not involve densities, the dimensionless curves
differ considerably whereas for Tρ,H , which takes the densities into account, the agreement is improved,
especially for small aspect ratios.

Using a shift in time, the fit can be improved even further. Therefore, to upscale the laboratory-scale
experiments to the field scale, a dimensionless time scale Tρ,H should be used rather than a simple scaling
TH .

As densities have a large impact on capsize dynamics, more realistic water and ice densities, in-
cluding their spatial heterogeneity, should be considered in future capsize models. Water density
depends on salinity and temperature. For example, in the fjord of the Bowdoin glacier (north-
west Greenland), water density may change in the range between 1015 kg/m3 and 1028 kg/m3

[Ohashi et al., 2019, Sejr et al., 2017, Middelbo et al., 2018, Holding et al., 2019]. Ice density is more
difficult to evaluate as in situ measurements are rare. It depends on the volume fraction of air bubbles,
which is for example around 20 − 30% for firn at ≈ 40 m in depth [Herron and Langway, 1980]. The
density of the iceberg may then be heterogeneous and can probably range between ≈ 600 kg/m3 and
≈ 930 kg/m3 (the density of pure ice at −10◦C being about 918 kg/m3). With these ranges of ice and
water field densities, the factor

√
ρi/(ρw − ρi) varies between the extreme values ≈ 1.18 and ≈ 3.31,

which corresponds to an even greater spread than in our lab/field comparison (3.46 for lab densities, 2.92
for field values). Therefore consideration of the effect of density and its variability has to be integrated
in the inverse problem for iceberg volume estimation based on the seismic signal inversion.
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Figure 13: Dimensionless horizontal force acting on a capsizing iceberg computed by ISIS-CFD for a
field-scale iceberg with field densities ρw = 1025 kg/m3 and ρi = 917 kg/m3 (solid lines) and for a
laboratory-scale iceberg with laboratory densities ρw = 997 kg/m3 and ρi = 920kg/m3 (dashed lines).
The top row (a, b, c) is for time scale TH =

√
H/g and the bottom row (d, e, f) is for time scale

Tρ,H =
√
H/g

√
ρi/(ρw − ρi). The first, second and third columns correspond to ε = 0.25, 0.375 and

0.5, respectively.

5.6 3D effects

Capsizing icebergs have the following typical dimensions: full-glacier-height 500 m / H / 1000 m, width
in the glacier’s flow direction W / 0.75H [MacAyeal and Scambos, 2003], width along the glacier’s coast
line generally greater than the iceberg’s heightH / L, with the upper limit equal to the glacial fjord width.
However, as discussed above, in our modelling we neglect the effect of the third dimension on the dynamics
of the capsizing iceberg. The first argument to support this simplification is that iceberg capsizing in a
narrow fjord-like tank (laboratory experiments of [Burton et al., 2012]) is very well reproduced with the
two-dimensional ISIS-CFD model (Section 2). In the field, icebergs capsize in fjords with much more
complex geometries. For example, the fjord may be much wider than the iceberg which would yield a
truly three-dimensional motion of the fluid. Real capsizing iceberg should induce vortices on each side of
the iceberg which may have an effect on the motion of the iceberg that has not yet been evaluated.

5.7 Effect of the iceberg geometry

This study was conducted with the assumption that the icebergs have a perfectly rectangular (parallelepi-
pedic) shape and smooth surface. However, icebergs in the field have much more complex shapes. The
freeboard of an iceberg has irregularities that can range from a scale larger than 100 m down to a scale
less than 0.1 m [Landy et al., 2015]. The roughness of the submerged part of icebergs is poorly docu-
mented because of the difficulty in conducting suitable measurements. In future work, we could estimate
the roughness of some well documented icebergs, such as the PII-B-1 tabular iceberg in Northwest Green-
land scanned with a Reson 8125 multibeam sonar by [Wagner et al., 2014]. In fluid mechanics modelling,
surface features have a great impact on the boundary layer close to the surface and in some cases also
on the whole flow [Krogstad and Antonia, 1999]. A sensitivity analysis would be needed to assess the
influence of the surface features and surface roughness on the dynamics of capsizing icebergs.

Furthermore, in our simulations, icebergs were initially in hydrostatic equilibrium. In
[Sergeant et al., 2018], the effect of hydrostatic imbalance of the iceberg at the initiation of the capsize
was assessed by varying the vertical position of the iceberg with respect to the water level. Hydrostatic
imbalance results in a different evolution of the contact force with the glacier front and different dominant
frequencies of generated seismic waves. This is supported by seismic observations of calving events.
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6 Conclusion

In this study, we have improved the understanding of free iceberg capsize in open water through fluid-
dynamics simulations (ISIS-CFD solver) validated against laboratory experiments [Burton et al., 2012].
In particular, we have shown the complexity of the fluid motion and the dynamics of the iceberg during
capsize: vortices around the iceberg during and after capsize, motion of the fluid around the iceberg
(velocity of ≈ 88 cm/s for a H = 800 m high iceberg at a distance H from the iceberg), wave generation,
iceberg submergence when reaching the horizontal position and a significant horizontal displacement
of the iceberg during capsize. Moreover, we have shown that the non-dimensionalized horizontal force
F ′x = Fx/(ρiH

2εg) is invariant with the height H of the iceberg. The horizontal force acting on the
iceberg while its capsize changes its sign after the full capsize. Depending on the iceberg dimensions,
this reverse force could be as high and last as long as the one acting during the capsize. Extrapolating
these results to iceberg capsize against the glacier terminus would suggest that the force applied by
the rotating iceberg at the glacier could be followed by a purely hydrodynamic force of opposite sign,
once the contact is lost. This could possibly be compatible with the boxcar force shape assumed by
[Olsen and Nettles, 2017, Olsen and Nettles, 2019] even though the filtering of the contact force itself,
with a constant sign, would also lead to a changing sign filtered force as explained by [Sergeant et al., 2018,
fig. 7]. This hypothesis should be however clarified by a full scale CFD analysis including contact and
glacier terminus.

We have presented here a Semi-Analytical Floating Iceberg Model (SAFIM) and demonstrated its
accuracy for various geometries as well as for different water and ice densities by comparing the results
with the direct numerical CFD simulations. Our simple model is slightly more complex but more ac-
curate than the one used in our previous study [Sergeant et al., 2018]: the new feature is that the drag
parameter depends on the iceberg aspect ratio (affine function) to minimize the error with the refer-
ence CFD simulations. SAFIM’s error is of 5% to 20% (about half the maximum error made with the
[Sergeant et al., 2018] model) on the horizontal force Fx (without added-masses) during the capsize phase
for different aspect ratios. An extension of this model to more complex iceberg shapes and to three di-
mensions is relatively straightforward. Different options are offered by SAFIM. For accurate modelling
of the amplitude of the fluid forces, SAFIM should be used with drag but without added-masses. For ac-
curate modelling of the time of the peak force and the torque, it should be used with a drag force and an
added moment of inertia. In the global context of estimations of iceberg volume by analysis of seismic
signals generated during iceberg capsize in contact with a glacier front, based on the discussion on the
time-shift in Section 5.2, SAFIM should be used with an optimized drag coefficient and no added-masses.
However, for today this model has been validated only for the case of capsize of an iceberg in the open
ocean. Further validation will be conducted for the simulation of the capsize of an iceberg in contact with
a glacier. In the geophysical context of modelling seismogenic iceberg capsize, further studies would help
improve the model accuracy. Examples of such studies include (i) modelling of the full glacier / ocean
/ bedrock / iceberg / ice-mélange system, which is computationally very challenging and (ii) sensitivity
analysis of the iceberg dynamics to the iceberg shape, surface roughness and fjord geometry, which may
be also very complex.
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A Dimensional analysis

The Vashy-Buckingham - π theorem states that the problem can be written with n−p dimensionless ratios
obtained by a combination of the n characteristic variables. The integer p is the number of independent
physical dimensions in the iceberg capsize system, which is 3 (time, length and mass). The characteristic
variables of the system are the dimensions, H and W , the densities ρi and ρw, the water viscosity µw
and gravity g, so n = 6.
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The n− p = 3 dimensionless ratios are chosen here to be:

ε,
ρw

ρi
,

µw

ρwH3/2g1/2

The calculation of the horizontal force Fx(t) from the n = 6 independent characteristic variables of the
problem can be written as:

Fx = f(H,W, ρi, ρw, µw, g)

The Vashy-Buckingham - π theorem states that the problem can be written as:

Fx
mg

= G(ε,
ρw

ρi
,

µw

ρwH3/2g1/2
) (16)

To estimate the effect of viscosity, we compare the pressure and viscous forces. The fluid force on the
surface of the iceberg calculated by ISIS-CFD is the sum of a friction-induced force (locally tangent to
the fluid/solid interface) and a pressure-induced force (normal to this interface). In the case of an iceberg
with aspect ratio ε = 0.25, the friction force is found to be ≈ 300 times smaller than the pressure force
for the field-scale case (H = 800 m) and ≈ 10 times smaller for the laboratory case (H = 0.103 m) as
illustrated in Fig. 14. Therefore, viscous effects can be reasonably neglected in both scales. This leads to
the following approximation for equations (16):

Fx
mg
≈ G(ε,

ρw

ρi
) , (17)

i.e. for similar initial conditions and boundary conditions, the evolution with time of the dimensionless
force F ′x = Fx/(mg) only depends on the aspect ratio ε and the density ratio ρw/ρi. However, the
function f remains unknown and is investigated in Section 2.5 and Section 5.5.
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Figure 14: Viscous forces and pressure forces for (a) a laboratory-scale and (b) field-scale iceberg capsize,
computed by ISIS-CFD.

B SAFIM forces and torques

The integrated expressions for hydrostatic and drag forces and the associated torques are given below for
SAFIM and for a rectangular iceberg as in Fig. 1. All these expressions are implemented in the Python
code available online at [Yastrebov and Bonnet, 2020].

The effect of the hydrostatic pressure is given by the following integral: Fs = −ρwg
∫
Γs

zn dΓ, where

n is the outward surface normal and Γs is the submerged part of the iceberg. The torque induced by
this pressure distribution with respect to the centre of gravity G at position rG is given by: Ms =
−ρwg

∫
Γs

(r − rG) ∧ n dΓ

The drag force is given by Eq. 5, and the drag torque with respect to G by Eq. 6. The calculation of
the integral of the pressure drag is split into integration over all submerged or partly submerged sides of
the rectangular iceberg. Consider a partly submerged side S = AB and let us assume that corner A is a
submerged corner and B is a corner outside the water. Then the velocity vM of a point M ∈ [AB] is:

vM = vG + θ̇ey ∧ (rM − rG), (18)
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where vG is the velocity of G, rM = rA + ξ(rB − rA) with ξ ∈ [0, ξi] and ξi defining the intersection
between[AB] and the water surface. Thus, for the side AB, the contribution of the drag force is given by

FABd =
1

2
αρwn‖rB − rA‖

ξi∫
0

|vn|2sign(vn) dξ,

where vn = vM ·n. For the case of a totally submerged side, ξi = 1. For the case of a side totally outside
the water, the contribution to the drag force is zero.

B.1 Horizontal motion of capsizing iceberg

With the formulation of the drag force given above, we can reproduce the horizontal motion of a freely
capsizing iceberg, which is observed experimentally and reproduced with the accurate ISIS-CFD simu-
lations. Obtaining a closed form solution of SAFIM equations Eqs. (1), (2) and (3) is out of reach. We
wish to give here some intuitive explanation of the horizontal motion of the iceberg. The resultant of the
buoyancy and gravity forces moves the iceberg upwards and makes it rotate: these two effects initiate
the vertical and rotational motion of the iceberg. The induced velocity produces a force with a non-zero
horizontal component.

We now explain why these two initial motions -upwards and rotation-, together generate a horizontal
drag force, in the framework of SAFIM. We draw the velocity v (triple red arrow) of several points on the
surface of the iceberg and its normal component vnn (dashed red arrow). In SAFIM, the elementary drag
force dFd (solid black arrow) is collinear with n and opposes the normal velocity vnn. The projection of
the elementary drag forces on the horizontal axis dFdx = (dFd · ex)ex is shown by a dashed green arrow
if it is leftward and dashed blue arrow if it is rightward. The integral of these horizontal elemental forces
results in the global horizontal force Fd · ex.

For the case of upward motion Fig. 15(a), the vertical local velocity is constant along the iceberg
surface. Therefore, the horizontal drag force on the two long sides of the iceberg is leftward elementary
force whereas on the small submerged side CD, it is rightward but with a smaller amplitude. The iceberg
thus moves to the left.

For the case of rotational motion around G, with no motion of G (Fig. 15(b)), the velocity increases
with the distance to the centre of rotation. The further away the point is, the more it contributes to
the drag force. Two points located at the same distance from G, but with opposite normal velocity vnn
(i.e. one point on the blue line and one point on the green line) have the same absolute contribution
to the drag force but in opposite directions. Thus the drag force on the part of the surface coloured
by solid green lines compensates the drag force on the part coloured blue. The remaining part of the
surface coloured by dashed green lines at the iceberg bottom, induces a leftward total horizontal force.
Therefore, by superposing vertical and rotation motion, we obtain a net drag force in the direction of the
initial tilt of the iceberg, here to the left.

B.2 Simplified added-masses

The calculation of the simplified added-masses given in equation (7) and (8), requires the calculation of
the effective height Heff and effective width Weff of the submarine part of the iceberg (see Fig. 1). To
calculate them, we use the positions of the four corners: C, D, E, F (Fig. 15). The coordinates of a
corner P ∈ {C,D,E, F} have the general expression :

xP = zG + δP1
H

2
cos(θ) + δP2

L

2
sin(θ)

zP = zG + δP3
H

2
cos(θ) + δP4

L

2
sin(θ)

with (δP1 ,δP2 ,δP3 ,δP4 ) defined as follows for the four corners

{δC1 , δC2 , δC3 , δC4 } = {1,−1,−1,−1}, {δD1 , δD2 , δD3 , δD4 } = {1, 1,−1, 1},
{δE1 , δE2 , δE3 , δE4 } = {−1, 1, 1,−1}, {δF1 , δF2 , δF3 , δF4 } = {−1,−1, 1, 1}.

The effective height can be calculated with the following expressions :

Heff = max ((zw − zC) ; (zw − zD) ; (zw − zE) ; (zw − zF ))

where zw is the water level.
The effective width, defined as the distance between the leftmost and the rightmost points of the

submerged part of the iceberg, is calculated similarly, but after checking which are the submerged corners
and the geometrical intersection between the water surface and the iceberg sides.

25



Bonnet et al. Modelling Iceberg Capsize in the Open Ocean

Figure 15: Schematic explanation of the horizontal force induced by the formulation of the drag force in
SAFIM (a) vertical upward motion of iceberg, (b) rotation of iceberg.

Parameters no AM computed AM simplified AM

ε θ0 [o] Error E1 α Error E2 α Error E2 α Cx Cz CI

0.246 0.5 5.2% 0.85 36.6% 3 10.0% 1.1 0. 0. 0.75

0.374 0.5 9.6% 1.55 34.1% 1.8 21.3% 1.4 0. 0. 0.75
0.496 0.5 20.1% 2.9 40.0% 1.9 23.0% 3.0 0. 0. 0.5
0.639 15 24.7% 4.0 47.4% 2.6 26.2% 4.2 0. 0. 0.25

Table 3: First two columns : geometrical characteristics and initial conditions of the studied icebergs.
Laboratory-scale iceberg simulations have height H = 0.1 m and field-scale iceberg simulations have
heightH = 800 m. The density of the water is ρw = 1025 kg m-3 and the density of the ice is ρi = 917 kg -3.
Next columns : parameters minimizing the error on Fx and the corresponding error for SAFIM without
added-masses, SAFIM with computed added-masses and SAFIM with simplified added-masses.

C Optimal parameters

We summarize in Table 3 the errors of SAFIM computed with respect to the ISIS-CFD results for a
quadratic drag model and the three options for added-masses (no added-masses, simplified or computed
added-masses). These errors correspond to the minimal possible errors obtained by the minimization
procedure. The step used for the drag coefficient α was 0.05 and the step for the added-masses factors
was 0.25.

D Comparison of SAFIM with model in Sergeant et al.
(2018,2019)

We compare SAFIM model with optimised α-factor, SAFIM model with α = 1 (as used in
[Sergeant et al., 2018, Sergeant et al., 2019]) and ISIS-CFD in Fig. 16. The optimisation of the drag
coefficient α improves the horizontal force F ′x and torque M ′θ, in particular for the three biggest aspect
ratios (Figs. 16 (c-h)).
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Figure 16: Capsize simulations for SAFIM with optimised drag without added-masses and with time
shits (black lines), for SAFIM with drag coefficient α = 1 without added-masses and with time shits
(yellow lines), and for ISIS-CFD (red lines): evolution of the dimensionless total horizontal force F ′x on
the iceberg (a, c, d, e), and torque M ′θ (b, d, f, g). Results are given for icebergs with ε = 0.246 (a, b),
ε = 0.374 (c, d), ε = 0.496 (e, f) and ε = 0.639 (g, h). SAFIM curves were shifted (blue arrow) by the
dimensionless time ∆t′ = ∆t

√
g/H. The SAFIM α-factor and time ∆t′ are indicated in the legends.
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