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Sampled-data Control for a Class of Linear Hyperbolic Systems via the
Lyapunov-Razumikhin Technique*

Xinyong Wang1 Christophe Fiter1 Ying Tang1 and Laurentiu Hetel1

Abstract— This work investigates the stability for a class of
linear hyperbolic systems with distributed sampled-data con-
trollers. First, we convert the original system into an equivalent
system in which the sampling induced error is modeled as a
reset integrator. Then by means of an appropriate Lyapunov
function coupled with the Razumikhin technique, sufficient
conditions are given for the Rε - stability of the system. Finally,
our results are validated by a numerical example.

I. INTRODUCTION

The application of digital computer in control system has
become a general trend, which makes sampled-data control
an active field of research in the past decades [1], [2], [21].
Stability and control design for finite-dimentional systems
have been considered in many research works: see e.g. the
survey [16], [22], [28]. Compared with the research method
of finite dimensional system, the analysis and control of
infinite dimensional systems is more challenging. Few results
exist for sampled-data infinite dimensional system [25], [26].

In general, sampled-data systems can be analyzed using
discrete-time, time-delay and Input-Output methods (see [16]
and references therein). For the class of partial differen-
tial equations (PDEs), using discrete-time finite-dimensional
approximate models, [34] proposed a methodology for the
design of sampled-data controller with practical stability
guarantees. In references [14], [18], [33], the time-delay
approach has been used for the analysis of parabolic PDEs.
Hold boundary feedback control in one-dimensional linear
hyperbolic systems were considered in [20]. In [10], [13],
event-triggered sampled-data control with controller on the
boundaries was developed. The boundary feedback control of
a 2×2 hyperbolic system was implemented by backstepping
method in [6], [12].

It can be seen from the literature review that the analysis
of sampled-data controller for hyperbolic PDEs is a wide-
open area of research, and there are still many topics worth
studying. The present paper aims at studying the distributed
sampled-control for a class of hyperbolic PDEs. The idea
is to generalize the Input-Output approach [15], [19], [30]
for finite dimensional systems, to the case of hyperbolic
PDEs. An interconnected equivalent system consisting of a
continuous-time PDE and a reset-integral operator is derived
from the original system. In our previous work [11], the
stability of linear hyperbolic systems with sampled-data
controller has been ensured for a sufficiently small sampling
period. In the present paper, new stability conditions are
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proposed by using Lyapunov-Razumikhin stability criteria
(e.g. [23], [24]), the estimation of the maximum sampling
interval for the system stability is improved.

The paper is structured as follows: Section II presents the
systems and the problem under study. In Section III, we
propose the equivalent remodelling of system, followed by
the concrete stability analysis process. A numerical example
is given to illustrate the feasibility of our method in Section
IV. The paper is ended with conclusions and perspectives.

Notation: N is the set of nonnegative integers from 0
to infinity, R+ is the set of nonnegative reals,Rn is used
to denote the set ofn-dimensional Euclidean space with
the norm | · |. L2(0, L) stands for the Hilbert space of
square integrable scalar functions on(0, L) with the norm

‖ · ‖ L2(0,L), defined by‖ τ ‖ L2(0,L) =
√

∫ L

0
|τ (x)|

2
dx.

The associated norm to Sobolev spaceH1(0, L) is defined

as ‖ τ ‖H1(0,L)=

√

∫ L

0

(

|τ (x)|
2
+ |τx (x)|

2
)

dx. Given a

functional V : H1([0, L];Rn) → R+ such thatLV ≤C =
{

y ∈ H1([0, L];Rn) : V (y) ≤ C
}

. The notationW ≤ 0
denotes thatW is symmetric and negative semidefinite. The
symmetric elements are denoted by∗ in the symmetric
matrix. The identity matrix is denoted byI andλmin(Θ) and
λmax(Θ) are the minimum and maximum eigenvalues of the
matrix Θ. C0 is the space of continuous functions, whereas
C1 is the space of continuously differentiable functions.⌈·⌉
is the ceiling function.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A. System Description

We consider the following sampled-data controlled hyper-
bolic system (1)



















∂tz (t, x) + Λ∂xz (t, x) + Γz (t, x) + u (t, x) = 0,

u (t, x) = ̥z (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

z(t, 0) = 0, ∀t ≥ 0,

z(0, x) =z0(x), ∀x ∈ [0, L] ,

(1a)

(1b)

(1c)

(1d)

wherez : [0,+∞)× [0, L] → Rn, Λ = diag {λ1, λ2, ..., λn}
with λ1, λ2, ..., λn > 0, Γ and̥ are realn × n constants
matrices. The sampling instants are defined as a sequence
{tk}k∈N where

t0 = 0, tk+1 − tk ∈ [h, h̄], (2)

and h̄, h are the given bounds of the sampling intervals
satisfyingh̄ ≥ h > 0.



To address the issue under consideration, we need the
compatibility condition given below:
Condition 1.The initial conditionz0(x), satisfies

z0(0) = 0, ∀x ∈ [0, L] . (3)

Remark 1.We explain the concept of the solution and rewrite
the system (1)-(2) as a first order system

{

dz(t)
dt

= Υz (t) + f (z (tk)) , t ∈ [tk, tk+1) , k ∈ N,
z (0) = z0,

wheref(z(tk)) = −̥z(tk), andΥ is an operator defined
by Υz = −Λ∂xz (t, x)− Γz (t, x), with domain

D(Υ) =
{

z ∈ H1(0, L;Rn)
∣

∣ z(0) = 0.
}

(4)

A stableC0 semigroup is produced by the operatorΥ (see
the proof of theorem A.1. in [3]). Moreover, the fact is that
fk : H1(0, L) → H1(0, L) is continuously differentiable
for t ∈ [tk, tk+1). If z0 ∈ D(Υ), then in the light of
Theorem 6.1.5 of [31], there is a classical solution for each
t ∈ [tk, tk+1), k ∈ N. Consequently, a solution can be con-
structed by selecting the last value of the previous sampling
interval as the initial condition for the next sampling interval
so that it is continuous at each sampling instant.

B. Problem Formulation

In the present work, we adopt the Rε-stability for the
system (1)-(2), which is defined as follows.

Definition 1.Rε-stability [32] Consider positive scalars R
and ε, such that0 < ε < R, and a Lyapunov functionV :
H1([0, L];Rn) → R+. If for all solutions of system (1) with
z0(x) ∈ LV <R, the trajectory of the statez(t, x) converges
to LV ≤ε as t goes to infinity, then, system (1) is called Rε-
stable fromLV <R to LV ≤ε.

Our main goal is to ensure that the closed-loop system
(1)-(2) is Rε-stable due to Input-Output method.

III. MAIN RESULT

This section consists of two parts. Firstly, the sampled-data
system is equivalently expressed as a continuous hyperbolic
PDE with sampling induced error as disturbances in the
input. Secondly, we provide constructive Rε-stability criteria
based on the provided model.

A. System Remodelling

System (1) can be rewritten equivalently as



















∂tz (t, x) + Λ∂xz (t, x) + (Γ +̥)z (t, x)

+̥̟ (t, x) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

z(t, 0) = 0, ∀t ≥ 0,

z(0, x) = z0(x), ∀x ∈ [0, L] ,

(5a)

(5b)

(5c)

with the sampling error

̟ (t, x) = z (tk, x)− z (t, x) . (6)

ϕ
P

̟
J

Fig. 1. Alternative representation of the closed-loop system.

Define the functionϕ (t, x) = ∂z(t,x)
∂t

, ∀t ≥ 0, x ∈ [0, L] .
Note that for allt ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L], we have

̟ (t, x) = −

∫ t

tk

∂z (θ, x)

∂θ
dθ = −

∫ t

tk

ϕ (θ, x) dθ. (7)

Therefore, the closed-loop system can be seen as the inter-
connection of two systemsP andJ shown in Fig. 1, where
the operatorP : L2(0, L) → L2(0, L) is defined by

P :































∂tz (t, x) = −Λ∂xz (t, x)− (Γ +̥) z (t, x)
−̥̟ (t, x) ,

z(t, 0) = 0,∀t ≥ 0,
z(0, x) =z0(x), ∀x ∈ [0, L] ,
ϕ (t, x) = −Λ∂xz (t, x)− (̥+ Γ) z (t, x)

−̥̟ (t, x) = ∂tz (t, x) ,

(8)

and the operatorJ : L2(0, L) → L2(0, L) is defined by

J :

{

̟ (t, x) = (J z)(t, x) = −
∫ t

tk
ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] .
(9)

Remark 2. The operatorP is a nominal continuous-time
control-loop since we use continuous-time sampling error
instead of sampled-data controller in the system (8),J is
an integral operator representing the sampling error. For the
simplicity of the closed-loop system structure, we choose
this form ofJ so that we need one outputϕ instead of two
z(t, x) andz(tk, x), which is why we wrote (6) as (7).

B. Stability Analysis

In the following, we present our primary results.
Proposition 1.Consider systems (8)-(9) with (2) and a

function V : H1 ([0, L] ; Rn) → R+ which is differentiable
w.r.t. its argument and such that there exists0 < ι1 < ι2
satisfyingι1 ‖̺‖

2
H1([0,L];Rn) ≤ V (̺) ≤ ι2 ‖̺‖

2
H1([0,L];Rn) .

Suppose that along the trajectories of the system (8)-(9),
the corresponding solutionz(t, ·) satisfiesV̇ (z)+ 2δV (z) ≤
0, for someδ > 0, whenever

1) R > V (z(t, ·)) ≥ max{ε, V (z(tk, ·))/α}, with some
α > 1,

2) z(tk, ·) ∈ LV <R.

Then the system is Rε-stable fromLV <R to LV ≤ε.
The proof of Proposition 1 can be found in the appendix.
Remark 3. Proposition 1 is based on the generalization

of the Razumikhin technique to get the Rε-stability for
hyperbolic systems. In the following theorem, we will show
how it can be used in constructed manner.



W (x) =











−e−2µx
[

(̥+ Γ)
T
Θ1 +Θ1(̥+ Γ)

]

−e−2µxΘ1̥ 0 0

∗ −γI 0 0
∗ ∗ −e−2µx

[

ΓTΘ2 + Θ2Γ + βΘ2

]

−e−2µxΘ2̥

∗ ∗ ∗ −γI











(11)

N(x) = e−2µx









(α− 1)Θ1 −Θ1 0 0
∗ −Θ1 0 0
∗ ∗ αΘ2 0
∗ ∗ ∗ −Θ2









(12)

Theorem 1.Consider systems (8)-(9) with (2) and an initial
condition satisfying (3):

1) Let λ = min
i∈{1,...,n}

λi. Assume that there existµ, γ, κ >

0, α > 1 and symmetric positive matricesΘ1 ∈ Rn×n,
Θ2 ∈ Rn×n satisfying the commutativity conditions:ΛΘ1 =
Θ1Λ,ΛΘ2 = Θ2Λ and

W (0) + κN(0) � 0, W (L) + κN(L) � 0, (10)

with W (x) andN(x) defined for allx ∈ [0, L] as (11)-(12).
2) For given decay rateδ > 0, ∃ε ∈ R+, R ∈ R+ s.t.

0 < ε < R and it holds

γ3h̄
(

|Λ|
2
Ω1 +

(

|Γ|
2
+ |̥|

2
)

Ω2

)

+ γΩ1≤ (2σ − β)ε− 2δR, (13)

for some 0 < β < 2σ withΩ1 = R
λmin(Θ2)e−2µL ,Ω2 =

R
λmin(Θ1)e−2µL , σ = µλ.

Then the considered system (1) is Rε-stable fromLV <R

to LV ≤ε for any sampling sequence satisfying (2), with the
Lyapunov function defined by

V (z) = V1(z) + V2(z), (14)

where V1(z) =
∫ L

0
zT e−2µxΘ1zdx, V2(z) =

∫ L

0 zTx e
−2µxΘ2zxdx.

Proof. Consider the Lyapunov function (14).
It can be bounded asΦ ‖z (t, ·)‖

2
H1( [0,L] ;Rn) ≤

V (z (t, ·)) ≤ Ψ ‖z (t, ·)‖
2
H1([0,L];Rn), where

Φ = min{λmin (Θ1) , λmin (Θ2)}e
−2µL,Ψ =

max{λmax (Θ1) , λmax (Θ2)}.

Step 1: In this step, we clarify that the functionV defined
in (14) is continuous by using the construction method [11].

Remark 4.V1 is used to boundz, andV2 is used to deal
with the termzx that appears in the derivative ofV1.

Step 2:In this step we study the time derivative ofV (z)
defined in (14). Thanks to commutativity condition:ΛΘ1 =
Θ1Λ, we first compute the time derivative ofV1(z) along
the solutions to (8)-(9),∀t ∈ [tk, tk+1) , k ∈ N,

V̇1(z) =

∫ L

0

(

∂tz
T e−2µxΘ1z + zT e−2µxΘ1∂tz

)

dx

=

∫ L

0

(

(−Λ∂xz − (̥+ Γ)z −̥̟)
T
e−2µxΘ1z

+ zT e−2µxΘ1 (−Λ∂xz − (̥+ Γ)z −̥̟)
)

dx

= −
[

zTΛe−2µxΘ1z
]L

0
+
∫ L

0

(

−zT
(

(̥+ Γ)T e−2µxΘ1

+e−2µxΘ1(̥ + Γ)
)

z −̟T
̥

T e−2µxΘ1z

−zT e−2µxΘ1̥̟
)

dx − 2µ

∫ L

0

zTΛe−2µxΘ1zdx. (15)

In order to get the time derivative ofzx in V2, we refer to
the original system (1). Sincez : [0,+∞)× [0, L] → Rn has
consecutive partial derivatives in[0,+∞)× [0, L], according
to Schwartz’s theorem [17] we can obtain∀t ∈ (tk, tk+1)

∂xtz (t, x) = ∂txz (t, x)

= −Λ∂xxz (t, x)− Γ∂xz (t, x)−̥∂xz (tk, x) . (16)

For the next calculation of the time derivative ofV2, we use
Lemma 1 in the appendix. According to (16) and Lemma 1,
we have

{

∂xz(t, 0) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

z0(0) = 0, ∂xz0(0) = 0.

(17a)

(17b)

Similarly to the computation oḟV1, by using the commuta-
tivity condition: ΛΘ2 = Θ2Λ, the time derivative ofV2(z)
along the solutions to (16)-(17),∀t ∈ [tk, tk+1) , k ∈ N is
shown as follows

V̇2(z) = −
[

∂xz
TΛe−2µxΘ2∂xz

]L

0

+

∫ L

0

(

−∂xz
T
(

ΓT e−2µxΘ2 + e−2µxΘ2Γ
)

∂xz

−∂xz
T (tk, ·)̥

T e−2µxΘ2∂xz −∂xz
T e−2µxΘ2̥∂xz (tk, ·)

)

dx

− 2µ

∫ L

0

∂xz
TΛe−2µxΘ2∂xzdx. (18)

Adding γ‖̟ (s, ·)‖
2
L2( [0,L];Rn) − γ‖̟ (s, ·)‖

2
L2( [0,L];Rn)

to (15) and γ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn) −

γ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn), β

∫ L

0 zTx e
−2µxΘ2zxdx −

β
∫ L

0
zTx e

−2µxΘ2zxdx to (18) for someγ > 0, β > 0, and
using boundary condition (5b) and (17a) we have

V̇ (z) =V̇1(z) + V̇2(z)

≤− 2σV1(z)− (2σ − β)V2(z)

+

∫ L

0

ηTW (x)ηdx + γ ‖̟ (s, ·)‖
2
L2( [0,L];Rn)

+ γ ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn) . (19)



with σ = µλ, η = [zT ̟T (∂xz)
T (∂xz(tk, ·))

T ]T , and
W (x) defined in (11).

Step 3:In this step, we show thaṫV (z) + 2δV (z) ≤ 0,
whenever

{

R > V (z(t, ·)) ≥ max{ε, V (z(tk, ·))/α},

z(θ, ·) ∈ LV <R, ∀θ ∈ [tk, t), k ∈ N.

(20a)

(20b)

Let us assume that conditions (20) hold. Since condition (10)
is linear in e−2µx and 0 ≤ x ≤ L, by convexity, we have
W (x) + κN(x) ≤ 0, for x ∈ [0, L]. Therefore, we get

∫ L

0

ηT (W (x) + κN(x))ηdx ≤ 0, (21)

with W (x) andN(x) given in (11) and (12).
Now, considert ∈ [tk, tk+1) and a trajectoryz satisfying

(20). Since condition (20a) is satisfied, we haveV (z(t, ·)) ≥
V (z(tk, ·))/α with someα > 1, which can be rewritten as

∫ L

0

ηTN(x)ηdx ≥ 0. (22)

In view of (21), (22) andκ > 0, by S-procedure, it implies
∫ L

0

ηTW (x)ηdx ≤ 0. (23)

According to condition (20b), the following inequalities are
further derived for allθ ∈ [tk, t]:

‖z (θ, ·)‖
2
L2([0,L];Rn) <

R

λmin (Θ1) e−2µL
= A1,

‖∂xz (θ, ·)‖
2
L2([0,L];Rn) <

R

λmin (Θ2) e−2µL
= A2. (24)

Using (7) and (24) fort ∈ [tk, tk+1), k ∈ N, the upper bound
of ‖̟ (s, ·)‖2L2([0,L];Rn) can be calculated

‖̟ (s, ·)‖
2
L2([0,L];Rn)

=

∫ L

0

|̟ (s, x)|
2
dx =

∫ L

0

∣

∣

∣

∣

∫ t

tk

∂z (θ, x)

∂θ
dθ

∣

∣

∣

∣

2

dx

≤ 3

∫ L

0

∫ t

tk

(

|Λ|
2
|∂xz (θ, x)|

2
+ |Γ|2|z (θ, x) |2

+ |̥|
2
|z (tk, x)|

2
)

dθdx

≤ 3h̄
(

|Λ|2A2 +
(

|Γ|2 + |̥|2
)

A1

)

= ω. (25)

In addition, since condition (20a) is satisfied, we have

−2σV1(z)− (2σ − β)V2(z) ≤ −(2σ − β)(V1(z) + V2(z))

< −(2σ − β)ε. (26)

Therefore, substituting (23), (25) and (26) into (19), we have
for all t ∈ [tk, tk+1), k ∈ N,

V̇ (z) <− (2σ − β)ε+ γω + γ
R

λmin (Θ2) e−2µL
. (27)

Since (13) holds, we deduce from (27),

V̇ (z) < −2δR ≤ −2δV (z). (28)

Therefore, we have shown thatV̇ (z)+2δV (z) ≤ 0, whenever
conditions (20) are satisfied.

Step 4: In this step, we show that ifz(tk, ·) ∈ LV <R,
then z(t, ·) ∈ LV <R, ∀t ∈ [tk, tk+1). Consider z such
that z(tk, ·) ∈ LV <R, assume that∃ t◦ ∈ (tk, tk+1) s.t.
V (z(t◦, ·)) ≥ R. Let us then callT ◦ the minimum of such
t◦, then∀t ∈ [tk, T

◦), V (z(t, ·)) < R. Therefore conditions
(20) are going to be satisfied for anyt ∈ [tk, T

◦). From
step 3, we know thatV is going to decrease during that
time interval, either continuously, or untilV reaches below
max{ε, V (z(tk, ·))/α} and when it reaches that region, it
never gets back out. Therefore, we haveV (z(T ◦, ·)) <
V (z(tk, ·)) < R, which contradicts the assumption that there
existst◦ ∈ (tk, tk+1) such thatV (z(t◦, ·)) ≥ R.

Summary: From step 3 and step 4, it is clear thatV̇ (z)+
2δV (z) ≤ 0 wherever

{

R > V (z(t, ·)) ≥ max{ε, V (z(tk, ·))/α},

z(tk, ·) ∈ LV <R,

(29a)

(29b)

and therefore, the conditions of Theorem 1 are satisfied,
which concludes the proof of Rε-stability. �

Remark 5.It is worth pointing out that we use several
parameters and now we summarize each parameter in detail.
For Rε-stability, R is the domain of attraction for a given
Lyapunov function,ε specifies the positive invariant level
set of V . They satisfy0 < ε < R. In this paper, we
can fix R then computeε or vice versa.α is a parameter
introduced in the Lyapunov-Razumikhin method to define
level set in which the time derivative ofV (z(t, ·)) should
be negative between two sampling interval, we choose it
greater than 1. The closerα is to 1, the greater the values of
V (z(tk, ·))/α are, and the less conservative the conditions
of V-convergence are.µ is related to the decay rate ofV1,
V2, andδ is related to the decay rate ofV . γ andκ are found
by line search to realize the conditions given in Theorem 1.
First, the algorithm of Theorem 1 is implemented in Matlab
using Yalmip [29] to solve the condition 1). Then we use
the same parameters to test the condition 2). Due to (13),
we adjustγ, β to be the smallest possible andµ to be the
largest possible. In the numerical section, we sort out their
relationship:µ > 0, δ > 0, λ = min

i∈{1,...,n}
λi > 0, σ =

µλ, 0 < β < 2σ.

IV. NUMERICAL SIMULATION

In this section, we present a numerical example to illus-
trate the method we proposed in Section III.

Consider system (1) whereΛ =

[

11 0
0 11

]

, h̄ = 0.1,

Γ =

[

20 15
20 25

]

, ̥ =

[

2 0
5 4

]

, L = 1,

z0 (x) =

[

0.2(1− cos 2πx) sin 4πx
0.15(1− cos 4πx) sin 2πx

]

.

According to Remark 5, the parameters in condition (10)
are selected as:µ = 0.09, κ = 1.8, γ = 0.001, α = 1.001,
then we chooseβ = 0.01, δ = 0.001 satisfying condition
(13). We fix R = 20, and choose appropriateΘ1, Θ2 to
observe the evolution of states.



Fig. 2. Response of statez1.

Fig. 3. Response of statez2.
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Fig. 4. Time-evolution of function V.

The simulation results are introduced in Figs. 2-4. Figs.
2-3 present that both state trajectories converge to near the
origin with the controller and the initial conditions satisfying
the compatibility condition (3). As can be seen from Fig. 4,
the time-evolution of Lyapunov functionV (z(t, ·)) decreases
when R > V (z(t, ·)) ≥ max{ε, V (z(tk, ·))/α}, α > 1.
Please note that using the method proposed in [11] is not
feasible in the case presented here.

V. CONCLUSIONS

The main work of this paper is to use a sampling controller
for distributed control of linear hyperbolic balance laws.
The closed-loop system is reformulated based on Input-
Output approach. New stability condition has been obtained

by means of the Lyapunov-Razumikhin method. In the
future, we will consider the global stability with controller
discretized both in time and in space.

APPENDIX

Lemma 1.Consider the system (1)-(2) with initial condi-
tion z0 satisfying Condition 1. Then∀t ∈ [tk, tk+1), k ∈ N,
∂xz(t, 0) = 0.

Proof: We recall system (1), the time derivative of
the boundary condition leads to∂tz (t, 0) = 0, ∀t ∈
[tk, tk+1), k ∈ N. Then combining (1a) with∂tz (t, 0) = 0,
we obtain 0 = ∂tz (t, 0) = −Λ∂xz (t, 0) − Γz (t, 0) −
̥z (tk, 0) . Sincez(t, 0) = 0, ∀t ≥ 0, we have∂xz(t, 0) =
0, ∀t ∈ [tk, tk+1), k ∈ N. �

The proof of Proposition 1: During a sampling interval
[tk, tk+1) with initial statez(tk, ·):

(1) If V (z(tk, ·)) ≤ ε, V (z(t, ·)) will remain in ε during
[tk, tk+1).

(2) If R > V (z(tk, ·)) ≥ ε:
(a) We haveV (z(t, ·)) ≤ V (z(tk, ·)) during [tk, tk+1).

(Otherwise, we will haveV̇ (z) > 0 > −2δV (z) at some
point whenV (z(t, ·)) ≥ V (z(tk, ·)) ≥ V (z(tk, ·))/α, which
would contradict the proposition in Theorem 1.)

(b)We can further show that during[tk, tk+1)

V (z(t, ·)) ≤ max{ε, V (z(tk,·))
α

, e−2δ(t−tk)V (z(tk, ·))}. (30)

Then we will discuss two possibilities in case (b):
(b1) If there existst′ ∈ [tk, tk+1) such thatV (z(t′, ·)) =

max{ε, V (z(tk, ·))/α}. If t ∈ [tk, t
′), V̇ (z) + 2δV (z) ≤ 0

holds, and we haveV (z(t, ·)) ≤ e−2δ(t−tk)V (z(tk, ·)), ∀t ∈
[tk, t

′). If t ∈ [t′, tk+1), V (z(t, ·)) cannot go back above
max{ε, V (z(tk, ·))/α} otherwise, according to the same
principle, it would contradict the proposition in Theorem 1.
So, over the whole sampling intervalt ∈ [tk, tk+1), we can
get inequality (30).

(b2) When V (z(t, ·)) > max{ε, V (z(tk, ·))/α}, ∀t ∈
[tk, tk+1), sinceV̇ (z) + 2δV (z) ≤ 0, we haveV (z(t, ·)) ≤
e−2δ(t−tk)V (z(tk, ·)). Then it is not hard to get (30).

Considerz(tk, ·) ∈ LV <R, t ∈ [tk, tk+1), k ∈ N. We have

V (z(t, ·))≤ max{ε, V (z(tk, ·))/α, e
−2δ(t−tk)V (z(tk, ·))}

= max{ε, ξV (z(tk, ·))}, (31)

with ξ = max{1/α, e−2δ(t−tk)} ≤ 1, then we can de-
rive V (z(tk, ·)) ≤ max{ε, ζV (z(tk−1, ·))}, with ζ =
max{1/α, e−2δh} < 1, ∀k ∈ N \ {0}, whereh is the lower
bound of the sampling interval.

By recursion, the following inequality holds ifz(t0, ·) ∈
LV <R, ∀k ∈ N, we have

V (z(tk, ·)) ≤ max{ε, ζmax{ε, ζV (z(tk−2, ·))}}

≤ max{ε, ζ2V (z(tk−2, ·))} ≤ · · · ≤ max{ε, ζkV (z(t0, ·))}. (32)

Then combining (31) and (32), we get that

V (z(t, ·)) ≤ max{ε, ζkV (z(t0, ·))} = ε (33)

when k is large enough. Therefore, there∃ k̄ =
⌈logζ

ε/V (z(t0, ·))⌉, such thatz(t, ·) ∈ LV ≤ε, ∀ t ≥ tk̄ ,
which leads the proof of Rε-stability. �
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[6] M. A. Davó, D. Bresch-Pietri, C. Prieur, and F. Di Meglio, Stability
analysis of a 2× 2 linear hyperbolic system with a sampled-data
controller via backstepping method and looped-functionals. IEEE
Transactions on Automatic Control, vol. 64, no. 4, pp. 1718–1725,
2018.

[7] L. Hetel, A. Kruszewski, W. Perruquetti, and J. P. Richard, Discrete
and intersample analysis of systems with aperiodic sampling. IEEE
Transactions on Automatic Control, vol. 56, no. 7, pp. 1696–1701,
2011.

[8] J. Louisell, Delay differential systems with time-varying delay: New
directions for stability theory. Kybernetika, vol. 37, no.3, pp. 239–251,
2001.

[9] L. Mirkin, Some remarks on the use of time-varying delay to model
sample-and-hold circuits. IEEE Transactions on AutomaticControl,
vol. 52, no. 6, pp. 1109–1112, 2007.

[10] N. Espitia, A. Girard, N. Marchand, and C. Prieur, Event-based control
of linear hyperbolic systems of conservation laws. Automatica, vol. 70,
pp. 275–287, 2016.

[11] X. Y. Wang, Y. Tang, C. Fiter, and Laurentiu Hetel, Stability Analysis
for A Class of Linear Hyperbolic System of Balance Laws with
Sampled-data Control. IFAC World Congress. Berlin, Germany, 2020,
hal-02491857v2.

[12] N. Espitia, A. Girard, N. Marchand, and C. Prieur, Event-based
boundary control of a linear2×2 hyperbolic system via backstepping
approach. IEEE Transactions on Automatic Control, vol. 63,no. 8, pp.
2686–2693, 2017.

[13] N. Espitia, A. Tanwani, and S. Tarbouriech, Stabilization of bound-
ary controlled hyperbolic pdes via Lyapunov-based event triggered
sampling and quantization. 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 1266–1271, 2017.

[14] E. Fridman and A. Blighovsky, Robust sampled-data control of a class
of semilinear parabolic systems. Automatica, vol. 48, no. 5, pp. 826–
836, 2012.

[15] H. Fujioka, Stability analysis of systems with aperiodic sample-and-
hold devices. Automatica, vol. 45, no. 3, pp. 771–775, 2009.

[16] L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.P.Richard, and
S.I. Niculescu, Recent developments on the stability of systems with
aperiodic sampling: An overview. Automatica, vol. 76, pp. 309–335,
2017.

[17] R. C. James, Advanced calculus belmont. Wadsworth Pub.Co., 1966.
[18] W. Kang and E. Fridman, Distributed sampled-data control of

Kuramoto–Sivashinsky equation. Automatica, vol. 95, pp. 514–524,
2018.

[19] C. Y. Kao and A. Rantzer, Stability analysis of systems with uncertain
time-varying delays. Automatica, vol. 43, no. 6, pp. 959–970, 2007.

[20] I. Karafyllis and M. Krstic, Sampled-data boundary feedback control
of 1-D linear transport pdes with non-local terms. Systems &Control
Letters, vol. 107, 68–75, 2017.

[21] B. C. Kuo, Discrete-data control systems. Prentice-Hall Englewood
Cliffs, NJ, 1970.
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