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Sampled-data Control for a Class of Linear Hyperbolic Systens via the
Lyapunov-Razumikhin Technique*

Xinyong Wang Christophe Fiter Ying Tang and Laurentiu Hetél

Abstract— This work investigates the stability for a class of controller has been ensured for a sufficiently small sam-
linear hyperbolic systems with distributed sampled-data on-  pling period. In the present paper, new stability condiion
trollers. First, we convert the original system into an equvalent which are based on Lyapunov-Razumikhin stability criteria

system in which the sampling induced error is modeled as a - .
reset integrator. Then by means of an appropriate Lyapunov (e.9. [23], [24]) are proposed, a local stability conditiisn

function coupled with the Razumikhin technique, sufficient Obtained on Linear Matrix Inequality (LMI) method.

conditions are given for the Re - stability of the system. Finally, The paper is structured as follows: Section Il presents the
our results are validated by a numerical example. systems and the problem under study. In Section I, we
I. INTRODUCTION propose the equivalent remodelling of system, followed by

the concrete stability analysis process. A numerical examp

The application of digital computer in control system ha?s iven to illustrate the feasibility of our method in Secti
become a general trend, which makes sampled-data contE Ig

o . 9 The paper is ended with conclusions and perspectives.

an ag:juve field of research in the pa_lst dgcadgs (11, [2], [21 Notation: N is the set of nonnegative integers from O
ﬁtabngy and Cof‘;fo' ((j:igagn for f|n|te—d|fr]nent|f<)n'al sysBemt infinity, R, is the set of nonnegative real®" is used

ave been considered in many research works. see €.g. { €denote the set ofi-dimensional Euclidean space with

survey [16], [22], [28]. Compared with the research metho e norm| - |. L2(0,L) stands for the Hilbert space of

_of_f|_n|te _d|mer_15|onal system, the analysis gnd control o quare integrable scalar functions @ L) with the norm
infinite dimensional systems is more challenging. Few tssul

exist for sampled-data infinite dimensional system [25§][2 || - | z2(0,z). defined by|| 7 || L2¢0,1) = 4/ Jo 17 (@) da.

In general, sampled-data systems can be analyzed usihae associated norm to Sobolev spdé&(0, L) is defined
discrete-time, t|me-del_ay and Input-Output metho_ds (9;_6@3[ as| 7 [lgi0.0)= j;JL (|T(x)|2 . ($)|2) dr. Given a
and references therein). For the class of partial differen-
tial equations (PDESs), using discrete-time finite-dimenal ~ functional V. H'([0, L];R") — R, such thatfy<c =
approximate models, [34] proposed a methodology for they € H'([0, L];R™) : V (y) < C}. The notationW < 0
design of sampled-data controller with practical stayilit denotes thatV is symmetric and negative semidefinite. The
guarantees. In references [14], [18], [33], the time-delagymmetric elements are denoted byin the symmetric
approach has been used for the analysis of parabolic PDERatriX. The identity matrix is denoted byand . (©) and
Hold boundary feedback control in one-dimensional lineatmax(©) are the minimum and maximum eigenvalues of the
hyperbolic systems were considered in [20]. In [10], [13]matrix 0. CY is the space of continuous functions, whereas
event-triggered sampled-data control with controller be t C' is the space of continuously differentiable functiofis.
boundaries was developed. The boundary feedback controligfthe ceiling function.
a2 x 2 hyperbolic system was implemented by backstepping
method in [6], [12]. II. SYSTEM DESCRIPTION AND PROBLEM

It can be seen from the literature review that the analysis FORMULATION
of sampled-data controller for hyperbolic PDEs is a wideA. System Description
open area of research, and th_ere are stil many top_ics_worthWe consider the following sampled-data controlled hyper-
studying. The present paper aims at studying the d'St'“b“t‘Bolic system (1)
sampled-control for a class of hyperbolic PDEs. The idea is
to g(_en_erali_ze the_ Input-Output approach ( [15], [19], [30]_) Bz (t,1) + Adyz (t,2) + Tz (tz) +u(t,x) = 0, (1a)
for finite dimensional systems, to the case of hyperbolic

PDEs. An interconnected equivalent system consisting of aJ (t,2) = Fz(th,2),VE € [ti; tesn), K €N, (1b)
continuous-time PDE and a reset-integral operator is dériv | 2(t,0) =0,V > 0, (1c)
from the original system. In our previous work [11], the | 2(0,z) =z¢(z),Vz € [0, L], (1d)

stability of linear hyperbolic systems with sampled-data
wherez : [0,4+00) X [0, L] — R, A = diag { 1, A2, ..., A\n}

LCRIStAL CNRS UMR 9189, Centrale Lille, with A1, Ag,..., A, > 0, T' and f are realn x n constants

59651 Villeneuve d'Ascq, France Xi nyong. wang, i ; ; :

laurentiu. hetel @entraielille. fr matrices. The sampling instants are defined as a sequence
2CRISIAL CNRS UMR 9189, Universit  {tk}ren Where

de Lille, 59655 Villeneuve d’Ascq, France _

ying.tang, christophe.fiter@niv-lille.fr to = 0, tkr1 — ti € [h, B, (2)



and h, h are the given bounds of the sampling intervals

satisfyingh > h > 0. P 14
To address the issue under consideration, we need the

compatibility condition given below:

Condition 1.The initial conditionzy(x), satisfies

Y

20(0) =0,0,20(0) = 0,Vz € [0, L]. 3) w T P

Remark 1We explain the concept of the solution and rewrite
the system (1)-(2) as a first order system

{ S0 T (1) + f (2 (b)) 4 € [ta tisr) k€N,
z(0) = 2o,

Fig. 1. Alternative representation of the closed-loop ayst

. . Define the functiony (¢, x) = %,Vt >0,z €0,L].
where f(z(ty)) = —F z(tx), and T is an operator defined Note that for allt € [ty,tr11),k € N,z € [0, L], we have
by Tz = —A0,z (t,z) — T'z (¢, x), with domain

2(0) = 0, } @ w(t,a:):—/t 8Z((399’I)d9:—/ 0 (0,2)do. (7)

2z (0) = 0. * e
) ) ©) Therefore, the closed-loop system can be seen as the inter-
A stableC, semigroup is produced by the operafbr(see connection of two systen® and7 shown in Fig. 1, where

the proof of theorem A.1. in [3]). Moreover, the fact is thaline operatorP : L2(0,L) — L2(0, L) is defined by
fr : HY(0,L) — H'(0,L) is continuously differentiable

D(Y) = {z € H*(0,L;R™)

for t € [tr,tr1). If 20 € D(Y), then in the light of Oz (t, ) = —AOpz (t,x) — (U + F) 2 (t, )
Theorem 6.1.5 of [31], there is a classical solution for each —Fw(tz),

t € [ts,tk11), k € N. Consequently, a solution can be con- . ) #(t,0) =0t >0, )
structed by selecting the last value of the previous samplin 2(0, %) =z(z), Yz € [0, L],

interval as the initial condition for the next sampling irviz! o (t,x) = —Adpz (t,z) — (F + 1)z (t,2)

so that it is continuous at each sampling instant. —Fw(t,z) =01z (t ),

B. Problem Formulation and the operatoy : L?(0, L) — L?(0, L) is defined by

In the present work, we adopt thesRtability for the 7 w(t,z) = (Tz)(t,x) = —j;tk w(0,z)do, ©)
system (1)-(2), which is defined as follows. " V€ [ty trr), k€N, 2 €]0,L].
Definition 1.Re-stability [32] Consider positive S(_:alars R Remark 2 The operatorP is a nominal continuous-time
ande, such that) < ¢ < R, and a Lyapunov functiof’ : . , . .
1 n : . control-loop since we use continuous-time sampling error
H'([0, L];R™) — R... If for all solutions of system (1) with . . :
) instead of sampled-data controller in the system (B)is
z0(z) € Ly <r, the trajectory of the state(¢, z) converges . . :
R ; an integral operator representing the sampling error. fer t
to Ly <. ast goes to infinity, then, system (1) is called-R ~. .7
= simplicity of the closed-loop system structure, we choose

stable from&y g to Ly <.. . .
Our main goal is to ensure that the closed-loop systertTh1IS form of 7 so that we need one outpytinstead of two

(1)-(2) is Re-stable due to Input-Output method. 2(t, z) andz(ty, ), which is why we wrote (8) as (7).
IIl. MAIN RESULT B'|Stib";“’llA”f’"ys's . |
. . . . n the following, we present our primary results.

This section consists of two parts. Firstly, t_he sampled-da _Proposition 1.Consider systems (8)-(9) with (2) and a
system is equivalently expressed as a continuous hyperboflﬁnction Vi H'(0,L]: R") — R, which is differentiable
PDE with sampling induced error as disturbances in th rt its argumentjant’j such tha’; there exigts 1. < &
input. Secondly, we provide constructive-Btability criteria .t.' e 2 <V (o) < 2 ! 2
based on the provided model satisfying. HQHHlﬁ[OaLl;Rw < V(o) < eallellao,Lyrm -

’ Suppose that along the trajectories of the system (8)-(9),
A. System Remodelling the corresponding solution(t, -) satisfiesV (z) + 26V (z) <
0, for somed > 0, whenever

System (1) can be rewritten equivalently as ]
1) R > V(z(t,-)) > max{e, V(2(tx, )/}, with some

Oz (t,z) + N0z (t,2) + (T + F)z (¢, x) a>1,
+F@(ta) =0,V € [th,typr), k€N, (Ba) 2 Z(tr) € Sven.
2(1,0) = 0,Vt > 0, (5b) Then the system isd&stable fromEy < to Ly <..

The proof of Proposition 1 can be found in the appendix.
2(0,2) = zo(x), Ve € [0, L], (5¢) Remark 3 Proposition 1 is based on the generalization
with the sampling error of the Razumikhin technique to get thes-Rtability for
hyperbolic systems. In the following theorem, we will show
@ (t,x) = 2 (ty, x) = 2 (8, 2) - (6)  how it can be used in constructed manner.



—e~2m (F + F)T@1 + @1(F + F):| —6_2“w@1F 0 0

_fyI

0 0 (11)
e [[T@, + O, + f03] —e~2205F
* I
-0 0 0
-0 0 0
* aOq 0 (12)
* * —@2

Theorem 1Consider systems (8)-(9) with (2) and an initialz;.(z). y(¢, ) andy.(t,z) areC® in t on [tx, t;41]. We got

condition satisfying (3):
1) LetA= min _A;. Assume that there exigt, v, x >

0, « > 1 and symmetric positive matrice®,; € R"*",
04 € R™*™ satisfying

W(0) + kN(0) <0, W(L)+&N(L)=<0,  (10)

with W (x) and N (z) defined for allz € [0, L] as (11)-(12).
2)If e Ry, ReR, st.0<e < R and

~v3h (\A|2&21 + (m2 + \r|2> 522) +40< (20 — B)e — 20R, (13)

whereo =

with Ql = Amin(@};)e’z“l"
pA, 0 < B < 20,6 >0.
Then the considered system (1) is-Rable from&Cy - r

0 = 5

R
min(©1)e= 2L

2(t,x) = y(t,x), 2. (t, ) = y (¢, ) ON [t, tpt1)
Then the left limit can be calculated as

lim y, (¢t,2) = Yo (bgr1,2). (16)

t—>t;+1

lim 2z, (t,z) =

t—)t,;rl

For the next time intervaltyi1,tx+2), we set the initial
condition zi41(z) = y(tx+1,2). Then the solutiore (¢, x)
of system (1) orty1,tx12) satisfiesz,(t,x) is C° in t on
[tk+1,tr+2). Therefore, we have the right limit property

lm  z, (t,2) = 25 (tkt1,2) = Yo (Ekt1, 2) - a7)

+
t_’tk+1

From (16) and (17), we can see that by constructig(¥, =)
is continuous int at time instantt,, ;. Similarly, we can

to £y <. for any sampling sequence satisfying (2), with theshow that the function, (¢, z) is continuous at all sampling

Lyapunov function defined by

V(z) = Vi(2) + Va(2), (14)

where Vi(z) fOL 2Te e zdx, Va(z)
fOL 2Le=212Q, 2, dx.

Proof. Consider the Lyapunov function
It can be bounded as? |z (¢, -)||§{1( (0,2] s R")
VE) S Yy
i) min{ Amin (©1) , Amin (02) ye 2#L ¥
max{/\max (@1) ) )\max (@2)}

<
where

Step 11In this step we study the continuity of the function

V defined in (14).
1) Sincez(¢,x) is continuous with respect to for all

t € [tk, tr+1),k € N, and continuous at sampling instants — _

by construction (see Remark 1) , th&n is continuous for
all t > 0. 2) From system (1), we can get

zg (t, ) = At (—z (t,x) = Tz (t,x) — F z (tg,x)), (15)

(14).

instants, which shows both the continuity of(¢, z) with
respect to time for alt > 0 and the continuity ofi%.
Remark 4.V; is used to bound, andV; is used to deal
with the termz, that appears in the derivative df.
Step 2:In this step we study the time derivative ©f(z)
defined in (14). We first compute the time derivativdafz)
along the solutions to (8)-(9)t € [tk,tk+1),k € N,

Vi(z)

L
/ (&nge*Q“Z@lz + zTefz‘””@l(?tz) dx
0

L
/ ((—Aamz —(F+D)z—Fw) e 20,2
0
+2Te 0, (=N0yz — (F +T)z — Fw)) da
[ZTAe*%”@lz]g + fOL (—ZT ((F + F)Te*mw@l
+e O (F + 1")) 2—wlfTe 2@,z

L
—zTefm””@le) dx — 2,u/ 2T Ae 2@, zdx. (18)
0

forall ¢ € [ty tk41), k € N. Since all the terms on the In order to get the time derivative af, in V5, we refer to

right of the equation (15) are continuoustiron (¢, tx+1),
Vk € N, then z,(t,z) and thusV, are also continuous in
for all (tx,tr+1),k € N.

Now we consider the time intervaly, t;1), for some
k € N and an initial conditiorzy(x). The solution of (1) is
defined as:(¢, z) on the time intervalt, tx+1), and is such
that 2 and z, are bothC® in t € [t tx11).

Next, we prolong the solution t6' in ¢ on [t t41]. We
denotey(t, x) the solution orty, tx+1] with initial condition

the original system (1). Since: [0, +00) x [0, L] — R™ has
consecutive partial derivatives |, +00) x [0, L], according
to Schwartz’s theorem [17] we can obtain € (tx, tr+1)

Ortz (t, ) = Oz (L, )
—ANOypz (t,x) = TOpz (t,2) — F Orz (t, ) .

(19)

For the next calculation of the time derivative 6f, we use
Lemma 1 in the appendix. According to (19) and Lemma 1,



we have

(20a)

{amz(t,()) =0,Vt € [tk,tht1), k €N,
(20b)

ZQ(O) = O, 89520(0) =0.
Similarly to the computation of;, the time derivative of

V5 (z) along the solutions to (19)-(20¥¢ € [tk,tk+1),k € N
is shown as follows

Vg(z) = — [8szAe*2W@28mz]§
L
+ / (—3zzT (FT872'LM®2 + efz“m@gf) Oy
0
—0,2T (tg, ) FTe 22050, 2 —0,2T e 21 Qo [ 0,27 (tg, )) dx

L
—2u/ Dzl Ne 2P 050, zda. (22)
0

Adding 7w (s, ')Hiz([o,L];Rn) - 7”772(57 ')||2L2([O,L];R")
to (18) , and V1022 (Ltka Mezo,zirmy
V1022 (tka')Hm([o,L];Rn)i ﬁfo zpe MOy zdr
ﬁfOL 2le=21vQy2, dx to (21) for somey > 0,3 > 0, and
using boundary condition (5b) and (20a) we have
V(2) =Vi(2) + Va(2)
< —20V1(z) — (20 — B)Va(z)

L
4 / W (@)nd + 11 (5,2 0.0

+7H5w2(tka')||i2([o,L];Rn)- (22)

with o = p), n = [T @b (0.2)T (0.2(t,-))T]T, and
W (z) defined in (11).

Step 3:In this step, we show thalf (z) + 26V (z) < 0,
whenever

{R > V(z(t,)) > max{e, V(z(tx, ")) /a},
2(0,-) € Ly<gr,V0 € [ty,t),k € N.

(23a)
(23b)

R
Amin (62) e—QML

Using (7) ar12d (27) for € [tk,tx+1), k € N, the upper bound
of [|ew (s, )l 72(j0,2);r~) CaN be calculated

Hamz (97 .)HiZ([O,L];Rn) < = As. (27)

I (5, )12 f0.1: )

L L
~ [Ie = [
0 0
L pt
<3 [ [ (IP0.z .00 + TPz (6.0
0 tr
+ 1 Pz (b, @) ) dbda
< 3h (|A|2A2 + (|r|2 + |F|2) Al) —w.
In addition, since condition (23a) is satisfied, we have
—20V1(2) — (20 — B)Va(z) < —(20 — B)(Vi(2) + Va(2))
< (20— Be. (29)

Therefore, substituting (26), (28) and (29) into (22), weeha
forall t € [tg,tkt1),k €N,

2
dx

L0z (0, x)
/t o

k

(28)

Since (13) holds, we deduce from (30),
V(z) < —20R < =26V (2). (31)

Therefore, we have shown thi( z)+26V (z) < 0, whenever
conditions (23) are satisfied.

Step 4:In this step, we show that i£(t,:) € Ly<r,
then z(t,-) € Lv<r,¥t € [tk,tr+1). Considerz such
that z(tx,-) € Ly<gr, assume thal t° € (tg,tg+1) St
V(z(t°,-)) > R. Let us then calll’* the minimum of such
t°, thenVt € [ty, T°), V(2(t,-)) < R. Therefore conditions
(23) are going to be satisfied for anye [t;,T°). From

Let us assume that conditions (23) hold. Since conditiop (1§t€P 3, we know thal” is going to decrease during that
is linear ine—2** and0 < z < L, by convexity, we have time interval, either continuously, or unfif reaches below

W(x)+ kN (z) <0, for z € [0, L]. Therefore, we get

L
/ T (W (z) + kN (x))ndx <0, (24)
0
with W(z) and N (z) given in (11) and (12).
Now, considert € [t,tx+1) and a trajectory: satisfying
(23). Since condition (23a) is satisfied, we hale:(t,-)) >
V(z(tk,-))/c with somea > 1, which can be rewritten as

/L n" N (z)ndz > 0. (25)
0

In view of (24), (25) andk > 0, by S-procedure, it implies

L
/ "W (z)ndz < 0. (26)
0
According to condition (23b), the following inequalitiesea
further derived for alb € [tg, t]:

R

2
[l (0, ')HL2([0.,L};R") < Ain (©1) e 21 = Au,

max{e, V(z(tx,-))/a} and when it reaches that region, it
never gets back out. Therefore, we havgz(7°,-)) <
V(z(tx,-)) < R, which contradicts the assumption that there
existst® € (t,tx4+1) such thatV(z(¢°,-)) > R.

Summary: From step 3 and step 4, it is clear tﬁa@t) +
20V (z) < 0 wherever

{R > V(z(t,)) > max{e, V(z(tx, ")) /a}, (32a)
(tk, ") € Lv<r, (32b)

and therefore, the conditions of Theorem 1 are satisfied,
which concludes the proof of Rstability. |
Remark 5.It is worth pointing out that we use several
parameters and now we summarize each parameter in detail.
For Re-stability, R is the domain of attraction for a given
Lyapunov function,e specifies the positive invariant level
set of V. They satisfy0 < ¢ < R. In this paper, we
can fix R then compute or vice versa. is a parameter
introduced in the Lyapunov-Razumikhin method to define
level set in which the time derivative df (z(¢,-)) should
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t
Fig. 2. Response of statg . Fig. 4. Time-evolution of function V.

0, = 3.4987 —0.0635
* 2.0097
states.

The simulation results are introduced in Figs. 2-4. Figs.
2-3 present that both state trajectories converge to near th
origin with the controller and the initial conditions sdyisg
the compatibility condition (3). As can be seen from Fig. 4,
the time-evolution of Lyapunov functiovi(z(t, -)) decreases

whenR > V(z(t,-)) > max{e, V(z(tk,"))/a},a > 1.
V. CONCLUSIONS

The main work of this paper is to use a sampling controller
Fig. 3. Response of state. for distributed control of linear hyperbolic balance laws.

The closed-loop system is reformulated based on Input-
Output approach. New stability condition has been obtained

be negative between two sampling interval, we choose iy means of the Lyapunov-Razumikhin method. In the

greater than 1. The closeris to 1, the greater the values of future, we will consider the global stability with contretl

V(z(tx,-))/c are, and the less conservative the conditions afiscretized both in time and in space.

V-convergence areu is related to the decay rate &f, V5,

and¢ is related to the decay rate &f. v and s are found APPENDIX

by line search to realize the conditions given in Theorem Lemma 1.Consider the system (1)-(2) with initial condi-

1. The algorithm of Theorem 1 is implemented in Matlalfion z, satisfying Condition 1. TheNt € [t,tx41),k € N,

using Yalmip [29] to solve the condition 1) first, then usingd.z(t,0) = 0.

the same parameters to test the condition 2). Due to (13),Proof: We recall system (1), the time derivative of

} to observe the evolution of

22

we adjusty, 5 to be the smallest possible apdto be the the boundary condition leads t9,z(t,0) = 0,Vt €
largest possible. In the numerical section, we sort outr thefiti, tx+1), k € N. Then combining (1a) witld;z (¢,0) = 0,
relationship:p > 0, § > 0, A = glin }Ai >0, o = we obtain0 = 0;2(t,0) = —A0d,2(t,0) — I'z(¢,0) —
1€ RN % H
S F z (tx,0). Sincez(t,0) = 0,Vt > 0, we haved,z(¢,0) =
20.
Ha, 0 <f <20 0,Vt € [tp, trr1), k € N. m
IV. NUMERICAL SIMULATION The proof of Proposition 1: During a sampling interval

In this section, we present a numerical example to illusts: tr+1) With initial statez (¢, -): o _
trate the method we proposed in Section IlI. (D) If V(z(tx,-)) <& V(z(t,-)) will remain in e during

_ 0 01 - [tr, trs1). (Otherwise, we will have/ (z) > 0 > —26V(2)
Consider system (1) whete = | )* |, |, =0.1, at some point whei (z(t,-)) > ¢ > V(z(tx,-))/a, which
20 15 2 0 would contradict the proposition in Theorem 1.)
P=lao o5 f=|5 4 E=0 (2) f R>V(z(tg,") = e
0.2(1 — cos 2mz) sin 4z (a) We haveV (z(t,-)) < V(z(tk,-)) during [ty,txi1).
20 (¥) :d[ 0.15(1 — cos4rz) sin 27z | (Otherwise, we will haveV (z) > 0 > —2§V(z) at some
According to Remark 5, the parameters are selected gmint whenV (z(¢,-)) > V(z(tk,-)) > V(2(tk, )/, which

B = 0.01, p = 0.09, kK = 1.8, § = 0.001, v = 0.001, would contradict the proposition in Theorem 1.)

a = 1.001, which satisfy the conditions (10) and (13). (b)We can further show that durirfg., tx+1)

. 2.8342 —0.2219
We fix R = 20, and choos®; = [ 1.3796 }’ V(z(t, ) < max{e, L)) o= 20000V (5(4y,,-))}. (33)

*



Then we will discuss two possibilities in case (b):

(b1) If there exists’ € [tx,tr+1) such thatV (z(t',-))

max{e, V(z(tx,))/a}. If t € [tg,t'), V(2) +26V(z) <0
holds, and we hav& (z(t,-)) < e~ 20—tV (2(ty, ), Vt €
[tr,t') (Otherwise, we will haveV/ (z) > 0 > —25V/(z) at
some point wher/(z(t,-)) > V(z(tx,-))/a, which would
contradict the proposition in Theorem 1.)dfe [/, t511),
V(z(t,-)) cannot go back abovwaax{e, V(z(t,-))/a} oth-
erwise, according to the same principle, it would contradiqB]
the proposition in Theorem 1, then we haVéz(¢,-)) <

max{e, V(z(tg,-))/a}Vt € [t/ tx+1). SO, over the whole
sampling intervak € [tx,tx+1), we can get inequality (33).

(b2) When V(z(t,-)) > max{e,V(z(ts,))/a},Vt €

[tk, tk+1), SiNnceV (z) + 25V (z) < 0, we haveV (z(t,-)) <
e~ 2=tV (2(tg,-)). Then it is not hard to get (33).
Considerz(ty, ) € Lv<g, t € [tk, trt1), k € N. We have

V(2(t,-))< max{e, V(z(tg, ) /a, e 2V (2(t,, )}

with ¢ = max{1/a,e 29¢=t)} < 1, then we can de-
rive V(z(tg,-))

= max{e, £V (2(tk, "))}, (34)

< max{e,(V(2(tp-1,))}, with ¢

max{1/a,e 2"} < 1, Vk € N\ {0}, whereh is the lower
bound of the sampling interval.

By recursion, the following inequality holds #(tg,-) €
Lv<r, Vk € N, we have

V(z(tk, ) < max{e,(max{e,(V(z(tg—2,))}}

< max{e, (?V (2(th—2,-)} < -~ < max{e, ¥V ((to, ))}. (35)
Then combining (34) and (35), we get that

when k is large enough. Therefore, thergé k
HOgCE/V(z(tO,-))]’ such thatz(t,) € Ly<.,V t > t;
which leads the proof of Rstability.

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]

El

V(z(t,-)) < max{e, QkV(z(to, Nr=e (36)

[ |
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