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Sampled-data Control for a Class of Linear Hyperbolic Systen via the
Lyapunov-Razumikhin Technique*

Xinyong Wang Christophe Fiter Ying Tang and Laurentiu Hetél

Abstract— This work investigates the stability for a class of controller has been ensured for sufficiently small sampling
linear hyperbolic systems with distributed sampled-data on-  period. In the present paper, new stability condition which
trollers. First, we convert the original system into an equvalent is based on Lyapunov-Razumikhin stability condition (e.g.

system in which the sampling induced error is modeled as a . .
reset integrator. Then by means of an appropriate Lyapunov [23], [24]) is proposed and the result of constructive local

function coupled with the Razumikhin technique, sufficient Stability is obtained with the provided LMI method.

conditions are given for the Re - stability of the system. Finally, The paper is structured as follows: Section Il presents the
our results are validated by a numerical example. systems and the problem under study. In Section I, we
I. INTRODUCTION propose the equivalent remodelling of system, followed by

L - . the concrete stability analysis process. A numerical examp
The application of digital computer in control system ha§

b | trend. which K led-dat ts Igiven to illustrate the feasibility of our method in Secti
ecome a general rend, Which maxes sampiec-data contiglrpe paper is ended with conclusions and perspectives.

an active field of research in the past decades [1], [2], [21].
Stability and control design for finite-dimentional system to infinity, R. is the set of nonnegative real®” is
have been considered in many research works: see e.g. [1 4 Yo Bt g

. ed to denote the set ef-dimensional Euclidean space
[22], [29], [30]. Compared with the research method Qtilith the norm| - |. L2(0,L) stands for the Hilbert s-

finite dimensional system, the analysis and control of itdini ?ce of square integrable scalar functions (6nL) with

dimensional systems is more challenging. Few results exi ; . )
for sampled-data infinite dimensional system [25]-[27]. %e corresponding normj - || r2,z), defined by |

In general, sampled-data systems can be analyzed usingll r2(0,.) = \/fOL |7 (z)|*dz. The associated norm
discrete-time, time-delay and Input-Output methods (86 [ to Sobolev spacef'(0, L) is defined as| 7 ||x1(0,1)=
and references therein.) For the sake of partial differen-/ .., 2 2 . _
tial equations (PDESs), using discrete-time finite-dimenal Jo ('T(x” + |7 (2)] )dx' The set of functions; :
approximate models, [36] proposed a methodology for thg 1] — R” such thathL s (z)|*dz < oo is denoted by
design of sampled-data controller with practical stapilit 7,2([0, L];R") and given a functionaV’ : H'([0, L];R") —
guarantees. In references [14], [18], [34], [35], timeagel R, such thatly <o = {y e H'([0,L};R") : V (y) < C}.
approach has been used for the analysis of parabolic PDE%e notation!V < 0 denotes thati?’ is symmetric and
Hold bogndary feedback CO””P' in one—dimensional lineaegative semidefinite. The symmetric elements are denoted
hyperbolic systems were considered in [20]. In [10], [13]py « in the symmetric matrix. The identity matrix is denoted
event-triggered sampled-data control with controller be t by 7 and Ayin(©) and Am.«(©) are the minimum and
boundaries was developed. The boundary feedback control@gximum eigenvalues of the matréx. C° is the continuous
a2 x 2 hyperbolic system was implemented by backsteppin@inction andC! is the continuously differentiable function.

Notations: N is the set of nonnegative integers from

method in [6], [12]. [] is the ceiling function.

It can be seen from the literature review that the analysis
of sampled-data controller for hyperbolic PDEs is a wide- ||, SYSTEM DESCRIPTION AND PROBLEM
open area of research, and there are still many topics worth FORMULATION

studying. The present paper aims at studying the distribute o

sampled-control for a class of hyperbolic PDEs. The idea /& System Description

to generalize the Input-Output approach ( [15], [19], [31]) We consider the following sampled-data controlled hyper-
for finite dimensional systems, to the case of hyperboligolic system (1)

PDEs. An interconnected equivalent system consisting of a

continuous-time PDE and a reset-integral operator is ddriv

from the original system. In our previous work [11], the (02 (t,z) + Adyz (t,x) + Tz (t,x) +u(t,x) =0, (la)

stability of linear hyperbolic systems with sampled-data | (¢, 2) = F z (t, ) ,Vt € [ty, trg1), k € N, (1b)

ICRISAL  CNRS  UMR 9189,  Centale Lile, | =2(t,0)==2(t,L)=0,vt >0, (1c)
F%:usrlent i\ﬁl!err]]gttjvgl @edn/?sfcgi eli II:rIag.C?r X1 nyong. \Néng, (0, z) =20(z),Vz € [0, L], (1d)
e ol Do Vit oascq, e wherez : [0, +00) x [0, L] — R™, A = diag {A1, Az, oo A}

ying.tang, christophe.fiter@niv-lille.fr with A1, Ao, ..., A, > 0, T and F are realn x n constants



matrices. The sampling instants are defined as a sequence

{tk}ren Where > P 14
tO = Oatk+1 - tk € [ﬁ7 B]a (2)
andh > h > 0.
To address the issue under consideration, we need the w 7 ”
compatibility condition given below:

Condition 1.The initial conditionzy(z) for Vz € [0, L],
satisfies Fig. 1. Alternative representation of the closed-loop ayst

Remark 1.Now we explain the concept of the solutionA. System Remodelling
in the current work. We rewrite the system (1)-(2) as a first

System (1) can be rewritten equivalently as
order system y @) a y

{ LW — Y2 (8) + f (2 (t)) t € [tertor1)  k €N, Oz (t,x) + ADpz (t, o) + (U + F)z (¢, x)
2 (0) = zo, +Fw(t,z) =0,Vt e [tk,tk+1),/€€N, (6a)
where f(z(tx)) = —F z(tx), and Y is an operator defined 2(1,0) = 2(t, L) = 0,¥t > 0, (6b)
by 2(0,z) = zo(x),Vz € [0, L]. (6¢)
YTz=—-A0,z(t,x) — Tz (t,x), (4)  with the sampling induced error
with domain w(t,x) =z (tg,x) — z (t,2) . @)
D(Y) = {Z €HI(0,LiRY)) - (0) = 2z, (L) = 0. Define the functionp as
®) _ 0z(t,x) s
A stableC semigroup is produced by the operaldfsee p(tz) = ot vt 20,2 €0, L] (8)

the proof of theorem A.1. in [3]). Moreover, the fact is that

fr + HY(0,L) — H'(0,L) is continuously differentiable ~ Note that

for t € [tg,tp+1). If 20 € D(Y), then in the light of ‘92 (6, 2) t

Theorem 6.1.5 of [32], there is a classical solution for each @ (¢,2) = —/ 69’ do = —/ v (0,x)db,
t € [tg, trt1), k € N. Consequently, a solution can be con- t 2

k

structed by selecting the last value of the previous samplin Vt € [tr,tev1) Kk €N,z €[0,L]. 9)
interval as the initial condition for the next sampling irvi!
so that it is continuous at each sampling instant. Therefore, the closed-loop system can be seen as the
interconnection of two systeny® and 7 shown in Figure 1,
B. Problem Formulation where the operatoP : L?(0, L) — L?(0, L) is defined by
In the present work, we adopt thesRtability for the
system (1)-(2), which is defined as follows. Bz (t,2) = —Adyz (t,2) — (T + F) 2 (t,2)
Definition 1.Re-stability [33] rw(tz),
Consider positive scalars R aadsuch tha < ¢ < R, and 2(£,0) = 2(t,L) = 0,¥¢ > 0
i ok : H! ;R” . P ’ ’ 0 71 (10)
a candidate L_yapunov functiobl H ([0, L;R™) — R4 20,2) =2(2),Vz € [0, 1],
If f_or all solutions of system (1) witheg(z) € £y <g, the o (t,7) = —Adyz (t,2) — (F +T)z (¢, )
trajectory of the state(t,z) converges to€y <. ast goes Fw(tz) =8z (),
to infinity, then, system (1) is calledsRstable from&y - r
0 Ly<e. . and the operatoy : L?(0, L) — L?(0, L) is defined by
Our main goal is to ensure that the closed-loop system
(1)-(2) is Re-stable due to Input-Output method. @ () = (T2)(t,x) = — fttk (0,) df, "
j'{Vte[tk,tk+1),k€N,$€[O,L]. ( )

. MAIN RESULT

This section consists of two parts. Firstly, the sampled:da Remark 2 The operatorP is a nominal continuous-time
system is equivalently expressed as a continuous hyperbationtrol-loop, 7 is an integral operator. For the simplicity
PDE with sampling induced error as disturbances in thef the closed-loop system structure, we choose this form of
input. Secondly, we provide constructive-Btability criteria 7 so that we need one outpytinstead of twoz(¢, «) and
based on the provided model. z(tg, ), which is why we wrote (7) as (9).



B. Stability Analysis

In the following, we present our primary results. Theorem
1 gives the conditions under whicheRtability can be
obtained.

Theorem 1.Consider systems (10)-(11) with (2) and a
candidate Lyapunov functio® : H!([0,L]; R") — R,
which is differentiable w.r.t. its argument and such thatréh
exists0 < 11 < 19

4 ”Q”?il([O,L];Rn) <V(o) <ia HQH?LP([O,L];]R") . (12)

Suppose that along the trajectories of the system (10)-(11)
the corresponding solution(t, -) satisfiesV (z) 4 26V (z) <
0, for someé > 0, whenever

1) R > V(z(t,-)) > max(e, V(z(t,-))/a), with some
a>1,

2) z(tg,-) € Lv<r.

Then the system is &Kstable fromLy < t0 Ly <..

Proof. During a sampling intervalty, tx+1) with initial

statez(tx, -):

o If V(2(tx,")) < e, V(z(¢t,-)) will remain in e during
[tx,try1). (Otherwise, we will haveV(z) > 0 >
—26V(z) at some point whenV(z(¢,-)) > & >
V(z(tx,))/a, which would contradict the proposition
in Theorem 1.)

o If R>V(2(t,-)) > e:

(a) We haveV (z(t,-)) < V(z(tg,-)) during [tx, tkt1)-
(Otherwise, we will haveV(z) > 0 > —20V(z)
at some point whenV(z(t,-)) > V(z(tg,-)) >
V(z(tx,-))/a, which would contradict the proposition
in Theorem 1.)

(b)We can further show that

V(Z(t, )) < max(e, V(Z(tk, )) , 6_26(t_tk)V(Z(tk, )))
i (13)

during [t, tk+1)- In the following, we will discuss two
possibilities in case (b):

(bl) If there existst’ € [tg,tg+1) such that
V(z(t',) = max(e,V(2(tg,)) /). If t € [tr,t),
V(z) + 26V (z) < 0 holds, and we havé# (z(t,-)) <
etV (2(ty, ), Vt € [ty,t') (Otherwise, we will
have V(z) > 0 > —26V(z) at some point when
V(z(t,-)) > V(z(tk,))/«, which would contradict the
proposition in Theorem 1.) If € [t/,tx41), V(2(t,-))
cannot go back abovenax(e, V(z(tx,-))/«) (Other-
wise, we will haveV(z) > 0 > —26V(z) at some
point whenV (z(t,-)) > V(z(tk,-))/a, which would
contradict the proposition in Theorem 1.), then we have
V(z(t,)) < max(e, V(z(tk, ")) /a) ¥Vt € [t,trt1). SO,
over the whole sampling intervale [t, tx+1), Wwe can
get inequality (13).

(b2) WhenV(z(t,-)) > max{e, V(z(tx,))/a},Vt €
[tr,ter1), since V(z) 4+ 20V(z) < 0, we have
V(z(t,-) < e 2=V (2(ty,-)). Then it is not hard

to get (13).

Now, let us considerz(ty,:) € Ly<gr, t €
[tk,tk+1), k € N. We have
V(z(t,"))
< max (5, V(z(tk, "))/, eiQé(tftk)V(z(tk, )))
= max (&, &V (z(tg, ), (14)

with ¢ = max (1/a,e”2¢=t%)) < 1, then we can
derive
V(Z(tka )) < max (57 CV(Z(tkfla ))) 3 (15)

with ¢ = max (1/a, e72°2) < 1, Vk € N\ {0}, where
h is the lower bound of the sampling interval.

By recursion, the following inequality holds if(#,, -) €
Lv<r, We have

V(z(tk,-)) < max (g,(maz (g, V (2(tg—2,-))))

< max (¢, (e, CV(2(th-2,")))
< max (a, CV (2(th_a, )))

A

< max (g, "V (2(to,"))) ,Vk € N.  (16)
Then combining (14) and (16), we get that

V(z(t,)) < max (e, £ max (e, ¢*V (= (to, ))))
= max (6, &e, §§kv(2(t0’ )))
< max (E, QkV(Z(toa )))

(17)

when k is large enough. Therefore, thef k

HOgCE/V(z(tO, ))1, such thatz(t, ) S SVSE,V t >ty ,

which leads the proof of KRstability. |
Remark 3 Theorem 2 is based on the generalization of

the Razumikhin technique for hyperbolic system. In the
following theorem, we will show how it can be used in
constructed manner.

Theorem 2.Consider systems (10)-(11) with (2) and an
initial condition satisfying (3):

1) Let) =

0, a > 1 and symmetric positive matricé¥; € R"*",
0, € R™*" satisfying

min })\i. Assume that there exigt v, x >
n

W(0)+ xN(0) <0, W(L)+rxN(L)=<0, (18)
with W (z) defined for allz € [0, L] as
Gy Gs O 0
we=| 0 e e | @
* * * =l
where
Gr=—e = [(F +1)7 01+ O1(F + 1),
Gy = —e 2 [T, + 0,1 + $6,],
G3 = —e 270, F
Gy = —e 20y, (20)



and
Gs —©6; 0 0
_—2ux * —@1 0 0
N(z) =e * *  aBy 0 > (@D
* * * -0,
where
G5 = (OL - 1)@1 (22)
2) fdeeRy, ReERy st.0<e< Rand
23k (JAPQ+ (P +1717) 22) + 9
< (20 — B)e — 20R, (23)
with
0, — R B R

Amin (92) e—2uk R )\min (61) e=2nk ’

whereo = pA, 0 < 8 < 20, § > 0.

Then the considered system (1) is-Btable from
Lv<r to Ly <. for any sampling sequence satisfying
(2), with the Lyapunov function defined by

V(z) = Vi(z) + Va(2), (24)
with
L
Vi(z) = / 2Te™217Q) 2du, (25)
0
L
Va(z) = / 2l e Qy 2, dir. (26)
0

(1) is defined ag (¢, ) on the time intervalty, tx+1),
and is such that andz, are bothC® in t € [ty tjy1).
Next, we prolong the solution t6' in ¢ on [t, tx1].
We denotey(t, x) the solution on[t, tx+1] with ini-
tial condition zj(z). y(¢t,z) and y,(¢t,z) are C® in
t on [ty tr+1]. We got the following properties on

[th, tit1)

z(t,x) = y(t, x),

2z (t, ) = yau (L, ).
Then the left limit can be calculated as

(29)

lim 2z, (t,z) = lim y, (t,2) = Yo (tkt1, T) -
t—t, —tp
(30)

k+1
For the next time intervdt; 1, tx12), we set the initial
condition zx41(z) = y(tg+1,2). Then the solution
z(t,z) of system (1) oMty 1,trt2) Satisfiesz, (¢, x)
isCYint on [tyy1,tkr2). Therefore, we have the right
limit property

lim 2z, (t,2) = 2z (bk+1,2) = Yo (g1, 2) . (31)

+
t_)tk+1

According to (30) and (31), we can see that by con-
struction, z,(t,z) is continuous int at time instant
tx+1. Similarly, we can show that the functian (¢, )

is continuous at all sampling instants, which shows
both the continuity ot (¢, ) with respect to time for
all t > 0 and the continuity ofi%.

Remark 4V, is used to bound, andV5 is used to deal with
the termz, that appears in the derivative of.

Step 2:In this step we study the time derivative Bf(z)

Proof. Consider the Lyapunov function (24)-(26). It candefined in (24). We first compute the time derivative®fz)

be bounded as follows:

® |2 (t, ')H?{l([o,L] rmy SV (2 (t,-)
Uz (6 oy s 27)
where

® = Inin()\min (61) 7)\min (@2))6_2ML3
U = max()\max (@1) 5 /\max (@2))

Step 1 In this step we study the continuity of the function
V defined in (24).
1) Sincez(t,z) is continuous with respect to for all
t € [tk, tkt1),k € N, and continuous at sampling
instants by construction (see Remark 1) , tHénis
continuous for allt > 0.
2) From system (1), we can get

zg (t, ) = At (—z (t,x) =Tz (t,x) — F z (tg, x)) ,
(28)

for all t € [t,tr+1), K € N. Since all the terms on
the right of the equation (28) are continuoustion
(tk,tk+1), Yk € N, thenz, (¢, z) and thusV; are also
continuous int for all (¢, tx+1),k € N.

Now we consider the time intervél;, t;+1), for some
k € N and an initial conditiorz;(z). The solution of

along the solutions to (10)-(1¥), € [tk, tkt1), k € N,

L
Vl(z) = / ((“)tzTe_Q’””@lz + zTe_Q’””@latz) dxz
0

L
= / ((_Aazz - (F + F)Z — Fw)T€72‘um@1z
0
+27e 20 (=ADyz — (F + 1)z — Fw))ds

L
:/ —0y [zTAe_z“w@lz}d:v
0

L
+ / (—ZT(F +0) e 20,2
0
—2Te 20 (F 4+ T)z — 2Te 0 f w
—2;LZTA6_2‘”®1Z — wTFTe_2’”®1z) dx
- [ZTAe_z’”@lz}oL
L
+ / (—ZT ((F + ) e 2,
0
+e MO (F + 1)) 2
—wTrTe 2@z — zTe_z‘”®1Fw) dx

L
—2,u/ 2T Ae 21" Q zdx. (32)
0

In order to get the time derivative af, in V5, we refer to

the original system (1). Since: [0, +00) x [0, L] — R™ has



consecutive partial derivatives |, +00) x [0, L], according

to Schwartz’s theorem ( [17]) we can obtain

Optz (8, ) = Oppz (¢, )
= —A0yyz (t,x) —T0zz (t,x) — F Opz (ti, ),
Vt € (tk, tk+1), k € N. (33)

For the next calculation of the time derivative B§, we

L
+8 / 2y ¢ Ogzedu
0
= — 2CTV1(Z) - (20 - ﬂ)VQ(z)
L
+A7FW@WM+ﬂW@JﬁWMW”

+ 11002 (s W72 0,2 1) - (36)

use Lemma 1 in the appendix. According to (33) and Lemm¥ith

1, we have

{awz(tuo) = awz(tuL) = 07Vt € [tkutk-l-l)u ke N7 (34a)

20(0) = 20(L) =0, 0220(0) = Op20(L) =0.  (34h)

Similarly to the computation of;, the time derivative of

V5 (z) along the solutions to (33)-(34¥¢ € [tk,tk+1),k € N
is shown as follows

Vg(z) =— [(’“)szAe_z“I@gamz}g
L
+ / (=0,2" (TTe M0y + e 270l 9,2
0

— 9,27 (tk,") Fle 220,02
—9,2Te 20y F 9, 2T (tk, )) dx

L
—2,u/ 2T Ae 2050, zdx. (35)
0

Adding (/e (s, ')||iz([o,L];Rn)—”YHw (s, ')H2L2([O,L];R") to
(32) and

Y0z (tk, ')||2L2([0,L];Rn) = YNz (t, ')H2L2([O,L];R")’

L L
ﬁ/ 25672“x®221d$ — ﬁ/ 25672#19221(&[:
0 0

to (35) for somey > 0, 8 > 0, and using boundary condition

(6b) and (34a) we have
V(z) =Vi(2) + Va(2)
< /L (—ZTAlz —wlfle 2@, 2
—OzTefz‘”c®1Fw — WwTw) dx
= 20V(2) + 7@ (5, ) 720,010
+ /OL (—szTAgawz

— 9,27 (tk,-) Te 282900, 2

— 9,2 e 20450, 27 (tr,*)

—y0u 2T (ty, ) Ouz (ty, )) dx
—20Va(22) + 7|02 (i, ')”i%[o,L];R")

L
+ﬂ/ 25872#16229361.%
0
L
=—20V1(2) — 20Va(2) + / 0" W (x)nda
0

+ vl (s, )72 o2 ey
+7|0z2 (tk, ')||2L2([0,L] ;R™)

o= pA,
n= [ZT @ (8E2)T (02 (tk, '))T]Tv
A1 = —G1, Az = —Ga. (defined in (20) Theorem 2)
37)

and W (z) defined in (19). .
Step 3:In this step, we show thdt’(z) + 26V (z) < 0,
whenever

(38a)

{R > V(z(t,-)) > max(e, V(2(tk, "))/ @),
(38b)

2(0,-) € Ly<r, V0 € [t,t), k € N.

Let us assume that conditions (38) hold. Since condition

(18) holds, by convexity, we ha (z) + kN (z) < 0, for
x € [0, L]. Therefore, we get

L
| 0¥ @)+ r @) < 0 (39)

with W (x) and N(z) given in (19) and (21).

Now, considert € [t;,tx+1) and a trajectory satisfying
(38). Since condition (38a) is satisfied, we hale:(t,-)) >
V(z(tx,-)) /o with somea > 1, which can be rewritten as

/L n" N (z)ndxz > 0. (40)
0

In view of (39), (40) and: > 0, by S-procedure, it implies
that
L
/ 0" W (z)ndz < 0. (41)
0

According to condition (38b), we have

L
/ 2Te™%Q 2dx < R,V2(0,-) € Ly <r,
0
L
/ 02T e 721090, zdx < R,N0,2(0,-) € Ly <p.
0

The following inequalities are further derived

R

2
12 (0, )220, 1mm) < va € [tr, t], (42)

VO € [tk, t].
(43)

R
2
H(?mz (97 ')||L2([0,L];Rn) < Anin (@2)672@’



Using (9), (42) and (43) fot € [tx,trt1),k € N, the
upper bound of|w (s, -)||iQ({O)L];Rn) can be calculated

|| (s, ')Hi?([O,L];R")

—/OL |w<s,x>|2da:—/0L

2

dx

L92(0,x)
> d0
/tk 00

21

L t 2
= / / (AOzz (0,2) + Tz (0,x) + F z (tg, x))db| dx
0 t
L kt
<3 [ [ (1P102z 0,007 + 0712 6,00
0 tr
+ |F Pz (te, @) ) doda
K 2 2
< 3/ (|A| 022 (6, 513)||L2([07L] i R™) Fig. 2. Response of statg .
23
HIT 1|2 (6,2) 17210, 17 : my :
2 2 Summary: From step 3 and step 4, it is clear tat) +
HEP 2 o). 120 ) 40 26V/(z) < 0 wherever
_ 9 R
S A G W R = {R > V(z(t,) > max(e, V(z(t,")) /o),  (48a)
Amin (01) e721L and therefore, the conditions of Theorem 1 are satisfied,
= w. (44) which concludes the proof of Rstability. |

Remark 5.It is worth pointing out that we use several
In addition, since condition (38a) is satisfied, we have parameters and now we summarize each parameter in detail.
For Re-stability, R is the domain of attraction for a given

—20V1(2) — (20 — B)Va(z) Lyapunov function,e specifies the positive invariant level
< —(20 — B)(Va(2) + Va(2)) set of V. They satisfy0 < ¢ < R. In this paper, we can fix
< (20— B)e. (45) R then compute or vice versaa is a parameter introduced

in the Lyapunov-Razumikhin method to define level set in
Therefore, substituting (41), (44) and (45) into (36), w hich the time derivative of/(z(¢,-)) should be negative

tween two sampling interval, we choose it greater than 1.
have for allt € [tg,t ,keN, € .
(b thet) u is related to the decay rate &f, V5, andé is related
V(z) < — (20 — B)e + yw to the decay rate o¥/. v and x are found by line search

to realize the conditions given in Theorem 1. Due to (23),
(46) we adjusty, 8 to be the smallest possible apdto be the
largest possible. In the numerical section, we sort outr thei

Since (23) holds, we deduce from (46), relationship:pp > 0, 6 > 0, A = min A; >0, 0 =

+ ’Y)\min (92) €—2p,L .

ie{l,...,n}
. uA, 0 < B < 20.
V(z) < =20R < =26V (z). 47)
IV. NUMERICAL SIMULATION
Therefore, we have shown thaf(z) + 26V (z) < 0, In this section, we present a numerical example to illus-
whenever conditions (38) are satisfied. trate the method we proposed in Section 3. Consider system

Step 4:1n this step, we show that if (¢, ) € Sy<p, (1) where
then z(t,-) € Ly<g,Vt € [tx,lry1). Considerz such 10 0 20 15 2 0
R B F A

that z(tx,-) € Ly<r, assume thad ¢° € (tk,tkﬂ) s.t. 0 12 20 925 5 4
V(z(t°,-)) > R. Let us then calll’* the minimum of such

t°, thenvt € [ty, T°), V(2(t,-)) < R. Therefore conditions 0.2(1 — cos 2mx) sin 47 }
(38) are going to be satisfied for anye [t,7°). From 0.15(1 — cos 4mx) sin 27
step 3, we know that” is going to decrease during that
time interval, either continuously, or untif reaches below
maz (e, V(z(tg,-))/a) and when it reaches that region, it f=001, p=009, ~=18, §=0.001,
never gets back out. Therefore, we havgz(7°,-)) < v =0.001, a=1.001

V(z(tx,-)) < R, which contradicts the assumption that there Y Y
existst® € (t,tg4+1) such thatV(z(¢°,-)) > R. which satisfy the conditions (18) and (23).

L=1, h=0.1, ZO(x):[

According to Remark 5, the parameters are selected as:
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Fig. 3. Response of state. Fig. 6. Time-evolution of function V.

to observe the evolution of states.

The simulation results are introduced in Figs. 2-6. Figs.
2-3 present that both state trajectories converge to near th
origin with the controller, respectively. The initial cand
tions satisfying the compatibility condition (3) are ilteest-
ed in Figs. 4-5. As can be seen from Fig. 6, the time-
evolution of Lyapunov functioi/(z(t,-)) decreases when
R >V (z(t,)) > max(e, V(z(tx, ")) /@), > 1.

V. CONCLUSIONS

The main work of this paper is to use a sampling controller
for distributed control of linear hyperbolic balance laws.

0 02 04 06 08 1 The closed-loop system is reformulated based on Input-
’ Output approach. New stability condition has been obtained
Fig. 4. Initial data ofz; and z». by means of the Lyapunov-Razumikhin method. In the

future, we will consider the global stability with contretl
discretized both in time and in space.

0.025
0.02f Orz0 APPENDIX
' Lemma 1.Consider the system (1)-(2) with initial condi-
0.015¢ tion z, satisfying Condition 1. Theit & [ty, tx41), k € N,
0.01F 0.2(t,0) = 0,2(t, L) = 0.
0,005k Proof: We recall system (1)
0 Oz (t,x) + AOyz (t,2) + Tz (t,x) + u (t,x) =0, (49a)
-0.005/ u(t,z) = Fz(tk,x),Vt € [tk titr), k €N, (49b)
-0.01¢ z(t,0) = z(t,L) = 0,Vt > 0, (49c)
z(0,z) =z (x),Vz € [0, L], (49d)

-0.015 ! ' ' !
0 0.2 0.4 0.6 0.8 1

" The time derivative of the boundary condition leads to

0z (t, 0) = Oz (t, L) =0,Vt e [tk;, tk+1), keN. (50)
Combining (49a) with (50), we obtain

We fix R = 20, and choose 0= 02 (t,0) = =A0,z (t,0) — 'z (t,0) — F 2 (t,0),
0=z (t L) = —Adyz (6, L) — Tz (, L) — [ 2 (t4, L) .
[ 2.8342 —0.2219 ]

1.3796 Sincez(t,0) = 2(t,L) = 0,Vt > 0, we have
0:2(t,0) = 0, 2(t, L) = 0,Vt € [tg,tg+1),k € N.  (51)
n

Fig. 5. Initial data 0fd;z; and 9z z2.

0, =

0, = 3.4987 —0.0635
2= * 2.0097 |’
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