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Sampled-data Control for a Class of Linear Hyperbolic System via the
Lyapunov-Razumikhin Technique*

Xinyong Wang1 Christophe Fiter2 Ying Tang2 and Laurentiu Hetel1

Abstract— This work investigates the stability for a class of
linear hyperbolic systems with distributed sampled-data con-
trollers. First, we convert the original system into an equivalent
system in which the sampling induced error is modeled as a
reset integrator. Then by means of an appropriate Lyapunov
function coupled with the Razumikhin technique, sufficient
conditions are given for the Rε - stability of the system. Finally,
our results are validated by a numerical example.

I. INTRODUCTION

The application of digital computer in control system has
become a general trend, which makes sampled-data control
an active field of research in the past decades [1], [2], [21].
Stability and control design for finite-dimentional systems
have been considered in many research works: see e.g. [16],
[22], [29], [30]. Compared with the research method of
finite dimensional system, the analysis and control of infinite
dimensional systems is more challenging. Few results exist
for sampled-data infinite dimensional system [25]–[27].

In general, sampled-data systems can be analyzed using
discrete-time, time-delay and Input-Output methods (see [16]
and references therein.) For the sake of partial differen-
tial equations (PDEs), using discrete-time finite-dimensional
approximate models, [36] proposed a methodology for the
design of sampled-data controller with practical stability
guarantees. In references [14], [18], [34], [35], time-delay
approach has been used for the analysis of parabolic PDEs.
Hold boundary feedback control in one-dimensional linear
hyperbolic systems were considered in [20]. In [10], [13],
event-triggered sampled-data control with controller on the
boundaries was developed. The boundary feedback control of
a 2×2 hyperbolic system was implemented by backstepping
method in [6], [12].

It can be seen from the literature review that the analysis
of sampled-data controller for hyperbolic PDEs is a wide-
open area of research, and there are still many topics worth
studying. The present paper aims at studying the distributed
sampled-control for a class of hyperbolic PDEs. The idea is
to generalize the Input-Output approach ( [15], [19], [31])
for finite dimensional systems, to the case of hyperbolic
PDEs. An interconnected equivalent system consisting of a
continuous-time PDE and a reset-integral operator is derived
from the original system. In our previous work [11], the
stability of linear hyperbolic systems with sampled-data
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controller has been ensured for sufficiently small sampling
period. In the present paper, new stability condition which
is based on Lyapunov-Razumikhin stability condition (e.g.
[23], [24]) is proposed and the result of constructive local
stability is obtained with the provided LMI method.

The paper is structured as follows: Section II presents the
systems and the problem under study. In Section III, we
propose the equivalent remodelling of system, followed by
the concrete stability analysis process. A numerical example
is given to illustrate the feasibility of our method in Section
IV. The paper is ended with conclusions and perspectives.

Notations: N is the set of nonnegative integers from
0 to infinity, R+ is the set of nonnegative reals,Rn is
used to denote the set ofn-dimensional Euclidean space
with the norm | · |. L2(0, L) stands for the Hilbert s-
pace of square integrable scalar functions on(0, L) with
the corresponding norm‖ · ‖ L2(0,L), defined by ‖

τ ‖ L2(0,L) =

√

∫ L

0 |τ (x)|
2
dx. The associated norm

to Sobolev spaceH1(0, L) is defined as‖ τ ‖H1(0,L)=
√

∫ L

0

(

|τ (x)|
2
+ |τx (x)|

2
)

dx. The set of functionsς :

[0, L] → Rn such that
∫ L

0
|ς (x)|

2
dx < ∞ is denoted by

L2([0, L];Rn) and given a functionalV : H1([0, L];Rn) →
R+ such thatLV ≤C =

{

y ∈ H1([0, L];Rn) : V (y) ≤ C
}

.
The notationW ≤ 0 denotes thatW is symmetric and
negative semidefinite. The symmetric elements are denoted
by ∗ in the symmetric matrix. The identity matrix is denoted
by I and λmin(Θ) and λmax(Θ) are the minimum and
maximum eigenvalues of the matrixΘ. C0 is the continuous
function andC1 is the continuously differentiable function.
⌈·⌉ is the ceiling function.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A. System Description

We consider the following sampled-data controlled hyper-
bolic system (1)



















∂tz (t, x) + Λ∂xz (t, x) + Γz (t, x) + u (t, x) = 0,

u (t, x) = ̥z (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

z(t, 0) = z(t, L) = 0, ∀t ≥ 0,

z(0, x) =z0(x), ∀x ∈ [0, L] ,

(1a)

(1b)

(1c)

(1d)

wherez : [0,+∞)× [0, L] → Rn, Λ = diag {λ1, λ2, ..., λn}
with λ1, λ2, ..., λn > 0, Γ and̥ are realn × n constants



matrices. The sampling instants are defined as a sequence
{tk}k∈N where

t0 = 0, tk+1 − tk ∈ [h, h̄], (2)

and h̄ ≥ h > 0.
To address the issue under consideration, we need the

compatibility condition given below:
Condition 1.The initial conditionz0(x) for ∀x ∈ [0, L],

satisfies

z0(0) = z0(L) = 0, ∂xz0(0) = ∂xz0(L) = 0. (3)

Remark 1.Now we explain the concept of the solution
in the current work. We rewrite the system (1)-(2) as a first
order system

{

dz(t)
dt

= Υz (t) + f (z (tk)) , t ∈ [tk, tk+1) , k ∈ N,
z (0) = z0,

wheref(z(tk)) = −̥z(tk), andΥ is an operator defined
by

Υz = −Λ∂xz (t, x)− Γz (t, x) , (4)

with domain

D(Υ) =

{

z ∈ H1(0, L;Rn)

∣

∣

∣

∣

z(0) = z(L) = 0,
zx (0) = zx (L) = 0.

}

(5)

A stableC0 semigroup is produced by the operatorΥ (see
the proof of theorem A.1. in [3]). Moreover, the fact is that
fk : H1(0, L) → H1(0, L) is continuously differentiable
for t ∈ [tk, tk+1). If z0 ∈ D(Υ), then in the light of
Theorem 6.1.5 of [32], there is a classical solution for each
t ∈ [tk, tk+1), k ∈ N. Consequently, a solution can be con-
structed by selecting the last value of the previous sampling
interval as the initial condition for the next sampling interval
so that it is continuous at each sampling instant.

B. Problem Formulation

In the present work, we adopt the Rε-stability for the
system (1)-(2), which is defined as follows.

Definition 1.Rε-stability [33]
Consider positive scalars R andε, such that0 < ε < R, and
a candidate Lyapunov functionV : H1([0, L];Rn) → R+.
If for all solutions of system (1) withz0(x) ∈ LV <R, the
trajectory of the statez(t, x) converges toLV ≤ε as t goes
to infinity, then, system (1) is called Rε-stable fromLV <R

to LV≤ε.
Our main goal is to ensure that the closed-loop system

(1)-(2) is Rε-stable due to Input-Output method.

III. MAIN RESULT

This section consists of two parts. Firstly, the sampled-data
system is equivalently expressed as a continuous hyperbolic
PDE with sampling induced error as disturbances in the
input. Secondly, we provide constructive Rε-stability criteria
based on the provided model.

ϕ
P

̟
J

Fig. 1. Alternative representation of the closed-loop system.

A. System Remodelling

System (1) can be rewritten equivalently as



















∂tz (t, x) + Λ∂xz (t, x) + (Γ +̥)z (t, x)

+̥̟ (t, x) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

z(t, 0) = z(t, L) = 0, ∀t ≥ 0,

z(0, x) = z0(x), ∀x ∈ [0, L] .

(6a)

(6b)

(6c)

with the sampling induced error

̟ (t, x) = z (tk, x)− z (t, x) . (7)

Define the functionϕ as

ϕ (t, x) =
∂z (t, x)

∂t
, ∀t ≥ 0, x ∈ [0, L] . (8)

Note that

̟ (t, x) = −

∫ t

tk

∂z (θ, x)

∂θ
dθ = −

∫ t

tk

ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] . (9)

Therefore, the closed-loop system can be seen as the
interconnection of two systemsP andJ shown in Figure 1,
where the operatorP : L2(0, L) → L2(0, L) is defined by

P :































∂tz (t, x) = −Λ∂xz (t, x)− (Γ +̥) z (t, x)
−̥̟ (t, x) ,

z(t, 0) = z(t, L) = 0, ∀t ≥ 0,
z(0, x) =z0(x), ∀x ∈ [0, L] ,
ϕ (t, x) = −Λ∂xz (t, x)− (̥+ Γ) z (t, x)

−̥̟ (t, x) = ∂tz (t, x) ,

(10)

and the operatorJ : L2(0, L) → L2(0, L) is defined by

J :

{

̟ (t, x) = (J z)(t, x) = −
∫ t

tk
ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] .
(11)

Remark 2. The operatorP is a nominal continuous-time
control-loop,J is an integral operator. For the simplicity
of the closed-loop system structure, we choose this form of
J so that we need one outputϕ instead of twoz(t, x) and
z(tk, x), which is why we wrote (7) as (9).



B. Stability Analysis

In the following, we present our primary results. Theorem
1 gives the conditions under which Rε-stability can be
obtained.

Theorem 1.Consider systems (10)-(11) with (2) and a
candidate Lyapunov functionV : H1 ([0, L] ; Rn) → R+

which is differentiable w.r.t. its argument and such that there
exists0 < ι1 < ι2

ι1 ‖̺‖
2
H1([0,L];Rn) ≤ V (̺) ≤ ι2 ‖̺‖

2
H1([0,L];Rn) . (12)

Suppose that along the trajectories of the system (10)-(11),
the corresponding solutionz(t, ·) satisfiesV̇ (z)+ 2δV (z) ≤
0, for someδ > 0, whenever

1) R > V (z(t, ·)) ≥ max(ε, V (z(tk, ·))/α), with some
α > 1,

2) z(tk, ·) ∈ LV <R.

Then the system is Rε-stable fromLV <R to LV ≤ε.
Proof. During a sampling interval[tk, tk+1) with initial

statez(tk, ·):

• If V (z(tk, ·)) ≤ ε, V (z(t, ·)) will remain in ε during
[tk, tk+1). (Otherwise, we will haveV̇ (z) > 0 >
−2δV (z) at some point whenV (z(t, ·)) ≥ ε ≥
V (z(tk, ·))/α, which would contradict the proposition
in Theorem 1.)

• If R > V (z(tk, ·)) ≥ ε:
(a) We haveV (z(t, ·)) ≤ V (z(tk, ·)) during [tk, tk+1).
(Otherwise, we will haveV̇ (z) > 0 > −2δV (z)
at some point whenV (z(t, ·)) ≥ V (z(tk, ·)) ≥
V (z(tk, ·))/α, which would contradict the proposition
in Theorem 1.)
(b)We can further show that

V (z(t, ·)) ≤ max(ε,
V (z(tk, ·))

α
, e−2δ(t−tk)V (z(tk, ·)))

(13)

during [tk, tk+1). In the following, we will discuss two
possibilities in case (b):
(b1) If there exists t′ ∈ [tk, tk+1) such that
V (z(t′, ·)) = max(ε, V (z(tk, ·))/α). If t ∈ [tk, t

′),
V̇ (z) + 2δV (z) ≤ 0 holds, and we haveV (z(t, ·)) ≤
e−2δ(t−tk)V (z(tk, ·)), ∀t ∈ [tk, t

′) (Otherwise, we will
have V̇ (z) > 0 > −2δV (z) at some point when
V (z(t, ·)) ≥ V (z(tk, ·))/α, which would contradict the
proposition in Theorem 1.) Ift ∈ [t′, tk+1), V (z(t, ·))
cannot go back abovemax(ε, V (z(tk, ·))/α) (Other-
wise, we will haveV̇ (z) > 0 > −2δV (z) at some
point whenV (z(t, ·)) ≥ V (z(tk, ·))/α, which would
contradict the proposition in Theorem 1.), then we have
V (z(t, ·)) ≤ max(ε, V (z(tk, ·))/α),∀t ∈ [t′, tk+1). So,
over the whole sampling intervalt ∈ [tk, tk+1), we can
get inequality (13).
(b2) WhenV (z(t, ·)) > max{ε, V (z(tk, ·))/α}, ∀t ∈
[tk, tk+1), since V̇ (z) + 2δV (z) ≤ 0, we have
V (z(t, ·)) ≤ e−2δ(t−tk)V (z(tk, ·)). Then it is not hard
to get (13).

Now, let us considerz(tk, ·) ∈ LV <R, t ∈
[tk, tk+1), k ∈ N. We have

V (z(t, ·))

≤ max
(

ε, V (z(tk, ·))/α, e
−2δ(t−tk)V (z(tk, ·))

)

= max (ε, ξV (z(tk, ·))) , (14)

with ξ = max
(

1/α, e−2δ(t−tk)
)

≤ 1, then we can
derive

V (z(tk, ·)) ≤ max (ε, ζV (z(tk−1, ·))) , (15)

with ζ = max
(

1/α, e−2δh
)

< 1, ∀k ∈ N \ {0}, where
h is the lower bound of the sampling interval.
By recursion, the following inequality holds ifz(t0, ·) ∈
LV <R, we have

V (z(tk, ·)) ≤ max (ε, ζmax (ε, ζV (z(tk−2, ·))))

≤ max
(

ε, ζε, ζ2V (z(tk−2, ·))
)

≤ max
(

ε, ζ2V (z(tk−2, ·))
)

≤ · · ·

≤ max
(

ε, ζkV (z(t0, ·))
)

, ∀k ∈ N. (16)

Then combining (14) and (16), we get that

V (z(t, ·)) ≤ max
(

ε, ξmax
(

ε, ζkV (z(t0, ·))
))

= max
(

ε, ξε, ξζkV (z(t0, ·))
)

≤ max
(

ε, ζkV (z(t0, ·))
)

= ε (17)

when k is large enough. Therefore, there∃ k̄ =
⌈logζ

ε/V (z(t0, ·))⌉, such thatz(t, ·) ∈ LV ≤ε, ∀ t ≥ tk̄ ,
which leads the proof of Rε-stability. �

Remark 3. Theorem 2 is based on the generalization of
the Razumikhin technique for hyperbolic system. In the
following theorem, we will show how it can be used in
constructed manner.

Theorem 2.Consider systems (10)-(11) with (2) and an
initial condition satisfying (3):

1) Letλ = min
i∈{1,...,n}

λi. Assume that there existµ, γ, κ >

0, α > 1 and symmetric positive matricesΘ1 ∈ Rn×n,
Θ2 ∈ Rn×n satisfying

W (0) + κN(0) � 0, W (L) + κN(L) � 0, (18)

with W (x) defined for allx ∈ [0, L] as

W (x) =









G1 G3 0 0
∗ −γI 0 0
∗ ∗ G2 G4

∗ ∗ ∗ −γI









, (19)

where

G1 = −e−2µx
[

(̥+ Γ)TΘ1 +Θ1(̥+ Γ)
]

,

G2 = −e−2µx
[

ΓTΘ2 +Θ2Γ + βΘ2

]

,

G3 = −e−2µxΘ1̥,

G4 = −e−2µxΘ2̥. (20)



and

N(x) = e−2µx









G5 −Θ1 0 0
∗ −Θ1 0 0
∗ ∗ αΘ2 0
∗ ∗ ∗ −Θ2









, (21)

where

G5 = (α− 1)Θ1. (22)

2) If ∃ε ∈ R+, R ∈ R+ s.t. 0 < ε < R and

γ3h̄
(

|Λ|
2
Ω1 +

(

|Υ|
2
+ |̥|

2
)

Ω2

)

+ γΩ1

≤ (2σ − β)ε− 2δR, (23)

with

Ω1 =
R

λmin (Θ2) e−2µL
,Ω2 =

R

λmin (Θ1) e−2µL
,

whereσ = µλ, 0 < β < 2σ, δ > 0.
Then the considered system (1) is Rε-stable from
LV <R to LV ≤ε for any sampling sequence satisfying
(2), with the Lyapunov function defined by

V (z) = V1(z) + V2(z), (24)

with

V1(z) =

∫ L

0

zT e−2µxΘ1zdx, (25)

V2(z) =

∫ L

0

zTx e
−2µxΘ2zxdx. (26)

Proof. Consider the Lyapunov function (24)-(26). It can
be bounded as follows:

Φ ‖z (t, ·)‖
2
H1( [0,L] ;Rn) ≤ V (z (t, ·))

≤ Ψ ‖z (t, ·)‖
2
H1( [0,L] ;Rn) , (27)

where

Φ = min(λmin (Θ1) , λmin (Θ2))e
−2µL,

Ψ = max(λmax (Θ1) , λmax (Θ2)).

Step 1: In this step we study the continuity of the function
V defined in (24).

1) Sincez(t, x) is continuous with respect tot for all
t ∈ [tk, tk+1), k ∈ N, and continuous at sampling
instants by construction (see Remark 1) , thenV1 is
continuous for allt ≥ 0.

2) From system (1), we can get

zx (t, x) = Λ−1 (−zt (t, x)− Γz (t, x)−̥z (tk, x)) ,
(28)

for all t ∈ [tk, tk+1), k ∈ N. Since all the terms on
the right of the equation (28) are continuous int on
(tk, tk+1), ∀k ∈ N, thenzx(t, x) and thusV2 are also
continuous int for all (tk, tk+1), k ∈ N.
Now we consider the time interval[tk, tk+1), for some
k ∈ N and an initial conditionzk(x). The solution of

(1) is defined asz(t, x) on the time interval[tk, tk+1),
and is such thatz andzx are bothC0 in t ∈ [tk, tk+1).
Next, we prolong the solution toC1 in t on [tk, tk+1].
We denotey(t, x) the solution on[tk, tk+1] with ini-
tial condition zk(x). y(t, x) and yx(t, x) are C0 in
t on [tk, tk+1]. We got the following properties on
[tk, tk+1)

{

z(t, x) = y(t, x),
zx(t, x) = yx(t, x).

(29)

Then the left limit can be calculated as

lim
t→t

−

k+1

zx (t, x) = lim
t→t

−

k+1

yx (t, x) = yx (tk+1, x) .

(30)

For the next time interval[tk+1, tk+2), we set the initial
condition zk+1(x) = y(tk+1, x). Then the solution
z(t, x) of system (1) on[tk+1, tk+2) satisfieszx(t, x)
is C0 in t on [tk+1, tk+2). Therefore, we have the right
limit property

lim
t→t

+

k+1

zx (t, x) = zx (tk+1, x) = yx (tk+1, x) . (31)

According to (30) and (31), we can see that by con-
struction, zx(t, x) is continuous int at time instant
tk+1. Similarly, we can show that the functionzx(t, x)
is continuous at all sampling instants, which shows
both the continuity ofzx(t, x) with respect to time for
all t ≥ 0 and the continuity ofV2.

Remark 4.V1 is used to boundz, andV2 is used to deal with
the termzx that appears in the derivative ofV1.

Step 2:In this step we study the time derivative ofV (z)
defined in (24). We first compute the time derivative ofV1(z)
along the solutions to (10)-(11),∀t ∈ [tk, tk+1) , k ∈ N,

V̇1(z) =

∫ L

0

(

∂tz
T e−2µxΘ1z + zT e−2µxΘ1∂tz

)

dx

=

∫ L

0

(

(−Λ∂xz − (̥+ Γ)z −̥̟)
T
e−2µxΘ1z

+zT e−2µxΘ1 (−Λ∂xz − (̥+ Γ)z −̥̟)
)

dx

=

∫ L

0

−∂x
[

zTΛe−2µxΘ1z
]

dx

+

∫ L

0

(

−zT (̥+ Γ)
T
e−2µxΘ1z

− zT e−2µxΘ1(̥+ Γ)z − zT e−2µxΘ1̥̟

−2µzTΛe−2µxΘ1z −̟T
̥

T e−2µxΘ1z
)

dx

= −
[

zTΛe−2µxΘ1z
]L

0

+

∫ L

0

(

−zT
(

(̥ + Γ)
T
e−2µxΘ1

+e−2µxΘ1(̥ + Γ)
)

z

−̟T
̥

T e−2µxΘ1z − zT e−2µxΘ1̥̟
)

dx

− 2µ

∫ L

0

zTΛe−2µxΘ1zdx. (32)

In order to get the time derivative ofzx in V2, we refer to
the original system (1). Sincez : [0,+∞)× [0, L] → Rn has



consecutive partial derivatives in[0,+∞)× [0, L], according
to Schwartz’s theorem ( [17]) we can obtain

∂xtz (t, x) = ∂txz (t, x)

= −Λ∂xxz (t, x)− Γ∂xz (t, x)−̥∂xz (tk, x) ,

∀t ∈ (tk, tk+1), k ∈ N. (33)

For the next calculation of the time derivative ofV2, we
use Lemma 1 in the appendix. According to (33) and Lemma
1, we have

{

∂xz(t, 0) = ∂xz(t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

z0(0) = z0(L) = 0, ∂xz0(0) = ∂xz0(L) = 0.

(34a)

(34b)

Similarly to the computation oḟV1, the time derivative of
V2(z) along the solutions to (33)-(34),∀t ∈ [tk, tk+1) , k ∈ N

is shown as follows

V̇2(z) =−
[

∂xz
TΛe−2µxΘ2∂xz

]L

0

+

∫ L

0

(

−∂xz
T
(

ΓT e−2µxΘ2 + e−2µxΘ2Γ
)

∂xz

− ∂xz
T (tk, ·)̥

T e−2µxΘ2∂xz

−∂xz
T e−2µxΘ2̥∂xz

T (tk, ·)
)

dx

− 2µ

∫ L

0

∂xz
TΛe−2µxΘ2∂xzdx. (35)

Addingγ‖̟ (s, ·)‖
2
L2( [0,L];Rn)−γ‖̟ (s, ·)‖

2
L2( [0,L];Rn) to

(32) and

γ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn) − γ‖∂xz (tk, ·)‖

2
L2( [0,L];Rn),

β

∫ L

0

zTx e
−2µxΘ2zxdx− β

∫ L

0

zTx e
−2µxΘ2zxdx

to (35) for someγ > 0, β > 0, and using boundary condition
(6b) and (34a) we have

V̇ (z) =V̇1(z) + V̇2(z)

≤

∫ L

0

(

−zTA1z −̟T
̥

T e−2µxΘ1z

−zT e−2µxΘ1̥̟ − γ̟T̟
)

dx

− 2σV1(z) + γ ‖̟ (s, ·)‖
2
L2( [0,L];Rn)

+

∫ L

0

(

−∂xz
TA2∂xz

− ∂xz
T (tk, ·)

T e−2µxΘ2∂xz

− ∂xz
T e−2µxΘ2∂xz

T (tk, ·)

−γ∂xz
T (tk, ·) ∂xz (tk, ·)

)

dx

− 2σV2(zx) + γ ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn)

+ β

∫ L

0

zTx e
−2µxΘ2zxdx

=− 2σV1(z)− 2σV2(z) +

∫ L

0

ηTW (x)ηdx

+ γ ‖̟ (s, ·)‖2L2( [0,L];Rn)

+ γ ‖∂xz (tk, ·)‖
2
L2( [0,L] ;Rn)

+ β

∫ L

0

zTx e
−2µxΘ2zxdx

=− 2σV1(z)− (2σ − β)V2(z)

+

∫ L

0

ηTW (x)ηdx + γ ‖̟ (s, ·)‖
2
L2( [0,L];Rn)

+ γ ‖∂xz (tk, ·)‖
2
L2( [0,L];Rn) . (36)

with

σ = µλ,

η = [zT ̟T (∂xz)
T (∂xz(tk, ·))

T ]T ,

A1 = −G1, A2 = −G2. (defined in (20) Theorem 2)
(37)

andW (x) defined in (19).
Step 3:In this step, we show thaṫV (z) + 2δV (z) ≤ 0,

whenever

{

R > V (z(t, ·)) ≥ max(ε, V (z(tk, ·))/α),

z(θ, ·) ∈ LV <R, ∀θ ∈ [tk, t), k ∈ N.

(38a)

(38b)

Let us assume that conditions (38) hold. Since condition
(18) holds, by convexity, we haveW (x) + κN(x) ≤ 0, for
x ∈ [0, L]. Therefore, we get

∫ L

0

ηT (W (x) + κN(x))ηdx ≤ 0, (39)

with W (x) andN(x) given in (19) and (21).
Now, considert ∈ [tk, tk+1) and a trajectoryz satisfying

(38). Since condition (38a) is satisfied, we haveV (z(t, ·)) ≥
V (z(tk, ·))/α with someα > 1, which can be rewritten as

∫ L

0

ηTN(x)ηdx ≥ 0. (40)

In view of (39), (40) andκ > 0, by S-procedure, it implies
that

∫ L

0

ηTW (x)ηdx ≤ 0. (41)

According to condition (38b), we have

∫ L

0

zT e−2µxΘ1zdx < R, ∀z(θ, ·) ∈ LV <R,

∫ L

0

∂xz
T e−2µxΘ2∂xzdx < R, ∀∂xz(θ, ·) ∈ LV <R.

The following inequalities are further derived

‖z (θ, ·)‖
2
L2([0,L];Rn) <

R

λmin (Θ1) e−2µL
, ∀θ ∈ [tk, t], (42)

‖∂xz (θ, ·)‖
2
L2([0,L];Rn) <

R

λmin (Θ2) e−2µL
, ∀θ ∈ [tk, t].

(43)



Using (9), (42) and (43) fort ∈ [tk, tk+1), k ∈ N, the
upper bound of‖̟ (s, ·)‖

2
L2([0,L];Rn) can be calculated

‖̟ (s, ·)‖2L2([0,L];Rn)

=

∫ L

0

|̟ (s, x)|
2
dx =

∫ L

0

∣

∣

∣

∣

∫ t

tk

∂z (θ, x)

∂θ
dθ

∣

∣

∣

∣

2

dx

=

∫ L

0

∣

∣

∣

∣

∫ t

tk

(Λ∂xz (θ, x) + Γz (θ, x) +̥z (tk, x))dθ

∣

∣

∣

∣

2

dx

≤ 3

∫ L

0

∫ t

tk

(

|Λ|
2
|∂xz (θ, x)|

2
+ |Γ|2|z (θ, x) |2

+ |̥|
2
|z (tk, x)|

2
)

dθdx

≤ 3

∫ t

tk

(

|Λ|
2
‖∂xz (θ, x)‖

2
L2([0,L] ; Rn)

+|Γ|2 ‖z (θ, x)‖2L2([0,L] ; Rn)

+|̥|
2
‖z (tk, x)‖

2
L2([0,L] ; Rn)

)

dθ

≤ 3h̄

(

|Λ|2
R

λmin (Θ2) e−2µL

+
(

|Γ|
2
+ |̥|

2
) R

λmin (Θ1) e−2µL

)

= ω. (44)

In addition, since condition (38a) is satisfied, we have

− 2σV1(z)− (2σ − β)V2(z)

≤ −(2σ − β)(V1(z) + V2(z))

< −(2σ − β)ε. (45)

Therefore, substituting (41), (44) and (45) into (36), we
have for allt ∈ [tk, tk+1), k ∈ N,

V̇ (z) <− (2σ − β)ε+ γω

+ γ
R

λmin (Θ2) e−2µL
. (46)

Since (23) holds, we deduce from (46),

V̇ (z) < −2δR ≤ −2δV (z). (47)

Therefore, we have shown thaṫV (z) + 2δV (z) ≤ 0,
whenever conditions (38) are satisfied.

Step 4: In this step, we show that ifz(tk, ·) ∈ LV <R,
then z(t, ·) ∈ LV <R, ∀t ∈ [tk, tk+1). Consider z such
that z(tk, ·) ∈ LV <R, assume that∃ t◦ ∈ (tk, tk+1) s.t.
V (z(t◦, ·)) ≥ R. Let us then callT ◦ the minimum of such
t◦, then∀t ∈ [tk, T

◦), V (z(t, ·)) < R. Therefore conditions
(38) are going to be satisfied for anyt ∈ [tk, T

◦). From
step 3, we know thatV is going to decrease during that
time interval, either continuously, or untilV reaches below
max(ε, V (z(tk, ·))/α) and when it reaches that region, it
never gets back out. Therefore, we haveV (z(T ◦, ·)) <
V (z(tk, ·)) < R, which contradicts the assumption that there
existst◦ ∈ (tk, tk+1) such thatV (z(t◦, ·)) ≥ R.

Fig. 2. Response of statez1.

Summary: From step 3 and step 4, it is clear thatV̇ (z)+
2δV (z) ≤ 0 wherever

{

R > V (z(t, ·)) ≥ max(ε, V (z(tk, ·))/α),

z(tk, ·) ∈ LV <R,

(48a)

(48b)

and therefore, the conditions of Theorem 1 are satisfied,
which concludes the proof of Rε-stability. �

Remark 5.It is worth pointing out that we use several
parameters and now we summarize each parameter in detail.
For Rε-stability, R is the domain of attraction for a given
Lyapunov function,ε specifies the positive invariant level
set ofV . They satisfy0 < ε < R. In this paper, we can fix
R then computeε or vice versa.α is a parameter introduced
in the Lyapunov-Razumikhin method to define level set in
which the time derivative ofV (z(t, ·)) should be negative
between two sampling interval, we choose it greater than 1.
µ is related to the decay rate ofV1, V2, and δ is related
to the decay rate ofV . γ and κ are found by line search
to realize the conditions given in Theorem 1. Due to (23),
we adjustγ, β to be the smallest possible andµ to be the
largest possible. In the numerical section, we sort out their
relationship:µ > 0, δ > 0, λ = min

i∈{1,...,n}
λi > 0, σ =

µλ, 0 < β < 2σ.

IV. NUMERICAL SIMULATION

In this section, we present a numerical example to illus-
trate the method we proposed in Section 3. Consider system
(1) where

Λ =

[

10 0
0 12

]

, Γ =

[

20 15
20 25

]

, ̥ =

[

2 0
5 4

]

,

L = 1, h̄ = 0.1, z0 (x) =

[

0.2(1− cos 2πx) sin 4πx
0.15(1− cos 4πx) sin 2πx

]

.

According to Remark 5, the parameters are selected as:

β = 0.01, µ = 0.09, κ = 1.8, δ = 0.001,

γ = 0.001, α = 1.001,

which satisfy the conditions (18) and (23).



Fig. 3. Response of statez2.
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Fig. 4. Initial data ofz1 andz2.
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Fig. 5. Initial data of∂xz1 and∂xz2.

We fix R = 20, and choose

Θ1 =

[

2.8342 −0.2219
∗ 1.3796

]

,

Θ2 =

[

3.4987 −0.0635
∗ 2.0097

]

,

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

Fig. 6. Time-evolution of function V.

to observe the evolution of states.
The simulation results are introduced in Figs. 2-6. Figs.

2-3 present that both state trajectories converge to near the
origin with the controller, respectively. The initial condi-
tions satisfying the compatibility condition (3) are illustrat-
ed in Figs. 4-5. As can be seen from Fig. 6, the time-
evolution of Lyapunov functionV (z(t, ·)) decreases when
R > V (z(t, ·)) ≥ max(ε, V (z(tk, ·))/α), α > 1.

V. CONCLUSIONS

The main work of this paper is to use a sampling controller
for distributed control of linear hyperbolic balance laws.
The closed-loop system is reformulated based on Input-
Output approach. New stability condition has been obtained
by means of the Lyapunov-Razumikhin method. In the
future, we will consider the global stability with controller
discretized both in time and in space.

APPENDIX

Lemma 1.Consider the system (1)-(2) with initial condi-
tion z0 satisfying Condition 1. Then∀t ∈ [tk, tk+1), k ∈ N,
∂xz(t, 0) = ∂xz(t, L) = 0.

Proof: We recall system (1)


















∂tz (t, x) + Λ∂xz (t, x) + Γz (t, x) + u (t, x) = 0,

u (t, x) = ̥z (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

z(t, 0) = z(t, L) = 0, ∀t ≥ 0,

z(0, x) =z0(x), ∀x ∈ [0, L] ,

(49a)

(49b)

(49c)

(49d)

The time derivative of the boundary condition leads to

∂tz (t, 0) = ∂tz (t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (50)

Combining (49a) with (50), we obtain
{

0 = ∂tz (t, 0) = −Λ∂xz (t, 0)− Γz (t, 0)−̥z (tk, 0) ,
0 = ∂tz (t, L) = −Λ∂xz (t, L)− Γz (t, L)−̥z (tk, L) .

Sincez(t, 0) = z(t, L) = 0, ∀t ≥ 0, we have

∂xz(t, 0) = ∂xz(t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (51)

�
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