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Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. We consider the system L(H) of all sets of lengths of H and study when L(H) contains or is contained in a system L(H ′ ) of a Krull monoid H ′ with finite class group G ′ , prime divisors in all classes and Davenport constant D(G ′ ) = D(G). Among others, we show that if G is either cyclic of order m ≥ 7 or an elementary 2-group of rank m -1 ≥ 6, and G ′ is any group which is non-isomorphic to G but with Davenport constant D(G ′ ) = D(G), then the systems L(H) and L(H ′ ) are incomparable.

Introduction

Let H be a Krull monoid or a Krull domain with class group G such that every class contains a prime divisor. The system L(H) of all sets of lengths of H is a well-studied invariant describing factorizations in H. It is classic that H is factorial if and only if |G| = 1 and that H is half-factorial (i.e., |L| = 1 for all L ∈ L(H)) if and only if |G| ≤ 2. All sets of lengths L ∈ L(H) are finite and, if |G| ≥ 3, then for every N ∈ N there is L N ∈ L(H) such that |L N | ≥ N . Every finite subset of N ≥2 lies in L(H) if and only if the class group G is infinite. Suppose that G is finite with |G| ≥ 3. Then sets of lengths in L(H) are well-structured and depend only on the class group G. More precisely, we have L(H) = L(G) := L B(G) , where B(G) denotes the monoid of zero-sum sequences over G. We refer to [START_REF] Geroldinger | Non-Unique Factorizations[END_REF][START_REF] Geroldinger | Combinatorial Number Theory and Additive Group Theory[END_REF] for background on Krull monoids and their connection to additive combinatorics and to [START_REF] Smertnig | Sets of lengths in maximal orders in central simple algebras[END_REF][START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Gotti | Systems of sets of lengths of Puiseux monoids[END_REF][START_REF] Tringali | Structural properties of subadditive families with applications to factorization theory[END_REF] for recent work on sets of lengths.

The standing conjecture is that the system L(H) determines the class group G (apart from two trivial exceptions, given in Theorem A below). This means that, if H ′ is a Krull monoid with class group G ′ such that every class contains a prime divisor, then L(H) = L(H ′ ) if and only if the class groups G and G ′ are isomorphic. For small groups it is easy to write down their systems of sets of lengths. We denote by C n a cyclic group of order n ∈ N and recall the following well-known result ([12, Proposition 3.3 and Theorem 3.6]).

Theorem A.

1. {k} : k ∈ N 0 = L(C 1 ) = L(C 2 ). 2. y + 2k + [0, k] : y, k ∈ N 0 = L(C 3 ) = L(C 2 ⊕ C 2 ) L(G) for all finite abelian groups G with D(G) ≥ 4. The above result covers all groups G with Davenport constant D(G) ≤ 3, and the above mentioned conjecture expects an affirmative answer to the following problem.

The Characterization Problem. Let G be a finite abelian group with Davenport constant D(G) ≥ 4, and let G ′ be an abelian group with L(G) = L(G ′ ). Are G and G ′ isomorphic?

We refer to the surveys ( [START_REF] Geroldinger | Sets of lengths[END_REF][START_REF]Factorization theory in commutative monoids[END_REF]) for background on the Characterization Problem and to [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF]Sets of minimal distances and characterizations of class groups of Krull monoids[END_REF][START_REF] Zhong | A characterization of finite abelian groups via sets of lengths in transfer Krull monoids[END_REF][START_REF] Geroldinger | A characterization of class groups via sets of lengths[END_REF][START_REF]A characterization of class groups via sets of lengths II[END_REF] for recent progress. In [START_REF] Geroldinger | Systems of sets of lengths: transfer Krull monoids versus weakly Krull monoids[END_REF], the Characterization Problem was studied with a new approach, and in the present paper we further pursue this novel point of view. Indeed, we consider the family Ω = L(G) G of systems of sets of lengths L(G), where G is running through a set of representatives of non-isomorphic finite abelian groups. If G ′ is a subgroup of a group G, then L(G ′ ) ⊂ L(G) and, given two groups G 1 and G 2 , we have L(G i ) ⊂ L(G 1 ⊕ G 2 ) for each i ∈ [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF]. Thus Ω is a directed family and, by Theorem A and [START_REF] Geroldinger | Non-Unique Factorizations[END_REF]Theorem 7.4.1], we have

L(C 1 ) = L(C 2 ) L(C 3 ) = L(C 2 ⊕ C 2 ) L(G) L(G * )
for every finite abelian group G with D(G) ≥ 4 and every infinite abelian group G * .

If G and G ′ are finite abelian groups with L(G) = L(G ′ ), then their Davenport constants are equal (Proposition 2.3). Furthermore, for every positive integer m ∈ N there are only finitely many nonisomorphic finite abelian groups G with Davenport constant D(G) = m. We consider, for every m ∈ N, the finite family

Ω m = L(G) G with D(G)=m
of all systems L(G), where G is running through a set of representatives of non-isomorphic finite abelian groups G having Davenport constant D(G) = m. Thus, the Characterization Problem has an affirmative answer if and only if the systems in Ω m are pairwise distinct for all m ≥ 4. We say that an element L(G) of a subfamily Ω ′ of Ω is

• maximal in Ω ′ if L(G) ⊂ L(G ′ ) implies that G = G ′ for every element L(G ′ ) in Ω ′ , • minimal in Ω ′ if L(G ′ ) ⊂ L(G)
implies that G = G ′ for every element L(G ′ ) in Ω ′ , and • incomparable in Ω ′ if it is maximal and minimal in Ω ′ , that is L(G) is not comparable to any other element of Ω ′ . Now we can formulate the main result of the present paper. By Theorem A, it is sufficient to consider finite abelian groups G with Davenport constant D(G) ≥ 4. 1. If m ∈ [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF] and L(G 1 ) ⊂ L(G 2 ), then G 1 is cyclic of order m, G 2 is an elementary 2-group of rank m -1, and L(G 1 ) L(G 2 ). 2. If m = 7, then L(G 1 ) and L(G 2 ) are incomparable.

Statements 1 and 2 of Theorem 1.1 will be proved, resp., in Section 3 and 4; while Statements 3 and 4 of Theorem 1.1 and Corollary 1.2 will be proved in Section 5. The proofs are based on deep results on invariants controlling the structure of sets of lengths as well as on a careful case by case analysis when handling small groups. In Section 2 we gather some background information on systems of sets of lengths over finite abelian groups, and we refer to the survey [START_REF]Some recent results and open problems on sets of lengths of Krull monoids with finite class group[END_REF] for more information.

Background on systems of sets of lengths over finite abelian groups

We denote by N the set of positive integers and by N 0 the set of nonnegative integers. The monoid of zero-sum sequences over G 0 . The elements of the free abelian monoid F (G 0 ) with basis G 0 are called sequences over G 0 . Let

S = g 1 • . . . • g ℓ = g∈G0 g vg(S) ∈ F (G 0 ) be a sequence over G 0 . Then |S| = ℓ ∈ N 0 is the length of S and σ(S) = g 1 + . . . + g ℓ ∈ G is the sum of S. We set -S = (-g 1 ) • . . . • (-g ℓ ).
The sequence S is said to be zero-sum free if i∈I g i = 0 for all nonempty subsets I ⊂ [1, ℓ]. The monoid

B(G 0 ) = {S ∈ F (G 0 ) : σ(S) = 0} ⊂ F (G 0 )
of zero-sum sequences over G 0 is a saturated submonoid of F (G 0 ) and hence a Krull monoid. The set of atoms of B(G 0 ) (in other words, the set of the minimal zero-sum sequences over G 0 ) is denoted by A(G 0 ). The set A(G 0 ) is finite and

D(G 0 ) = max{|U | : U ∈ A(G 0 )} ∈ N 0
is the Davenport constant of G 0 . We have the following lower and upper bounds,

D * (G) := 1 + r i=1 (n i -1) ≤ D(G) ≤ |G| ,
where the left inequality is an equality for groups of rank r ≤ 2 and for p-groups (for recent progress on the Davenport constant we refer to [START_REF] Liu | On the lower bounds of Davenport constant[END_REF][START_REF] Girard | An asymptotically tight bound for the Davenport constant[END_REF]). Furthermore, d(G) := D(G) -1 is the maximal length of a zero-sum free sequence over G.

The arithmetic of B(G 0 ). The free abelian monoid

Z(G 0 ) = F (A(G 0 )) is the factorization monoid of B(G 0 ). Let π : Z(G 0 ) → B(G 0 ) denote the canonical epimorphism. For every B ∈ B(G 0 ), Z(B) = π -1 (B) is the set of factorizations of B and L(B) = {|z| : z ∈ Z(B)} is the set of lengths of B. Note that L(1 B(G0) ) = {0}, and we have L(B) = {1} if and only if B ∈ A(G 0 ). Then L(G 0 ) = {L(B) : B ∈ B(G 0 )}
is the system of sets of lengths of B(G 0 ). The systems L(G) are of high relevance because of transfer results in factorization theory. Indeed, if H is a transfer Krull monoid over G, then L(H) = L(G). Transfer Krull monoids include commutative Krull monoids and Krull domains but also classes of non-commutative Dedekind domains. We do not discuss these connections here but refer to the surveys [START_REF] Geroldinger | Sets of lengths[END_REF][START_REF]Factorization theory in commutative monoids[END_REF].

We recall the concept of the g-norm, which is a powerful tool for the study of sets of lengths of zero-sum sequences over cyclic groups. Let g ∈ G with ord(g) = n ≥ 2. For a sequence S = (n 1 g) • . . . • (n ℓ g) ∈ F ( g ), where ℓ ∈ N 0 and n 1 , . . . , n ℓ ∈ [1, n], we define

S g = n 1 + . . . + n ℓ n .
Note that σ(S) = 0 implies that n 1 + . . . + n ℓ ≡ 0 mod n whence S g ∈ N 0 . Thus, • g : B( g ) → N 0 is a homomorphism, and S g = 0 if and only if

S = 1. If S ∈ A(G 0 ), then S g ∈ [1, n -1]
, and if S g = 1, then S ∈ A(G 0 ). Arguing as above we obtain that

A g n -1 ≤ min L(A) ≤ max L(A) ≤ A g .
Next we define the distance of factorizations and the catenary degree. Two factorizations z, z ′ ∈ Z(G 0 ) can be written, uniquely up to the order of the terms, in the form

z = U 1 • . . . • U k V 1 • . . . • V ℓ and z ′ = U 1 • . . . • U k W 1 • . . . • W m where all U r , V s , W t ∈ A(G 0 ) and all V i = W j for all i ∈ [1, ℓ] and all j ∈ [1, m]. Then d(z, z ′ ) = max{ℓ, m}
is the distance between z and z ′ . For an element B ∈ B(G 0 ), the catenary degree c(B) is the smallest N ∈ N 0 such that for any two factorizations z, z ′ ∈ Z(B) there are factorizations

z = z 0 , z 1 , . . . , z k = z ′ of B such that d(z i-1 , z i ) ≤ N for all i ∈ [1, k]. Then c(G 0 ) = max{c(B) : B ∈ B(G 0 )} is the catenary degree of G 0 .
We say that the monoid

B(G 0 ) (resp. G 0 ) is half-factorial if and only if |L| = 1 for all L ∈ L(G 0 ). We denote by (2.1) ∆(G 0 ) = L∈L(G0) ∆(L) ⊂ N
the set of distances of G 0 and we set

(G 0 ) = max{min(L \ {2}) | 2 ∈ L ∈ L(G 0 )} .
If ∆(G 0 ) = ∅, then min ∆(G 0 ) = gcd ∆(G 0 ) and, by [8, Theorems 1.6.3 and 3.4.10]), we have

(2.2) (G 0 ) ≤ 2 + max ∆(G 0 ) ≤ c(G 0 ) ≤ D(G 0 ) .
The set of minimal distances ∆ * (G) ⊂ ∆(G) is defined as

∆ * (G) = {min ∆(G 0 ) : G 0 ⊂ G with ∆(G 0 ) = ∅} ⊂ ∆(G) .
For k ∈ N, the kth elasticity of G 0 is defined as

(2.3) ρ k (G 0 ) = max{max L : k ∈ L ∈ L(G 0 )} and ρ(G 0 ) = sup{ρ(L) : L ∈ L(G 0 )}
is the elasticity of G 0 . We end this section with three propositions. They gather some of the key properties and results on the above invariants. The first proposition reveals the relevance of ∆ * (G) (see [START_REF] Geroldinger | Non-Unique Factorizations[END_REF]Theorem 4.4.11]). Proposition 2.1. Let G be a finite abelian group with |G| ≥ 3. There exists some M ∈ N 0 such that every set of lengths

L ∈ L(G) is an AAMP with difference d ∈ ∆ * (G) and bound M . Proposition 2.2. Let m ≥ 3. 1. ∆(C m ) = ∆(C m-1 2 ) = [1, m -2] and ∆ * (C m ) ⊂ [1, m -2] = ∆ * (C m-1 2 ). 2. max ∆ * (G) = max{exp(G) -2, r(G) -1}. 3. Let k ∈ N. Then ρ 2k (G) = kD(G), kD(G) + 1 ≤ ρ 2k+1 (G) ≤ kD(G) + D(G)/2, and ρ(G) = D(G)/2. If G is cyclic, then ρ 2k+1 (G) = kD(G) + 1 and if G is an elementary 2-group, then ρ 2k+1 (G) = kD(G) + ⌊D(G)/2⌋.
Proof. The claim on max ∆ * (G) follows from [START_REF]The set of minimal distances in Krull monoids[END_REF]. If G is cyclic, then ρ 2k+1 (G) = kD(G) + 1 for all k ∈ N by [9, 

(G) = L(G ′ ). 1. ρ(G) = ρ(G ′ ) and ρ k (G) = ρ k (G ′ ) for all k ∈ N. In particular, D(G) = D(G ′ ). 2. ∆(G) = ∆(G ′ ) and max ∆ * (G) = max ∆ * (G ′ ). 3. If G is cyclic or an elementary 2-group with D(G) ≥ 4, then G ∼ = G ′ .
Proof. ). This will be done in a series of subsections. We need a lot of computations with zero-sum sequences over C 5 2 . To simplify notation and to avoid repetitions, we fix the following notation until the end of this section.

We fix a basis (e 1 , . . . , e 5 ) of C Moreover, we set e 0 := e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF] and U := U [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF] . If ∅ = I [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF], then U I and V I are minimal zero-sum sequences over {e I , e 0 , . . . , e 5 }.

3.1.

On intervals in L(C 6 ) and L(C 5 2 ). The goal of this subsection is to show that all intervals, that lie in L(C 6 ), also lie in L(C 5 2 ). We start with two lemmas. Lemma 3.1. Let L ∈ L(C 6 ) with {2, 5} ⊂ L. Then L = {2, 5} or L = {2, 4, 5}, and both sets actually lie in L(C 6 ). In particular, [START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF] / ∈ L(C 6 ).

Proof. Let B ∈ B(C 6 ) with {2, 5} ⊂ L(B).

Then B = U 1 U 2 with U 1 , U 2 ∈ A(C 6 ) and |U i | ≥ 5 for i ∈ [1, 2].
If g ∈ C 6 with ord(g) = 6, then W = g 6 , V = g 4 (2g), -W , and -V are the atoms of length at least 5. Since L((-W )W ) = {2, 6}, L((-V )V ) = {2, 4, 5} and L((-W )V ) = L((-V )W ) = {2, 5}, the claim follows.

Lemma 3.2.

1. [START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF], [START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF], [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF], [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Geroldinger | On products of k atoms II[END_REF], [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | Combinatorial Number Theory and Additive Group Theory[END_REF], [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF], [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | A characterization of class groups via sets of lengths[END_REF] ∈ L(C 5 2 ). Moreover, {2, 4}, {2, 5}, {2, 6}, {2, 3, 5}, and {2, 4, 5} are in L(C 5 2 ). and we assert that 

For each

k ∈ N ≥2 we have [2k, 6k -4], [2k, 6k -3], [2k, 6k -2], [2k, 6k -1] ∈ L(C 5 2 ). 3. For each k ∈ N we have [2k + 1, 6k -2], [2k + 1, 6k -1], [2k + 1, 6k], [2k + 1, 6k + 1] ∈ L(C 5 2 ). Proof. 1. We have L(U 2 [1,3] ) = {2, 4}, L(U 2 [1,4] ) = {2, 5},
L(U 2 V 1 V 2 ) = [4, 11]. Since A = U 2 V 1 V 2 is
= 4. If z is divisible by V {1,2,5} , then z = V {1,2,5} U {3,4,5} e 2 1 e 2 2 , whence |z| = 4. If z is divisible by V 1 , then z = U V 1 , whence |z| = 2. If z is divisible by V ′ 1 , then z = V ′ 1 e 2 1 e
= 5. If z is divisible by V {1,2} , then z = V {1,2} U [2,5] e 2 1 , whence |z| = 3 If z is divisible by V 2 , then z = U V 2 , whence |z| = 2. If z is divisible by V ′ 2 , then z = V ′ 2 e 2 1 e
2 3 e 2 4 e 2 5 , whence |z| = 5. This shows L(U V 2 ) = {2, 3, 5}. Consequently, [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF] 

= {2, 3, 5} + {2, 4, 5} ⊂ L(U 2 V 1 V 2 ). Since V 1 V 2 = e 2
(U 2 ) = {2, 6}, it follows that 5 ∈ L(V 1 V 2 ), whence 11 ∈ L(U 2 V 1 V 2 ). 2. and 3. (i) Claim 1: [2k + 1, 6k + 1] ∈ L(C 5 2 ) for each k ∈ N. Let k ∈ N. We recall from [12, Proposition 4.10, proof of assertion A1] that (3.2) U ′ 1 = e [1,4] e 1 • . . . • e 4 , U ′ 2 =
(U ′ 1 U ′ 2 U ′ 3 ) = [3, 7]. We assert that L(U 2k-2 U ′ 1 U ′ 2 U ′ 3 ) = [2k + 1, 6k + 1]. Since L(U 2k-2 ) = 2k -2 + 4 • [0, k -1], it follows that 2k -2 + 4 • [0, k -1] + [3, 7] = [2k + 1, 6k + 1] ⊂ L(U 2k-2 U ′ 1 U ′ 2 U ′ 3 ). It remains to show the converse inclusion. Since |U 2k-2 U ′ 1 U ′ 2 U ′ 3 | = 6(2k -2) + 15
, it follows that the minimal length is at least (12k + 3)/6 and as it is an integer it is at least 2k + 1. Moreover, as 0 does not occur in this sequence, the maximal length is at most (12k + 3)/2 and thus it is at most 6k + 1. This shows that

[2k + 1, 6k + 1] ∈ L(C 5 2 ). (ii) Claim 2: [2k, 6k -4] ∈ L(C 5 2 ) for each k ≥ 2. Since 1 + [2k + 1, 6k + 1] = [2(k + 1), 6(k + 1) -4], we conclude that [2k, 6k -4] ∈ L(C 5 2 ) for each k ∈ N ≥2 . (iii) Claim 3: [2k, 6k -1] ∈ L(C 5 2 ) for each k ≥ 2. Let k ≥ 2. We consider L(U 2k-2 V 1 V 2 ) with V 1 , V 2 as in (3.1). Since L(U 2 V 1 V 2 ) = [4, 11] and L(U 2k-4 ) = 2k -4 + 4 • [0, k -2], it follows that 2k -4 + 4 • [0, k -2] + [4, 11] = [2k, 6k -1] ⊂ L(U 2k-2 V 1 V 2 ). To prove the converse inclusion, it suffices to note that |U 2k-2 V 1 V 2 | = 12k
, and thus the minimal length it is at least 2k. Since the sequence does not contain 0 and is not a square it follows that the maximal length is less than 6k.

(iv [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF], where U ′ 1 and U ′ 2 are as defined above. Now, we consider

) Claim 4: [2k, 6k -2] ∈ L(C 5 2 ) for each k ≥ 2. Let k ≥ 2. We recall from [12, Proposition 4.10, proof of assertion A3] that L(U ′2 1 U ′2 2 ) =
L(U 2k-4 U ′2 1 U ′2 2 ), with U ′ 1 and U ′ 2 as above. It follows that 2k -4 + 4 • [0, k -2] + [4, 10] = [2k, 6k -2] ⊂ L(U 2k-4 U ′2 1 U ′2 
2 ). To prove the converse inclusion, it suffices to note that |U 2k-4 U ′2 1 U ′2 2 | = 12k -4, and thus the minimal length it is at least (12k -4)/6 and thus at least 2k. Since the sequence does not contain 0, it follows that that maximal length is at most 6k -2 and the argument is complete. [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | Combinatorial Number Theory and Additive Group Theory[END_REF], where

(v) Claim 5: [2k, 6k -3] ∈ L(C 5 2 ) for each k ≥ 2. Let k ≥ 2. We recall from [12, Proposition 4.10, proof of assertion A2] that L(U ′2 1 U ′ 2 U ′ 4 ) =
U ′ 1 and U ′ 2 are as in (3.2) and U ′ 4 = e {1,2} e {1,3} e {2,4} e {3,4} . We consider L(U 2k-4 U ′2 1 U ′ 2 U ′ 4 ), and obtain 2k -4 + 4 • [0, k -2] + [4, 9] = [2k, 6k -3] ⊂ L(U 2k-4 U ′2 1 U ′ 2 U ′ 4 ). For converse inclusion, we note that |U 2k-4 U ′2 1 U ′ 2 U ′ 4 | = 12k -5
, and thus the minimal length is at least 2k while the maximal length is at most 6k -3.

(vi) Claim 6:

[2k + 1, 6k -2], [2k + 1, 6k -1], [2k + 1, 6k] ∈ L(C 5 2 ) for each k ∈ N. Noting that [2k+1, 6k-2] = 1+[2k, 6k-3], [2k+1, 6k-1] = 1+[2k, 6k-2], [2k+1, 6k] = 1+[2k, 6k-1]
and the latter intervals are in L(C 5 2 ) for k ≥ 2, it remains to study the case k = 1. By 1., we have [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF] 

∈ L(C 5 2 ). Moreover, [2, 3], [2, 4] ∈ L(C 5 2 ), implies [3, 4] = 1 + [2, 3 ∈ L(C 5 2 ) and [3, 5] = 1 + [2, 4] ∈ L(C 5 2 ). Proposition 3.3. Every L ∈ L(C 6 ), that is an interval, lies in L(C 5 
2 ). Proof. Let L ∈ L(C 6 ) be an interval. The claim holds if L is singleton. Suppose that |L| ≥ 2. We set m = min L and n = max L. By Proposition 2.2, we have ρ(C 6 ) = 3, ρ m (C 6 ) = 3m for even m, and ρ m (C 6 ) = 3(m -1) + 1 for odd m. Thus n ≤ 3m, and we assert that n < 3m. Assume to the contrary that n = 3m, and let

B ∈ B(C 6 ) with L(B) = L. If 0 | B, then min L(0 -1 B) = m-1 and max L(0 -1 B) = 3m-1, a contradiction to ρ(C 6 ) = 3. Thus 0 ∤ B.
Moreover, each atom in a factorization of length m must have length 6. However, the only two minimal zero-sum sequences of length 6 over C 6 are g 6 and (-g) 6 , where g is a generating element of C 6 . Thus supp(B) ⊂ {-g, g}. However, ∆({-g, g}) = {4}, contradicting the assumption that L(B) = L is an interval.

We now write

n = m + l with l ∈ N. If l ≤ 2, then [m, m + l] = (m -2) + [2, 2 + l] ∈ L(C 5 2 ) by Lemma 3.2. Suppose that l = 3. Since [2, 5] / ∈ L(C 6 ) by Lemma 3.1, it follows that m ≥ 3, whence [m, m + l] = (m -3) + [3, 6] ∈ L(C 5 
2 ) by Lemma 3.2. Now we suppose that l ≥ 4 and distinguish two cases.

CASE 1: m is even, say m = 2k ′ . By the argument above, we get n < 3m = 6k ′ . Thus,

l ≤ 4k ′ -1, say l = 4k -i with k ∈ [2, k ′ ] and i ∈ [1, 4]. Then m -2k ≥ 0 and [m, m + l] = m -2k + [2k, 6k -i] ∈ L(C 5 2 ) by Lemma 3.2. CASE 2: m is odd, say m = 2k ′ + 1. By the argument above, we get n ≤ 6k ′ + 1. Thus l ≤ 4k ′ , say l = 4k -i with k ∈ [1, k ′ ] and i ∈ [0, 3]. Then m -(2k + 1) ≥ 0 and [m, m + l] = m -(2k + 1) + [2k + 1, 6k + 1 -i] ∈ L(C 5 
2 ) by Lemma 3.2.

3.2.

On AMPs with periods {0, 1, 4} and {0, 3, 4} in L(C 6 ) and L(C 5 2 ). The goal of this subsection is to show that all AMPs with period {0, 1, 4} or with {0, 3, 4}, that lie in L(C 6 ), also lie in L(C 5 2 ). Lemma 3.4. The sets {3, 4, 7}, {3, 6, 7}, {4, 5, 8, 9}, {4, 7, 8, 11}, and {5, 8, 9, 12, 13} lie in L(C 6 ) and in L(C 5 2 ). Proof. 1. First we show that the given sets lie in L(C 6 ). Let g ∈ G with ord(g) = 6 and set A = (2g)g v+4 (-g) w+2 , where v, w ∈ N 0 with v ≡ w + 2 mod 6. CASE 1: v ≡ 0 mod 6. By [10, Lemma 3.6], we have

L(A) = 1 + (L(g v (-g) w+2 ) ∪ L(g v+4 (-g) w )), L(g v (-g) w+2 ) = v + w + 2 6 + 4 • [0, min{v, w + 2} 6 ],
and

L(g v+4 (-g) w ) = 3 + v + w + 2 6 + 4 • [0, min{v, w -4} 6 ]
. 

If v =
L(A) = 1 + (L(g v (-g) w+2 ) ∪ L(g v+4 (-g) w )), L(g v (-g) w+2 ) = 1 + v + 4 + w 6 + 4 • [0, min{v -2, w} 6 
], and

L(g v+4 (-g) w ) = v + 4 + w 6 + 4 • [0, min{v + 4, w} 6 
] .

If v = 2 and w = 6, then L(A) = {3, 4, 7}. If v = 8 and w = 6, then L(A) = {4, 5, 8, 9}.

2. Now we show that the sets lie in ) 2 (e 2 0 ) 2 , whence L(A 4 ) = {4, 7, 8, 11}. Proposition 3.5. Every L ∈ L(C 6 ), that is an AMP with period {0, 3, 4}, lies in L(C 5 2 ). Proof. Let L ∈ L(C 6 ) be an AMP with period {0, 3, 4} and set m = min L. If L is a singleton, then the claim holds. Suppose that L is not a singleton. Then there is k ∈ N 0 such that L has one of the following two forms.

L(C 5 2 ). If A 1 = U 2 (e 1 e 2 e [1,2] ), then A 1 = U e 2 1 e 2 2 V [1,2] = e 2 1 • . . . • e 2 5 e 2 0 U [1,2] , whence L(A 1 ) = {3, 4, 7}. If A 2 = U 2 (e 1 • . . . • e 4 e [1,4] ), then A 2 = U e 2 1 • . . . • e 2 4 V [1,4] = e 2 1 • . . . • e 2 5 e 2 0 U [1,4] , whence L(A 2 ) = {3, 6, 7}. Note that L(U 2 A 2 ) = {3, 6, 7} + {2, 6} = {5, 8, 9, 12, 13}. If A 3 = U 3 U [1,2] , then A 3 = U 3 U [1,2] = U e 2 1 • . . . • e 2 5 e 2 0 U [1,2] = U 2 e 2 1 e 2 2 V [1,2] = (e 2 1 ) 2 (e 2 2 ) 2 e 2 3 e 2 4 e 2 5 e 2 0 V [1,2] , whence L(A 3 ) = {4, 5, 8, 9}. If A 4 = U 3 V [1,2] , then A 4 = U 3 V [1,2] = U 2 U [1,
• L = {m, m + 3} + 4 • [0, k]. • L = {m, m + 3} + 4 • [0, k] ∪ {m + 4(k + 1)}. We distinguish two cases. CASE 1: L = {m, m + 3} + 4 • [0, k] for some k ∈ N 0 . Then ρ(L) = m + 4k + 3 m ≤ ρ(C 6 ) = 3 , whence m ≥ 2k + 2. Clearly, if {2k + 2, 2k + 5} + 4 • [0, k] ∈ L(C 5 
2 ), then the same is true for L. Thus we may assume that

m = 2k + 2. If k = 0, then L = {2, 5} ∈ L(C 5 
2 ) by Lemma 3.2. Now suppose that k ≥ 1. Then we have

L = {2k + 2, 2k + 5} + 4 • [0, k] = {2k + 2, 2k + 5, 2k + 6, 2k + 9} + 4 • [0, k -1] = {4, 7, 8, 11} + 2(k -1) + 4 • [0, k -1] . If A 4 = U 3 V [1,2]
, then L(A 4 ) = {4, 7, 8, 11} by Lemma 3.4, whence

L A 4 U 2(k-1) = L(C) + L U 2(k-1) = {4, 7, 8, 11} + 2(k -1) + 4 • [0, k -1] = L . CASE 2: L = {m, m + 3} + 4 • [0, k] ∪ {m + 4(k + 1)} for some k ∈ N 0 . Then ρ(L) = m + 4k + 4 m ≤ ρ(C 6 ) = 3 , whence m ≥ 2k + 2.
Assume to the contrary that m = 2k + 2. Then ρ(L) = 3. Since every set L 0 ∈ L(C 6 ) with ρ(L 0 ) = 3 is an arithmetical progression with difference 4, it follows that ρ(L) < 3 and this implies

m ≥ 2k + 3. Clearly, if {2k + 3, 2k + 6} + 4 • [0, k] ∪ {6k + 7} ∈ L(C 5 
2 ), then the same is true for L. Thus we may assume that m = 2k + 3. Then we have

L = {2k + 3, 2k + 6} + 4 • [0, k] ∪ {6k + 7} = {3, 6} + 2k + 4 • [0, k] ∪ {6k + 7} = {3, 6, 7} + 2k + 4 • [0, k] . If A 2 = U 2 U [1,4] , then L(A 2 ) = {3, 6, 7} by Lemma 3.4, whence L A 2 U 2k = {3, 6, 7} + 2k + 4 • [0, k] = L .
Proposition 3.6. Every L ∈ L(C 6 ), that is an AMP with period {0, 1, 4}, lies in L(C 5 2 ). Proof. Let L ∈ L(C 6 ) be an AMP with period {0, 1, 4} and set m = min L. If L is a singleton, then the claim holds. Suppose that L is not a singleton. Then there is k ∈ N 0 such that L has one of the following two forms.

• L = {m, m + 1} + 4 • [0, k]. • L = {m, m + 1} + 4 • [0, k] ∪ {m + 4(k + 1)}.
We distinguish two cases. CASE 1:

L = {m, m + 1} + 4 • [0, k] for some k ∈ N 0 . Then ρ(L) = m + 4k + 1 m ≤ ρ(C 6 ) = 3 , whence m ≥ 2k + 1. If m = 2k + 1, then L = {2k + 1, 2k + 2} + 4 • [0, k] and thus max L = 6k + 2 ≤ ρ 2k+1 (C 6 ) = 6k + 1 , a contradiction. Thus m ≥ 2k + 2. Clearly, if {2k + 2, 2k + 3} + 4 • [0, k] ∈ L(C 5 
2 ), then the same is true for L. Thus we may assume that

m = 2k + 2. If k = 0, then L = {2, 3} ∈ L(C 5 2 ) by Lemma 3.2. Suppose that k ≥ 1. Then L = {2k + 2, 2k + 3} + 4 • [0, k] = {2k + 2, 2k + 3, 2k + 6, 2k + 7} + 4 • [0, k -1] = {2(k -1) + 4, 2(k -1) + 5, 2(k -1) + 8, 2(k -1) + 9} + 4 • [0, k -1] = {4, 5, 8, 9} + 2(k -1) + 4 • [0, k -1] . If A 3 = U 3 U [1,2]
, then L(A 3 ) = {4, 5, 8, 9} by Lemma 3.4, whence

L A 3 U 2k-2 = {3, 4, 7} + 2(k -1) + 4 • [0, k -1] = L . CASE 2: L = {m, m + 1} + 4 • [0, k] ∪ {m + 4(k + 1)} for some k ∈ N 0 . Then ρ(L) = m + 4k + 4 m ≤ ρ(C 6 ) = 3 , whence m ≥ 2k + 2. Assume to the contrary that m = 2k + 2. Then ρ(L) = 3. Since every set L 0 ∈ L(C 6 )
with ρ(L 0 ) = 3 is an arithmetical progression with difference 4, it follows that ρ(L) < 3 and this implies

m ≥ 2k + 3. Clearly, if {2k + 3, 2k + 4} + 4 • [0, k] ∪ {6k + 7} ∈ L(C 5 
2 ), then the same is true for L. Thus we may assume that m = 2k + 3. Then we have

L = {2k + 3, 2k + 4} + 4 • [0, k] ∪ {6k + 7} = {3, 4} + 2k + 4 • [0, k] ∪ {6k + 7} = {3, 4, 7} + 2k + 4 • [0, k] . If A 1 = U 2 U [1,2] , then L(A 1 ) = {3, 4, 7} by Lemma 3.4, whence L A 1 U 2k = {3, 4, 7} + 2k + 4 • [0, k] = L .
3.3. On AMPs with periods {0, 1, 2, 4}, {0, 1, 3, 4}, and {0, 2, 3, 4} in L(C 6 ) and L(C 5 2 ). The goal of this subsection is to show that all AMPs with period {0, 1, 2, 4}, {0, 1, 3, 4}, or {0, 2, 3, 4}, that lie in L(C 6 ), also lie in L(C 5 2 ). We start by determining all AMPs with these periods in L(C 6 ). To this end we make use of the arguments in [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF], which already contains a fairly precise description of theses sets but stops short of giving a full characterization. Moreover, all these sets actually are elements of L(C 6 ).

Proof. Clearly, it suffices to prove the claim for y = 0. The results from [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF], specifically the proof of Proposition 3.8 as well as the statements of Lemmas 3.3. to 3.7 show that the only cases to consider are those that are treated in Lemmas 3.6 and 3.7 in that paper. More specifically, AMPs with these periods arise in Case 2 of the proof of Lemma 3.6 and at the end of the proof of Lemma 3.7.

We start by considering the details of the sets that occur in Lemma 3.6 from [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF]. As established there these sets arise as the sets of lengths of zero-sum sequences of the form (2g) 2 g v ′ (-g) w ′ with v, w ∈ N 0 where g is a generating element of the group.

Specifically, the first sets of cardinality at least 4 that arise in Case 2, the sets in Case 1 are not of the relevant form, are the set of lengths of (2g) 2 g 6 (-g) -m+4 with m ∈ N, which are {3+m, 4+m, 5+m, 7+m}. These are thus exactly the sets of the form given in 1.a with k = 0 and y ∈ N 0 (note that m ≥ 1).

Then, the sets of lengths of A = (2g) 2 g v+8 (-g) w+4 with v, w ∈ N 0 are considered. More precisely one has (we refer to the argument there for missing details):

In case v ≡ 0 mod 6, the set is an AMP with period {0, 2, 3, 4}; its minimum is 2 + (v + w + 4)/6 and its maximum is the maximum of 2 + (v + w + 4)/6 + 4 min{v + 6, w + 4}/6 and 2 + (v + w + 4)/6 + 4 min{v + 6, w -2}/6 With v = 0 + 6k and w = 2 + 2k for k ∈ N 0 , this yields exactly the sets in 3.a with y = 0 while with v = 0 + 6k and w = 8 + 2k this yields exactly the sets in 3.b with y = 0.

In case v ≡ 2 mod 6, the set is an AMP with period {0, 1, 3, 4}; its minimum is 2 + (v + w + 6)/6 and its maximum is the maximum of 3 + (v + w + 6)/6 + 4 min{v + 4, w + 2}/6 and 5 + (v + w + 6)/6 + 4 min{v + 4, w -4}/6. With v = 2 + 6k and w = 4 + 2k for k ∈ N 0 , this yields exactly the sets in 2.b with y = 0 while with v = 2 + 6k and w = 10 + 2k this yields exaxtly the sets in 2.c with y = 0.

In case v ≡ 4 mod 6, the set is an AMP with period {0, 1, 2, 4}; its minimum is 2 + (v + w + 8)/6 and its maximum is the maximum of 2+(v +w +8)/6+4 min{v +8, w}/6 and 4+(v +w +8)/6+4 min{v +2, w}/6. For k ≥ 1 with v = 4 + 6(k -1) and w = 6 + 6k, this yields exactly the sets in 1.a with k ≥ 1 and y = 0 while with v = 4 + 6k and w = 6 + 6k for k ∈ N 0 this yields exactly the sets in 1.c with y = 0.

It remains to consider the sets arising in Lemma 3.7 from [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF]; it turns out these yield the sets in 1.b, 2.a and 3.b. We see that the AMPs with these periods arise towards the end in Case 2. Specifically, they arise as the sets of length of A = (2g)(4g)g v (-g) w with v, w ∈ N 0 where g is a generating element of the group. More concretely, v and w are congruent modulo 6 and we set v = r + 6m and w = r + 6n with r ∈ [0, 5] and m, n ∈ N 0 .

If r ∈ [START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF], the set is an AMP with period {0, 2, 3, 4}; its minimum is r -2 + m + n and its maximum is r + 1 + m + n + 4 min{m, n}. With m = n = k + 1 for k ∈ N 0 , this yields exactly the sets in 3.c with y = 0 and y = 1 for r = 4 and r = 5, respectively.

If r ∈ [2, 3], the set is an AMP with period {0, 1, 2, 4}; its minimum is r + m + n and its maximum is r + 1 + m + n + 4 min{m, n}. With m = n = k + 1 for k ∈ N 0 , this yields exactly the sets in 1.b with y = 0 and y = 1 for r = 2 and r = 3, respectively.

If r ∈ [0, 1], the set is an AMP with period {0, 1, 3, 4}; its minimum is r + 1 + m + n and its maximum is r + 1 + m + n + 4 min{m, n}. With m = n = k + 1 for k ∈ N 0 , this yields exactly the sets in 2.a with y = 0 and y = 1 for r = 0 and r = 1, respectively.

In a series of lemmas we show that all sets, listed in Proposition 3.7, lie in L(C 5 2 ).

Lemma 3.8. Let y, k ∈ N 0 .

1. y + 2k + {3, 4, 6, 7} + 4 • [0, k] ∈ L(C 5 2 ). 2. y + 2k + {4, 5, 6, 8, 9} + 4 • [0, k] ∈ L(C 5 
2 ). 

U [1,2] V [1,2] , then z = U [1,2] V [1,2] U , whence |z| = 3. If z is divisible by U 2 [1,2] , then z = U 2 [1,
U [1,2] V [1,2] , then z = U [1,2] V [1,2] e 2 1 e 2 2 U , whence |z| = 5. If z is divisible by V 2 [1,2] , then z = V 2 [1,2] (e 2 1 ) 2 (e 2 
2 ) 2 , whence |z| = 6. Lemma 3.9. Let y, k ∈ N 0 .

1.

y + 2k + {3, 5, 6, 7} + 4 • [0, k] ∈ L(C 5 2 ). 2. y + 2k + {4, 5, 6, 8} + 4 • [0, k] ∈ L(C 5 2 ). 3. y + 2k + {5, 6, 7, 9, 10, 11} + 4 • [0, k] ∈ L(C 5 2 ). 4. y + 2k + {4, 5, 7, 8, 9} + 4 • [0, k] ∈ L(C 5 2 ). 5. y + 2k + {5, 6, 8, 9, 10, 12} + 4 • [0, k] ∈ L(C 5 2 ). 6. y + 2k + {4, 6, 7, 8, 10} + 4 • [0, k] ∈ L(C 5 
2 ). Proof. It suffices to show the claim for y = 0. Let k ∈ N 0 . We set G 0 = {e 0 , e 1 , e 2 , e 3 , e 4 , e 5 }∪{e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] , e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] } and observe that the atoms of B(G 0 ) of length at least three are U , U [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] , U [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] , V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , and W = e 0 e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] Let z be a factorization of W U 2 . We do a case analysis depending on the atoms dividing z and containing the elements e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . If z is divisible by W , then |z| = 3 or |z|

= 7. If z is divisible by U [1,2] U [3,4] , then z = U [1,2] U [3,4] e 2 0 e 2 5 U , whence |z| = 5. If z is divisible by U [1,2] V [3,4] , then z = U [1,2] V [3,4] e 2 0 e 2 1 e 2 2 e 2 5 , whence |z| = 6. Similarly, if z is divisible by V [1,2] U [3,4] , then |z| = 6. 2. We set A = U [1,2] U [3,4] U 2k+2 and assert that L(A) = 2k + {4, 5, 6, 8} + 4 • [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = U [1,2] U [3,4] U 2 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(U [1,2] U [3,4] U 2 ) = {4, 5, 6, 8}.
Let z be a factorization of

U [1,2] U [3,4] U 2 .
We do a case analysis depending on the atoms dividing z and containing the elements e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . If z is divisible by Let z be a factorization of

U [1,2] U [3,4] , then |z| = 4 or |z| = 8. If z is divisible by U [1,2] V [3,4] , then z = U [1,2] V [3,4] e 2 3 e 2 4 U , whence |z| = 5. Similarly, if z is divisible by V [1,2] U [3,4] , then |z| = 5. If z is divisible by V [1,2] V [3,4] , then z = V [1,2] V [3,4]
U [1,2] U [3,4] U 3 .
If z is divisible by U , then 2. implies that |z| ∈ 1+{4, 5, 6, 8} = {5, 6, 7, 9}. Suppose that z is not divisible by U . Then z is divisible by e 2 0 , because all atoms containing e 0 , other than e 2 0 and U , contain e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] or e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . Moreover, z is divisible by exactly one of the atoms W , V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] , V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . If z is divisible by W , then all other atoms dividing z have length 2, whence |z| = 11. If z is divisible by V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] , then z is divisible by U [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , and all other atoms dividing z have length 2, whence |z| = 10. If z is divisible by V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , then the same argument shows that |z| = 10.

4. We set

A = U [1,2] V [3,4] U 2k+2 and assert that L(A) = 2k + {4, 5, 7, 8, 9} + 4 • [0, k].
Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of

A 1 = U [1,2] V [3,4] U 2 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(U [1,2] V [3,4] U 2 ) = {4, 5, 7, 8, 9}.
Let z be a factorization of

U [1,2] V [3,4] U 2 .
We do a case analysis depending on the atoms dividing z and containing the elements e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . If z is divisible by

U [1,2] V [3,4] , then |z| = 4 or |z| = 8. If z is divisible by W , then z = W (e 2 1 )(e 2 2 )z ′ , where z ′ is a factorization of U 2 , whence |z| = 5 or |z| = 9. If z is divisible by U [1,2] U [3,4] , then z = U [1,2] U [3,4] e 2 0 e 2 1 e 2 2 e 2 5 U , whence |z| = 7. If z is divisible by V [1,2] V [3,4] , then z = V [1,2] V [3,4] e 2 1 e 2 2 U , whence |z| = 5. If z is divisible by V [1,2] U [3,4] , then z = V [1,2] U [3,4] (e 2 1 ) 2 (e 2 
2 ) 2 e 2 0 e 2 5 , whence |z| = 8.

5. We set

A = U [1,2] V [3,4] U 2k+3 and assert that L(A) = 2k + {5, 6, 8, 9, 10, 12} + 4 • [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = U [1,2] V [3,4] U 3 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(U [1,2] V [3,4] U 3 ) = {5, 6, 8, 9, 10, 12}.
Let z be a factorization of

U [1,2] V [3,4] U 3 .
If z is divisible by U , then 4. implies that |z| ∈ 1 + {4, 5, 7, 8, 9} = {5, 6, 8, 9, 10}. Suppose that z is not divisible by U . Then z is divisible by e 2 0 , because all atoms containing e 0 , other than e 2 0 and U , contain e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] or e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . Since v e0 (A 1 ) = 4, it follows that z is either divisible by V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] or divisible by (e 2 0 ) 2 . In the former case, all atoms dividing z, other than V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , have length 2, whence |z| = 2 + (26 -10)/2 = 10. In the latter case, z is divisible by U [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and U [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , and all atoms dividing z, other than U [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and U [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] , have length 2, whence |z| = 2 + (26 -6)/2 = 12.

6. We set A = W U 2k+3 and assert that

L(A) = 2k + {4, 6, 7, 8, 10} + 4 • [0, k].
Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = W U 3 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(W U 3 ) = {4, 6, 7, 8, 10}.

Let z be a factorization of W U 3 . If z is divisible by U , then 1. implies that |z| ∈ 1 + {3, 5, 6, 7} = {4, 6, 7, 8}. Suppose that z is not divisible by U . Then z is divisible by e 2 0 , because all atoms containing e 0 , other than e 2 0 and U , contain e [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] or e [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] . Since v e0 (A 1 ) = 4, it follows that z is either divisible by V [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and V [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] or divisible by (e 2 0 ) 2 . In the former case, we obtain that

z = V [1,2] V [3,4] e 2 0 • . . . • e 2 5
, whence |z| = 8. In the latter case, z is divisible by U [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF] and U [START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] 2 ) by Lemmas 3.8, 3.9, and 3.10.

On

L(G 0 ) ⊂ L(C 5 
2 ) for some subsets G 0 ⊂ C 6 . The goal of this subsection is to prove that L(G 0 ) ⊂ L(C 5 2 ) for several subsets G 0 of a cyclic group G of order |G| = 6. The first lemma is of interest in its own rights. It shows that -in contrast to the expected affirmative answer to the Characterization Problem -groups G may have proper subgroups G 0 such that L(G 0 ) and further arithmetical invariants are equal to the invariants of a different group G ′ . Lemma 3.12. Let G be a abelian group, g ∈ G with ord(g) = 6 and G 0 = {0, g, 2g, 3g, 4g}. Then c(G 0 ) = 3, ρ(G 0 ) = 3/2, and

L(G 0 ) = {y + 2k + [0, k] : y, k ∈ N 0 } = L(C 3 ) = L(C 2 ⊕ C 2 ) ⊂ L(C 5 2 ) . Proof. Theorem A (stated in the Introduction) implies that L(C 3 ) = L(C 2 ⊕ C 2 ) has the given form and, clearly, L(C 2 ⊕ C 2 ) ⊂ L(C 5 
2 ). Thus it remains to show that L(G 0 ) has the indicated form. We set G 1 = {0, g, 2g, 4g} and proceed in two steps.

1. Since G 2 = {0, 2g, 4g} is a cyclic group order three, we obtain that c(G 2 ) = 3, ρ(G 2 ) = 3/2, and

L(G 2 ) = {y + 2k + [0, k] : y, k ∈ N 0 } = L(C 3 ) = L(C 2 ⊕ C 2 ) ⊂ L(C 5 
2 ) . For every B ∈ B(G 1 ) the multiplicity v g (B) is even. Thus the homomorphism θ : B(G 1 ) → B(G 2 ), defined by θ(B) = g -vg (B) (2g) vg (B)/2 B, is a transfer homomorphism. This implies that c(G 1 ) = c(G 2 ), ρ(G 1 ) = ρ(G 2 ) = 3/2, and L(G 1 ) = L(G 2 ) (for background on transfer homomorphism we refer to [8, Section 3.2]).

2. Since B(G 1 ) is a divisor-closed submonoid of B(G 0 ), it follows that 3 = c(G 1 ) ≤ c(G 0 ), 3/2 = ρ(G 1 ) ≤ ρ(G 0 ), and L(G 1 ) ⊂ L(G 0 ). There are precisely four atoms containing 3g, namely

U 0 = (3g) 2 , U 1 = g 3 (3g), U 2 = g(2g)(3g), and U 3 = (4g) 2 (3g)g .
We continue with the following two assertions. Let A ∈ B(G 0 ).

A1. c(A) ≤ 3 A2. ρ(L(A)) ≤ 3/2. Suppose that A1 and A2 hold. Then c(G 0 ) = 3, ρ(G 0 ) = 3/2, and L(G 0 ) = L(G 1 ).
Proof of A1. There is a 3-chain of factorizations from any factorization z ∈ Z(A) to a factorization

z * ∈ Z(A) where v U0 (z * ) is maximal, say z * = z 1 U m 0 and A = A 1 U m 0 .
First, we suppose that v 3g (A) is even. Then m = v 3g (A)/2, and A 1 ∈ B(G 1 ). Since c(A 1 ) ≤ 3, any two factorizations of A, which are divisible by U m 0 , can be concatenated by a 3-chain of factorizations, whence c(A) ≤ 3. If v 3g (A) is odd, then there is an i ∈ [1, 3] with v Ui (z 1 ) = 1 and v Uj (z 1 ) = 0 for j ∈ [1, 3] \ {i}. Arguing as above we infer that c(A) ≤ 3.

Proof of A2. In order to verify that ρ(L(A)) ≤ 3/2, we have to show that, for any two lengths m 1 , m 2 ∈ L(A), we have m 2 /m 1 ≤ 3/2. There are precisely two atoms with g-norm greater than one. These are U 3 and U 4 = (4g) 3 and we have U 3 g = U 4 g = 2. When in a 3-chain of factorizations the length increases, then the number of atoms with g-norm two decreases by one and the number of atoms with g-norm one increases by two. Let z 1 and z 2 be factorizations of length m 1 and m 2 and consider a 3-chain of factorizations from z 1 to z 2 . Suppose there are k atoms with g-norm one and ℓ atoms with g-norm two in the factorization z 1 . It follows that in the factorization z 2 there are ks atoms with g-norm one and ℓ + 2s atoms with g-norm two for some s ∈ [0, min{k, ℓ}]. Then

m 2 m 1 = k + ℓ + s k + ℓ ≤ 3 2 .
Lemma 3.13. Let G be a finite abelian group, g ∈ G with ord(g) = 6 and G 0 = {0, g, -g}. Then

L(G 0 ) = {y + 2k + 3 • [0, k] : y, k ∈ N 0 } ⊂ L(C 5 2 ) . Proof. Let A ∈ B(G 0 ). Without restriction we may suppose that v g (A) ≥ v -g (A). Thus there are j ∈ [0, 4], k, ℓ, m ∈ N 0 such that A = g 5k+j (-g) 5k+j 0 m g 5ℓ . Thus L(A) = j + ℓ + m + L(g 5k (-g) 5k = j + ℓ + m + 2k + 3 • [0, k] ,
whence the claim follows.

Lemma 3.14. Let G be a finite abelian group, g ∈ G with ord(g) = 6, and

G 0 = {0, g, 3g, -g}. Then L(G 0 ) ⊂ L(C 5 
2 ). Proof. Let A ∈ B(G 0 By Lemmas 3.12 and 3.13, we may suppose that v g (A), v -g (A), and v 3g (A) are positive. Without restriction we may suppose that v 0 (A) = 0 and v g (A) ≥ v -g (A). Then A can be written in the form

A = (-g)g 6r+s (3g) 2 t (3g)g 3 u g 6 v ,
where r, t, v ∈ N 0 , s ∈ [0, 5], and u ∈ [0, 1]. Since all atoms in the decomposition have g-norm one, it follows that max L(A) = 6r + s + t + u + v. Thus, we obtain that 

L(A) = u + v + L(A 1 ), where A 1 = (-g)g 6r+s (3g 
(C m ) L(C m-1 2 ). Since L(C m ) = L(C m-1 2
) by Proposition 2.2.3, it suffices to verify inclusion.

1. By [8, Theorem 7.3.2], we have

• L(C 4 ) = y + k + 1 + [0, k] : y, k ∈ N 0 ∪ y + 2k + 2 • [0, k] : y, k ∈ N 0 , • L(C 3 2 ) = y + (k + 1) + [0, k] : y ∈ N 0 , k ∈ [0, 2] ∪ y + k + [0, k] : y ∈ N 0 , k ≥ 3 ∪ y + 2k + 2 • [0, k] : y, k ∈ N 0 , whence L(C 4 ) ⊂ L(C 3 
2 ). 2. Theorems 4.3 and 4.8 in [START_REF] Geroldinger | Systems of sets of lengths: transfer Krull monoids versus weakly Krull monoids[END_REF] provide explicit descriptions of L(C 5 ) and of L(C 4 2 ). These descriptions show that L(C 5 ) ⊂ L(C 4 2 ). 3. Let G be a cyclic group of order |G| = 6 and let g ∈ G with ord(g) = 6. Let

A ′ ∈ B(G). If A ′ = 0 k A, with k ∈ N 0 and A ∈ B(G \ {0}), then L(A ′ ) = k + L(A) and it suffices to verify that L(A) ∈ L(C 5 
2 ). If {g, -g} ⊂ supp(A), say -g ∈ G 0 , then supp(A) ⊂ {g, 2g, 3g, 4g}, whence Lemma 3.12 implies that L(A) ∈ L(C 5 2 ). Thus from now on we suppose that {g, -g} ⊂ supp(A). If supp(A) ⊂ {g, 3g, -g}, then L(A) ∈ L(C 5 2 ) by Lemma 3.14. Thus it remains to consider the following four cases. CASE 1: supp(A) = {g, 2g, -g} or supp(A) = {g, 4g, -g}. The goal in this section is to prove Statements 3 and 4 of Theorem 1.1 and Corollary 1.2. We need some lemmas. Let G be a abelian group. Then every element g ∈ G with ord(g) = exp(G) can be extended to a basis of G. Thus in Case (a) of Lemma 5.2 the element g can be extended to a basis. In Case (b), (g, e) and (g + e, e) are bases of G. Let G = C 2 ⊕ C 2n with n ≥ 2. Next we completely determine all sets L ∈ L(G) with {2, D(G)} ⊂ L. This was done before in [1, Lemma 3.2] but, unfortunately, that result is not correct. This implies that

We set W i = e 2 i for i ∈ [1, r -2], W r-1 = e r-
Proposition 5.3. Let G = C 2 ⊕ C 2n with n ≥ 2. Then L ∈ L(G) : {2, D(G)} ⊂ L} = {2, 2m, 2n -2m + 2, 2n, 2n + 1} : m ∈ [1, n] ∪ {2, 2n -2i, 2n + 1 -2i : i ∈ [0, (v -1)/2]} : v ∈ [3, 2n -3] odd .
L(U (-U )) = {2, (x 1 -x 2 ) + 1, 2n + 1 -(x 1 -x 2 ), 2n, 2n + 1} .
We set x 1x 2 = 2m -1 and note that all values m ∈ [1, n] can occur. CASE 2: There exists a basis (e 1 , e 2 ) of G with ord(e 1 ) = 2 and ord(e 2 ) = 2n such that U = e 1 e v 2 (e 1 + e 2 ) 2n-v , where v ∈ [3, 2n -3] odd . Without restriction we may assume that v ≤ 2nv. We list the atoms of A(G) which divide U (-U ):

• U, -U , e 2 1 , e 2 (-e 2 ), and (e 1 + e 2 )(e 1e 2 ). • (e 1 + e 2 )(-e 2 )e 1 and (e 1e 2 )e 2 e 1 .

• (e 1 + e 2 ) 2 (-e 2 ) 2 and (e 1e 2 ) 2 e 2 2 . We set W = (e 1 + e 2 )(-e 2 )e 1 and consider a factorization z ∈ Z U (-U ) of length |z| > 2. There are precisely the following three types of factorizations. CASE 2.1: The atom e 2 1 divides z. Then z = (e 

with i ∈ [0, (v -3)/2], whence |z| ∈ {2n -1 -2i : i ∈ [0, (v -3)/2]}.
Putting all together we infer that In particular, ρ L(U 3k ) = 7/3 for every k ∈ N.

L U (-U ) = {2, 2n -2i, 2n + 1 -2i : i ∈ [0, (v -1)/2]} .
Proof. We set G 0 = {e 0 , e 1 , e 2 , e 3 }, W = e 1 e 2 e 3 e 2 0 , and First suppose that m = 5. Then r = 1 and G is isomorphic to one of the following groups:

V i = e 3 i for each i ∈ [0, 3] Then A(G 0 ) = {V 0 , V 1 , V 2 , V 3 , U, W } and ∆(G 0 ) = {2}, whence the assertion follows. A subset G 0 ⊂ G is called an LCN-set if for every A = g 1 • . . . • g ℓ ∈ A(G 0 ) the cross number k(A) = ℓ i=1 1 ord(gi) ≥ 1 holds. We set m(G) = max{min ∆(G 0 ) : G 0 ⊂ G is a non-half-factorial LCN-set} .
C 3 ⊕ C 3 , C 5 , C 2 ⊕ C 4 , C 4 2 . Since L(C m ) is minimal in Ω m by Theorem 1.1.1, it follows that G is not cyclic. Since, by Proposition 2.2, max ∆ * (C 3 ⊕ C 3 ) = 1 < 2 = max ∆ * (C 2 ⊕ C 4 ), it
follows that G is not isomorphic to C 3 ⊕ C 3 Theorems 4.5 and 4.8 in [START_REF] Geroldinger | Systems of sets of lengths: transfer Krull monoids versus weakly Krull monoids[END_REF] show that G not isomorphic to C 4 2 .

Then U ′ = g 1 g 2 g 3 (g 4 + g 5 )(g 6 + g 7 ) is a minimal zero-sum sequence over an elementary 2-group of rank four of length 5 = D(C 4 2 ). Thus there is a basis (e 1 , . . . , e 4 ) of G with ord(e 1 ) = ord(e 2 ) = ord(e 3 ) = 2 and ord(e 4 ) = 4 such that g 1 = e 1 , g 2 = e 2 , g 3 = e 3 , and g i = f i + i e i with f i ∈ e 1 , e 2 , e 3 and a i ∈ {1, 3} for all i ∈ [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF]. This implies that f 1 + f 2 + f 3 + f 4 = e 1 + e 2 + e 3 . Since U is a minimal zero-sum sequence, it follows that a 1 = . . . = a 4 . Without restriction we may suppose that a i = 1 for all i ∈ [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF].

Since the number of elements of order four in each atom W i is even, there is an i ∈ [START_REF] Baginski | Products of two atoms in Krull monoids and arithmetical characterizations of class groups[END_REF][START_REF] Frisch | Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields[END_REF] such that W i has four elements of order four, whence (f 1 ± e 4 )(f 2 ± e 4 )(f 3 ± e 4 )(f 4 ± e 4 ) is a subsequence of W 1 . The only way to extend this to a zero-sum sequence is to use the elements e 1 , e 2 and e 3 , whence

W i = e 1 e 2 e 3 (f 1 ± e 4 )(f 2 ± e 4 )(f 3 ± e 4 )(f 4 ± e 4 ), a contradiction to |W i | ∈ [2, 6]. CASE 2: ord(g 1 ) = 2 and ord(g 2 ) = 4.
We choose a basis (e 1 , . . . , e 4 ) of G with ord(e 1 ) = ord(e 2 ) = ord(e 3 ) = 2 and ord(e 4 ) = 4. Then g i = f i + a i e 4 with a i ∈ {1, 3} and f i ∈ e 1 , e 2 , e 3 for all i ∈ [2, 7]. We continue with three assertions. A1. g 1 = 2e 4 . A2. Without restriction we may suppose that g

1 = e 1 . A3. |W 1 | > 2.
Proof of A1. Assume to the contrary that g 1 = 2e 4 . Consider the sequence S = f 2 • . . . • f 7 . If f 2 = f 3 , then g 1 g 2 g 3 is a proper zero-sum subsequence of U , a contradiction. Thus all elements of S are pairwise distinct, whence S has no zero-sum subsequence of length two. Further, S is a zero-sum sequence over a group isomorphic to C 3 2 . If one of the f i s is equal to zero, then f -1 i S is still a zero-sum sequence, which is not minimal. Thus f -1 i S is a product of a zero-sum sequence of length two and of length three, a contradiction. Thus S is a product of two minimal zero-sum sequences S 1 and S 2 , and both have length three. After renumbering if necessary, we may suppose that S 1 = f 2 f 3 f 4 and S 2 = f 5 f 6 f 7 . Since all elements of S are pairwise distinct, none of the f i s is equal to zero. Since f 4 = f 2 + f 3 , f 7 = f 5 + f 6 and f 2 , . . . , f 7 ∈ e 1 , e 2 , e 3 , it follows that not all these six elements can be pairwise distinct, a contradiction.

Proof of A2. By A1, we have g 1 = f or g 1 = f + 2e 4 with 0 = f ∈ e 1 , e 2 , e 3 . After renumbering if necessary, we may suppose that f = e 1 + f ′ with f ′ ∈ e 2 , e 3 . The map f : G → G, defined by (e 1 , e 2 , e 3 , e 4 ) → (g 1 , e 2 , e 3 , e 4 ), is a group isomorphism. Thus there exists a basis of G containing the element of S having order two.

Proof of A3. Assume to the contrary that |W 1 | = 2. Then W 3 = -W 2 . If supp(W 1 ) consists of two elements of order four, then W 2 consists of one element of order two and five elements of order four, a contradiction to W 2 being a zero-sum sequence. Thus W 1 = g 2 1 . Thus W 2 arises from g -1 1 U by exchanging f i + a i e 4 by f ia i e 4 for some i ∈ [START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Geroldinger | On products of k atoms II[END_REF]. Thus the sum of the first three coordinates of g -1 1 U equals the sum of the first three coordinates of W 2 and this is zero. Since U is a zero-sum sequence and ord(g 1 ) = 2, it follows that g 1 = 2e 4 , a contradiction to A1.

By A1, A2, and A3, it remains to handle the following two cases. After renumbering if necessary, we infer that either W 1 = g 2 g 3 (-g 4 )(-g 5 ) or W 1 = g 2 g 3 g 4 (-g 5 ) .

If W 1 = g 2 g 3 (-g 4 )(-g 5 ), then g 2 +g 3 = g 4 +g 5 . Since ord(g 2 +g 3 ) = 2, g 2 g 3 g 4 g 5 is a zero-sum subsequence of U , a contradiction.

Suppose that W 1 = g 2 g 3 g 4 (-g 5 ). After renumbering if necessary, we may assume that gcd(U, W ′ 2 ) = g 5 g 6 and gcd(U, W ′ 3 ) = g 7 . Thus there are i, j ∈ [2, 7] \ {5, 6} such that W ′ 2 = (-g i )(-g j )g 5 g 6 .

Then 0 = σ(W 2 ) = e 1g ig j + g 5 + g 6 and thus g 5 + g 6 + e 1 = g i + g j . Since ord(g i + g j ) = 2, it follows that e 1 g 5 g 6 g i g j is a zero-sum subsequence of U , a contradiction. Since the only groups with Davenport constant four are the cyclic group of order four and the elementary 2-group of rank three, the claim follows immediately from the above mentioned results. CASE 2: m = 5.

Every finite abelian group G with D(G) = 5 is isomorphic to one of the following groups: 

C 5 , C 2 ⊕ C 4 , C 3 ⊕ C 3 , C 4 

Theorem 1. 1 . 1 . 2 ) 2 ). 2 . 2 ) 3 . 2 ⊕ C 4 ) 4 .

 1122223244 For m ∈[START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF],L(C m ) is minimal in Ω m , L(C m-1 is maximal in Ω m , and L(C m ) L(C m-1 For every m ≥ 7, L(C m ) is incomparable in Ω m and L(C m-1 is incomparable in Ω m . For every m ≥ 5, L(C m-4 is maximal in Ω m . For every n ≥ 2, L(C 2 ⊕ C 2n ) is maximal in Ω 2n+1 . Moreover, L(C 2 ⊕ C 2n ) is minimal among all L(G) in Ω 2n+1 stemming from groups G with D(G) = D * (G).Corollary 1.2. Let G 1 and G 2 be non-isomorphic finite abelian groups with D(G 1 ) = D(G 2 ) = m ∈ [4, 7].

  For integers a, b ∈ Z, [a, b] = {x ∈ Z : a ≤ x ≤ b} is the discrete interval between a and b. Let L, L ′ ⊂ Z be subsets of the integers. Then L + L ′ = {a + b : a ∈ L, b ∈ L ′ } denotes their sumset, ∆(L) ⊂ N denotes the set of successive distances of elements from L, and k • L = {ka : a ∈ L} is the dilation of L by k. If L ⊂ N, then ρ(L) = sup(L)/ min(L) is the elasticity of L, and for L = {0} we set ρ(L) = 1. Let d ∈ N, ℓ, M ∈ N 0 , and {0, d} ⊂ D ⊂ [0, d]. The set L ⊂ Z is called • an arithmetical multiprogression (AMP) with difference d, period D and length ℓ, if L is an interval of min L + D + dZ (this means that L is finite nonempty and L = (min L + D + dZ) ∩ [min L, max L]), and ℓ is maximal such that min L + ℓd ∈ L. • an almost arithmetical multiprogression (AAMP) with difference d, period D, length ℓ and bound M , if L = y + (L ′ ∪ L * ∪ L ′′ ) ⊂ y + D + dZ where L * is an AMP with difference d (whence L * = ∅), period D and length ℓ such that min L * = 0, L ′ ⊂ [-M, -1], L ′′ ⊂ max L * + [1, M ], and y ∈ Z. For a set P , we denote by F (P ) the free abelian monoid with basis P . If a = p∈P p vp(a) ∈ F (P ), then |a| = p∈P v p (a) ∈ N 0 is the length of a, and supp(a) = {p ∈ P : v p (a) > 0} ⊂ P is the support of a. Throughout this section, let G be an additively written finite abelian group, say G ∼ = C n1 ⊕ . . .⊕ C nr with 1 < n 1 | . . . | n r , and let G 0 ⊂ G be a subset. In the above decomposition, r = r(G) is the rank of G and n r = exp(G) is the exponent of G. A tuple (e 1 , . . . , e s ) of nonzero elements of G, with s ∈ N, is called a basis of G if G = e 1 ⊕ . . . ⊕ e s . For a fixed basis (e 1 , . . . , e s ) of G we write e I = i∈I e i for every subset I ⊂ [1, s]. In particular, we have e ∅ = 0.

5 2 .

 2 For every subset I ⊂ [1, 5], we define e I = i∈I e i , U I = e I i∈I e i , and V I = e I i∈[0,5]\I e i .

e

  {1,2,5} e {1,2} e 5 e [2,5] e 2 e {3,4,5} , and since L

  6 and w = 4, then L(A) = {3, 6, 7}. If v = 6 and w = 10, then L(A) = {4, 7, 8, 11}. If v = 12 and w = 10, then L(A) = {5, 8, 9, 12, 13}. CASE 2: v ≡ 2 mod 6. By [10, Lemma 3.6], we have

Proposition 3 . 7 . 1 .

 371 Let L ∈ L(C 6 ) with |L| ≥ 4. If L is an AMP with period {0, 1, 2, 4}, then L equals one of the following sets for some y, k ∈ N 0 : (a) y + 2k + {4, 5, 6, 8} + 4 • [0, k]. (b) y + 2k + {4, 5, 6, 8, 9} + 4 • [0, k]. (c) y + 2k + {5, 6, 7, 9, 10, 11} + 4 • [0, k]. 2. If L is an AMP with period {0, 1, 3, 4}, then L equals one of the following sets for some y, k ∈ N 0 : (a) y + 2k + {3, 4, 6, 7} + 4 • [0, k]. (b) y + 2k + {4, 5, 7, 8, 9} + 4 • [0, k]. (c) y + 2k + {5, 6, 8, 9, 10, 12} + 4 • [0, k]. 3. If L is an AMP with period {0, 2, 3, 4}, then L equals one of the following sets for some y, k ∈ N 0 : (a) y + 2k + {3, 5, 6, 7} + 4 • [0, k]. (b) y + 2k + {4, 6, 7, 8, 10} + 4 • [0, k]. (c) y + 2k + {4, 6, 7, 8, 10, 11} + 4 • [0, k].

Proof. 1 .

 1 It suffices to show the claim for y = 0. Let k ∈ N 0 . We set A = e 2 [1,2] U 2k+2 and assert that L(A) = 2k + {3, 4, 6, 7} + 4 • [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = e 2 [1,2] U 2 and z 2 is a factorization of U 2k . Since L(U 2k ) = 2k + 4 • [0, k], it suffices to show that L(e 2 [1,2] U 2 ) = {3, 4, 6, 7}. Let z be a factorization of e 2 [1,2] U 2 . We do a case analysis depending on the atom dividing z and containing the element e [1,2] . If z is divisible by e 2 [1,2] , then |z| = 3 or |z| = 7. If z is divisible by

e 5 . 1 .

 51 We set A = W U 2k+2 and assert that L(A) = 2k + {3, 5, 6, 7} + 4 • [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = W U 2 and z 2 is a factorization of U 2k . Since L(U 2k ) = 2k + 4 • [0, k], it suffices to show that L(W U 2 ) = {3, 5, 6, 7}.

e 2 1 e 2 2 e 2 3 e 2 4 ,e 2 2 e 2 3 e 2 4 ,

 44 whence |z| = 6. If z is divisible by W , then z = W U e 2 1 whence |z| = 6. 3. We set A = U [1,2] U [3,4] U 2k+3 and assert that L(A) = 2k + {5, 6, 7, 9, 10, 11} + 4 • [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = U [1,2] U [3,4] U 3 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(U [1,2] U [3,4] U 3 ) = {5, 6, 7, 9, 10, 11}.

e 2 2 e 2 3 e 2 4 ye 2 1 e 2 2 e 2 3 e 2 4 Ue 2 2 e 2 3 e 2 4 e 2 5 U

 445 all other atoms dividing z have length 2, whence |z| = 2 + (22 -6)/2 = 10. Lemma 3.10. For all y, k ∈ N 0 , we have y + 2k + {4, 6, 7, 8, 10, 11} + 4 • [0, k] ∈ L(C5 2 ).Proof. It suffices to prove the claim for y = 0. Let k ∈ N 0 . We set G 0 = {e 0 , e 1 , e 2 , e 3 , e 4 , e 5 } ∪ {e {1,2,5} , e {3,4,5} } and observe that the atoms of B(G 0 ) of length at least three are U , U {1,2,5} , U {3,4,5} , V {1,2,5} , V {3,4,5} , W = e 1 e 2 e 3 e 4 e {1,2,5} e {3,4,5} , and W ′ = e 0 e 5 e {1,2,5} e {3,4,5} .We set A = W U 2k+3 and assert that L(A) = 2k + {4, 6, 7, 8, 10, 11} + 4• [0, k]. Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization of A 1 = W U 3 and z 2 is a factorization of U 2k . Since L(U 2k ) = 2k + 4 • [0, k], it suffices to show that L(A 1 ) = {4, 6, 7, 8, 10, 11}.Let z be a factorization of W U 3 . We do a case analysis depending on the atoms dividing z and containing the elements e {1,2,5} and e {3,4,5} . If z is divisible byW , then |z| = 4 or |z| = 8. If z is divisible by W ′ , then z = W ′ e 2 1, where y is a factorization of U 2 , whence |z|= 7 or |z| = 11. If z is divisible by U {1,2,5} U {3,4,5} , then z = U {1,2,5} U {3,4,5} e 2 0 , whence |z| = 8. If z is divisible by V {1,2,5} V {3,4,5} , then z = V {1,2,5} V {3,4,5} e 2 1 , whence |z| = 8. If z is divisible by U {1,2,5} V {3,4,5} , then z = U {1,2,5} V {3,4,5}e 2 3 e 2 3 y, where y is a factorization of U 2 , whence |z| = 6 or |z| = 10. Similarly, if z is divisible by V {1,2,5} U {3,4,5} , then |z| = 6 or |z| = 10. Thus L(A 1 ) = {4, 6, 7, 8, 10, 11}. Proposition 3.11. Every L ∈ L(C 6 ), that is an AMP with period {0, 1, 2, 4}, {0, 1, 3, 4}, or with {0, 2, 3, 4}, lies in L(C 5 2 ). Proof. Let L ∈ L(C 6 ) be an AMP with period {0, 1, 2, 4}, or with {0, 1, 3, 4}, or with {0, 2, 3, 4}. If L is a singleton, then the claim is holds. If |L| = 2, then L = {y + 2, y + 3} or L = {y + 2, y + 4} with y ∈ N 0 . Both sets are in L(C 5 2 ) by Lemma 3.2. If |L| = 3, then L = {y + 2, y + 3, y + 4}, or L = {y + 2, y + 4, y + 5}, or L = {y + 3, y + 4, y + 6} with y ∈ N 0 ; recall that {2, 3, 5} / ∈ L(C 6 ) by Lemma 3.1. All these sets are in L(C 5 2 ) by Lemma 3.2. If |L| ≥ 4, then L has one of the forms given in Proposition 3.7. All these sets are in L(C 5

2 i 2 )

 22 ) 2 t . Defining A = U 2r (e 1 + e 2 + e 3 )(e 4 + e 5 + e [1,5] ) ) where U = e [1,5] e 1 • . . . • e 5 , we infer that L(A 1 ) = L(A 2 ) ∈ L(C 5 2 ). 3.5. Proof of Theorem 1.1.1. We have to consider finite abelian groups G with D(G) ∈ [4, 6]. Let m ∈ [4, 6]. The claims that L(C m ) is minimal in Ω m and that L(C m-1 is maximal in Ω m follow from [12, Theorem 3.5]. It remains to verify that L

2 i 2 i 2 ) 2 ) 5 .

 22225 1 e r (e r-1 + e r ), and U = e 1 • . . . • e r e 0 . Then V has the form V = e 1 • . . . • e r-2 (e r-1 + e r )g(e 0 + g) for some g ∈ G . Clearly, V ′ = e 1 •. . .•e r-2 (e r-1 +e r )e 0 ∈ A(G). Since e 1 •. . .•e r is zero-sum free, U ′ = 1 •. . .•e r g(e 0 +g) is a product of two atoms. Thus U V = U ′ V ′ has a factorization of length three, a contradiction because 3 < r -1. CASE 3.2: |W 1 | = . . . = |W r-1 | = 2 and |W r | = 4. We set W i = e 2 i for i ∈ [1, r -1], U = e 1 • . . . • e r-1 e r e 0 , and W r = e r e 0 e ′ r e ′ 0 . Then V = e 1 • . . . • e r-1 e ′ r e ′ 0 . Then e ′ 0 + e ′ r = e 1 + . . . + e r-1 , whence e ′ r = e r + g and e ′ 0 = e 0 + g for some g ∈ G. Since W r ∈ A(G), it follows that g = 0. Since (e 1 , . . . , e r ) is a basis of G and e ′ r / ∈ e 1 , . . . , e r-1 , it follows that g = e ′ r + e r ∈ e 1 , . . . , e r-1 . Thus g = e I = i∈I e i with ∅ = I ⊂ [1, r-1]. If I = [1, r-1], then e ′ r = e 0 , a contradiction to W r ∈ A(G). Thus U V has a factorization U V = e r (e r + e I ) i∈I e i e 0 (e 0 + e I ) i∈I e i i∈[1,r-1]\I e of length 2 + (r -1 -|I|) = r + 1 -|I| and a factorization U V = e 0 (e r + e I ) i∈[1,r-1]\I e i e r (e 0 + e I ) i∈[1,r-1]\I e i i∈I e of length 2 + |I|. If 2 + |I| = r, then r + 1 -|I| = 3 < r -1, a contradiction. If 2 + |I| = r -1, then r + 1 -|I| = 4 < r -1, a contradiction. Proof of Theorem 1.1.2. Let m ≥ 7. By [12, Theorem 3.5], L(C m-1 is a maximal element of Ω m , L(C m ) is a minimal element of Ω m , and if G is an abelian group with D(G) = m and L(G) ⊂ L(C m-1 , then G is either cyclic or an elementary 2-group. Thus it remains to prove the following two assertions. A1. L(C m ) is not contained in L(C m-1 2 ). A2. If G is a finite abelian group with D(G) = m and L(C m ) ⊂ L(G), then G is cyclic of order m. Since m ≥ 7, A1 follows from Lemmas 4.2 and 4.3. To verify A2, let G be a finite abelian group with D(G) = m such that L(C m ) ⊂ L(G). Then Lemma 4.1.1 implies that {2, D(G)} ∈ L(C m ) ⊂ L(G). Now, again Lemma 4.1.1 implies that G is either cyclic or an elementary 2-group. Finally, A1 implies that G is not an elementary 2-group, whence G is cyclic of order m. Proof of Theorem 1.1.3, 1.1.4, and of Corollary 1.2

Lemma 5 . 1 . 1 . 2 . 2 ⊕ C 4 Lemma 5 . 2 .

 51122452 Let G be a finite abelian group with D(G) ≥ 5. The following statements are equivalent.(a) G is isomorphic to C 2 ⊕ C 2n with n ≥ 2. (b) {2, D(G) -1, D(G)} ∈ L(G). The following statements are equivalent. (a) (G) = D(G) -1. (b) G is isomorphic either to C r-1 for some r ≥ 2 or to C 2 ⊕ C 2n for some n ≥ 2.Proof. See [13, Theorem 1.1 and Proposition 3.5]. Let G = C 2 ⊕ C 2n with n ≥ 2. A sequence S over G of length D(G) = 2n + 1 is a minimal zero-sum sequence if and only if it has one of the following two forms.(a) S = g 2n-1 h(gh) for some g ∈ G with ord(g) = 2n and some h ∈ G \ g . (b) S = eg v (g +e) 2n-v for some g ∈ G with ord(g) = 2n, e ∈ G\ g with ord(e) = 2, and v ∈ [3, 2n-3] odd.Proof. See[START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF] Theorem 3.3].

1 (x 1 e 1 + 1 (x 1 e 1 +

 1111 Proof. Let L ∈ L(G) with {2, D(G)} ⊂ L. Then there exists an atom U ∈ A(G) with |U | = D(G) such that L(U (-U )) = L. According to the structure of U , as given in Lemma 5.2, we distinguish two cases. CASE 1: There exists a basis (e 1 , e 2 ) of G with ord(e 1 ) = 2n and ord(e 2 ) = 2 such thatU = e 2n-1 e 2 )(x 2 e 1 + e 2 ), where x 1 , x 2 ∈ [0, 2n -1] with x 1 + x 2 ≡ 1 mod 2n .Note that the congruence condition on x 1 and x 2 implies that x 1 = x 2 and that |x 1x 2 | is odd. By symmetry, we may suppose thatx 1 > x 2 . We consider a factorization z ∈ Z U (-U ) of length |z| ∈ [2, 2n]. Let W ∈ A(G)be an atom occurring in the factorization z and with x 1 e 1 + e 2 ∈ supp(W ). Since |W | = 2 would imply that |z| = 2n + 1, it follows that |W | ∈ [3, D(G)]. If x 2 e 1 + e 2 ∈ supp(W ), then W = U and |z| = 2 or W = (-e 1 )(x 1 e 1 + e 2 )(x 2 e 1 + e 2 ) and |z| = 2n . Suppose -x 2 e 1 + e 2 ∈ supp(W ). Then W = (-e 1 ) x1-x2 (x 1 e 1 + e 2 )(-x 2 e 1 + e 2 ) and z = W (-W ) e 1 (-e 1 ) 2n-1-(x1-x2) or W = e 2n-(x1-x2) e 2 )(-x 2 e 1 + e 2 ) and z = W (-W ) e 1 (-e 1 ) (x1-x2)-1 .

Lemma 5 . 4 .

 54 Let G = C 3 3 and let (e 1 , e 2 , e 3 ) be a basis of G. If e 0 = e 1 + e 2 + e 3 and U = e 2 1 e 2 2 e 2 3 e 0 , then L(U 3k ) = 3k + 2 • [0, 2k] for every k ∈ N .

ForLemma 5 . 5 . 2 ⊕ C 4

 5524 d ∈ N, M ∈ N 0 , and {0, d} ⊂ D ⊂ [0, d], let P M (D, G) denote the set of all B ∈ B(G) with L(B) is an AAMP with period D and bound M . Let G = C 4 ⊕ C 4 . Then, for every sufficiently large M , lim sup B∈PM ({0,2},G),min L(B)→∞ ρ(L(B)) = 2 . Proof. We have max ∆ * (G) = 2 by Proposition 2.2.2 and m(G) = 1 by [20, Proposition 3.6]. For a sufficiently large M , we consider P = P M ({0, 2}, G) and [21, Proposition 8.7] implies that lim sup B∈P,min L(B)→∞ρ(L(B)) ≤ max{ρ(G 0 ) : G 0 ⊂ G, 2 | min ∆(G 0 )} . Let G 0 ⊂ G with 2 | min ∆(G 0 ). Since max ∆(G) = 3 by [13, Lemma 3.3], it follows that min ∆(G 0 ) = 2, whence min ∆(G 0 ) = max ∆ * (G). Now [21, Theorem 7.7] implies that G 0 = ∪ s i=1 G i , where G 0 = s i=1 G i and each G i is either half-factorial or equal to {g i , -g i } for some g i with ord(g i ) = 4. Thus ρ(G 0 ) = 2.Proof of Theorem 1.1.3. Let m ≥ 5. We have to show that L(C m-4 is a maximal element in Ω m . Let G be a finite abelian group with D(G) = m and suppose that L(C r 2 ⊕ C 4 ) ⊂ L(G), where r = m -4. We distinguish two cases and use Proposition 2.3 without further mention. CASE 1: m ∈ [5, 6].

  CASE 2.1: W 1 = e 1 W ′ 1 , W 2 = e 1 W ′ 2 , with |W ′ 1 | = 2 and |W ′ 2 | = 4, and W 3 consists of six elements of order four.SinceU (-U ) = W 1 W 2 W 3 = W 3 e 2 1 (-W 3 ), U (-U) has a factorization of length three, where one atom has length two, a contradiction to A3. CASE 2.2:|W 1 | = 4 and W i = e 1 W ′ i with |W ′ i | = 4 for i ∈ [2, 3]. Thus W 1 | g 2 • . . . • g 7 (-g 1 ) • . . . • (-g 7 ).

Proof of Corollary 1 . 2 . 2 ) 2 )

 1222 Let G 1 and G 2 be non-isomorphic finite abelian groups with D(G 1 ) = D(G 2 ) = m ∈[START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | On products of k atoms II[END_REF]. We need the following results. Theorem 1.1.1 implies that for m[START_REF] Gao | On the order of elements in long minimal zero-sum sequences[END_REF][START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF],L(C m ) is minimal in Ω m , L(C m-1 is maximal in Ω m ,and L(C m ) L(C m-1 . By Theorem 1.1.2, L(C 7 ) and L(C 6 2 ) are each incomparable in Ω m . Moreover, if G is an abelian group with D(G) = m and L(G) ⊂ L(C m-1 2 ) for m ≥ 4, then G is either cyclic or an elementary 2-group ([12, Theorem 3.5]). We use Proposition 2.3 without further mention. CASE 1: m = 4.

2 .e 2 2 e 2 3 (e 1 + 2 = (-e 2 )e 1 (e 1 + 2 = e 2 2 (e 1 + 2 (e 1 +

 231221122121 Note that L(C 5 ) L(C4 2 ), that L(C 5 ) is a minimal element in Ω 5 , that L(C4 2 ) is a maximal element in Ω 5 , and that the only group G with D(G) = 5 and L(G) ⊂ L(C4 2 ) is cyclic of order five. Since max ∆(C 5 ) = 3 by Lemma 4.1.2, max ∆(C 3 ⊕ C 3 ) = 1 by [8, Corollary 6.4.9], and max ∆(C 2 ⊕ C 4 ) = 2 by Lemma 5.1.2, it follows that L(C 5 ) ⊂ L(C 2 ⊕ C 4 ) ⊂ L(C 3 ⊕ C 3 ) and L(C 5 ) ⊂ L(C 3 ⊕ C 3 ).Theorems 4.1 and 4.5 in[START_REF] Geroldinger | Systems of sets of lengths: transfer Krull monoids versus weakly Krull monoids[END_REF] show that[START_REF] Fan | Power monoids: A bridge between factorization theory and arithmetic combinatorics[END_REF][START_REF] Geroldinger | Sets of lengths[END_REF] ∈ L(C 3 ⊕ C 3 ) \ L(C 2 ⊕ C 4 ). Thus the claim follows. CASE 3: m = 6.Every finite abelian group G with D(G) = 6 is isomorphic to one of the following groups:C 6 , C 2 2 ⊕ C 4 , C 5 2 . Again, we note that L(C 6 ) L(C 5 2 ). Since L(C 6 ) is minimal in Ω 6 , and L(C 5 2 ) and L(C 2 2 ⊕ C 4 ) are both maximal in Ω 6 , it remains to show that L(C 6 ) ⊂ L(C 2 2 ⊕ C 4 ). Since max ∆ * (C 6 ) = 4 and max ∆ (C 2 2 ⊕ C 4 ) = 2 by Proposition 2.2, it follows that L(C 6 ) ⊂ L(C 2 2 ⊕ C 4 ). CASE 4: m = 7.Every finite abelian group G with Davenport constant D(G) = 7 is isomorphic to one of the following groups:C 7 , C 2 ⊕ C 6 , C 4 ⊕ C 4 , C 3 2 ⊕ C 4 , C 3 3 , C 6 2 . By Theorem 1.1.2, L(C 7 ) and L(C62 ) are incomparable in Ω 7 . Since all groups G in the above list satisfyD(G) = D * (G) = 7, Theorem 1.1.4 implies that L(C 2 ⊕ C 6 ) is incomparable in Ω 7 . Next we show that L(C 3 2 ⊕ C 4 ) is incomparable in Ω 7 . By Theorem 1.1.3, it is maximal in Ω 7 .Thus we have to verify thatL(C 3 3 ) ⊂ L(C 3 2 ⊕ C 4 ) and L(C 4 ⊕ C 4 ) ⊂ L(C 3 2 ⊕ C 4 ) . If (e 1 ,e 2 , e 3 ) is a basis of C 3 3 and U = e 2 1 e 2 + e 3 ), then L U (-U ) = {2, 3, 4, 5, 7} and Lemma 5.6 shows that {2, 3, 4, 5, 7} / ∈ L(C 3 2 ⊕ C 4 ). Let (e 1 , e 2 ) be a basis of C 4 ⊕ C 4 with ord(e 1 ) = ord(e 2 ) = 4 and let U = e 3 2 e 1 (e 1 + e 2 )(e 1 + 2e 2 ) 2 . Then U (-U ) = e 3 2 (e 1 + 2e 2 )(-e 1e 2 ) (-e 2 ) 2 (e 1 + 2e 2 )(-e 1 ) (-e 2 )e 1 (e 1 + e 2 )(-e 1 + 2e 2 ) e 2 )(e 1 + 2e 2 ) 2 e 2 (-e 1 )(-e 1e 2 )(-e 1 + 2e 2 ) (e 2 (-e 2 ) 2e 2 )(-e 1 ) (-e 2 ) 2 (-e 1 + 2e 2 )e 1 e 2 (-e 2 ) (e 1 + e 2 )(-e 1e 2 ) (e 1 + 2e 2 )(-e 1 + 2e 2 ) = e 2 (e 1 + e 2 )(-e 1 + 2e 2 ) (-e 2 )(-e 1e 2 )(e 1 + 2e 2 ) e 2 (-e 2 ) 2e 2 )(-e 1 + 2e 2 ) e 1 (-e 1 ) , whence L U (-U ) = [2, 7]. By Lemma 5.6, we infer that [2, 7] / ∈ L(C 3 2 ⊕ C 4 ).

  page 75, Theorem 5.3.1]. Proofs of the remaining claims can be found in [8, Chapter 6]. Proposition 2.3. Let G and G ′ be finite abelian groups with D(G) ≥ 4 such that L

  = e 1 e 2 e 3 e 4 e {3,4,5} e {1,2,5} , and V 2 = e 1 e {1,2} e 3 e 4 e 5 e [2,5]

		and L(U 2 [1,5] ) = {2, 6}. All remaining sets, apart
	from [4, 11], are already in L(C 4 2 ) ([12, Theorem 4.8 and Proposition 4.10]). It remains to verify that [4, 11] ∈ L(C 5 2 ). To do so we define
	(3.1)	V 1

  Let z be a factorization of U V 2 . The atoms, that divide z and contain e {1,2} , are U {1,2} , V {1,2} , V 2 , and V ′ 2 = e 0 e 2 e [2,5] e {1,2} . If z is divisible by U {1,2} , then z = U {1,2} V [2,5] e 2

	3 e 2 4 e 2 5 , whence |z|
	2 2 e 2 3 e 2 4 , whence |z| = 5. This shows
	L(U V 1 ) = {2, 4, 5}.

  e 1 e 2 e {1,3} e {2,4} e {3,4} , and U ′ 3 = e {1,3} e {2,4} e {3,4} e 3 e 4 are atoms of lengths 5 and that L

  Every factorization z of A can be written as z 1 z 2 , where z 1 is a factorization ofA 1 = U 2 [1,2] U 2 and z 2 is a factorization of U 2k . Thus, it suffices to show that L(U 2 [1,2] U 2 ) = {4,5, 6, 8, 9}. Let z be a factorization of U 2 [1,2] U 2 . We do a case analysis depending on the atom dividing z and containing the element e [1,2] . If z is divisible by U 2 [1,2] , then |z| = 4 or |z| = 8. If z is divisible by e 2

	2] e 2 0 e 2 3 e 2 4 e 2 5 ,
	whence |z| = 6. If z is divisible by V 2 [1,2] , then z = V 2 [1,2] e 2 1 e 2 2 , whence |z| = 4.
	2. We set A = U 2 [1,2] U 2k+2 and assert that L(A) = 2k + {4, 5, 6, 8, 9} + 4 • [0, k]. [1,2] ,
	then z = e 2 [1,2] e 2 1 e 2

2 y, where y is a factorization of U 2 , whence |z| = 5 or |z| = 9. If z is divisible by

  2 1 ) e 2 2 (e 1e 2 ) 2 i (-e 2 ) 2 (e 1 + e 2 ) 2 i e 2 (-e 2 ) W 2 divides z or (-W ) divides z. We may assume without restriction that W 2 divides z. Then z = W 2 e 2 2 (e 1e 2 ) 2 i+1 (-e 2 ) 2 (e 1 + e 2 ) 2 i e 2 (-e 2 )

	with i ∈ [0, (v -1)/2], whence |z| ∈ {2n + 1 -2i : i ∈ [0, (v -1)/2]}.		
	CASE 2.2: W (-W ) divides z.					
	Then					
	z = W (-W ) e 2 2 (e 1 -e 2 ) 2 i	(-e 2 ) 2 (e 1 + e 2 ) 2 i	e 2 (-e 2 )	v-1-2i	(e 1 + e 2 )(e 1 -e 2 )	2n-1-v-2i
	with i ∈ [0, (v -1)/2], whence |z| ∈ {2n -2i : i ∈ [0, (v -1)/2]}.		
	CASE 2.3: v-2-2i	(e 1 + e 2 )(e 1 -e 2 )	2n-2-v-2i
				v-2i	2n-v-2i

(e 1 + e 2 )(e 1e 2 )
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Then [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF]Lemma 3.6] implies that L(A) is either an interval or an AMP with periods {0, 1, 4}, {0, 3, 4}, {0, 1, 2, 4}, {0, 1, 3, 4}, or {0, 2, 3, 4}, and all these cases actually occur. Thus L(A) ∈ L(C 5 2 ) by Propositions 3.3, 3.5, 3.6, and Proposition 3.11. CASE 2: supp(A) = {g, 2g, 4g, -g}.

Then [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF]Lemma 3.7] implies that L(A) is either an interval or an AMP with periods {0, 1, 2, 4}, {0, 1, 3, 4}, or {0, 2, 3, 4}, and all these cases actually occur. Thus L(A) ∈ L(C 5 2 ) by Proposition and Proposition 3.3. CASE 3: supp(A) = {g, 2g, 3g, -g} or supp(A) = {g, 3g, 4g, -g}.

Then [START_REF] Geroldinger | A characterization of Krull monoids for which sets of lengths are (almost) arithmetical progressions[END_REF]Lemma 3.3] shows that L(A) is an interval, whence L(A) ∈ L(C 5 2 ) by Proposition 3.3. CASE 4: supp(A) = G \ {0}.

Then L(A) is an interval by [8, Theorem 7.6.9], whence L(A) ∈ L(C 5 2 ) by Proposition 3.3.

Proof of Theorem 1.1.2

The goal in this section is to prove Theorem 1.1.2. We start with three lemmas.

Lemma 4.1. Let G be a finite abelian group with |G| ≥ 3.

1. following statements are equivalent. 

Then there are W 0 , . . . , W r-

there is e r ∈ G such that (e 1 , . . . , e r ) is a basis of G, U = (e 0 + e r )e 1 • . . . • e r , and W = (e 0 + e r )e 0 e r . This implies that

There are the following two cases. CASE 3.1:

Next suppose that m = 6. Then r = 2 and G is isomorphic to one of the following groups:

Then 1.1.2 implies that G is neither cyclic nor an elementary 2-group. Thus Lemma 4.1.

Thus it remains to consider the case where m is odd and to prove the following assertion.

, which yields a contradiction and ends the proof. Since 2n + 1 = m = r + 4 ≥ 7, there is s ∈ N 0 such that r ∈ {2s + 2, 2s + 3}. We distinguish two cases.

Suppose that r = 2s + 2. We set

, and

Suppose that r = 2s + 3. We set

, and 

L .

The next lemma, which is needed in the proof of Corollary 1.2, shows that the above result does not hold without the assumption that n r-1 ≥ 3. Proof. We start with the following simple observations.

• The sum of any two elements of G of order four has order two.

• If W ∈ A(G), the number of elements of order four in W (counted with multiplicity) is even.

2 ) = 5, U cannot have five elements (counted with multiplicity) of order two. Thus, the number of elements of order four in U is equal to four or six. We set U = g 1 • . . . • g 7 with ord(g 1 ) ≤ . . . ≤ ord(g 7 ). Suppose for a contradiction that there are

Assume to the contrary that |W 3 | = 7. This would mean that W 3 arises from U by replacing some of the elements from U by their inverses. Thus there is a subsequence T of U such that [START_REF] Geroldinger | The catenary degree of Krull monoids I[END_REF]. We distinguish two cases. CASE 1: ord(g 3 ) = 2 and ord(g 4 ) = 4. 

If n = 2, then D(G) = 5 and the claim follows from Corollary 1.2. Suppose that n ≥ 3. We set G ∼ = C n1 ⊕ . . . ⊕ C nr with 1 < n 1 | . . . | n r and we choose a basis (e 1 , . . . , e r ) of G with ord(e i ) = n i for i ∈ [1, r]. By Theorem 1.1.2, G is neither cyclic nor an elementary 2-group, whence r ≥ 2 and n r ≥ 3. We consider the atom U = e n1-1

If r ≥ 3, then U (-U ) has no minimal zero-sum subsequence of length 3, which implies that 2n = D(G) -1 ∈ L(U (-U )), a contradiction to Proposition 5.3. Thus r = 2 and we distinguish several cases.

By [START_REF] Geroldinger | Non-Unique Factorizations[END_REF]Lemma 6.6.4],

). Thus, if n 1 is odd, then the second largest number of this set is odd, a contradiction to Proposition 5.3.

If

) (the first equation follows from [START_REF] Geroldinger | Non-Unique Factorizations[END_REF]Theorem 6.3.4] and the inequality follows from [7, Theorem 5.1]), a contradiction to

Suppose that n 1 = 4. We consider the atom V = e 4n-1 2 e 1 (e 1 + e 2 )(e 1 -2e 2 )(e 1 + 2e 2 ). Then

2 (e 1 +2e 2 )(-e 1 -e 2 ) (-e 2 ) 4n-2 (e 1 -2e 2 )(-e 1 ) e 1 (-e 2 )(e 1 +e 2 )(-e 1 +2e 2 )(-e 1 -2e 2 ) , whence {2, 3, D(G)} ⊂ L V (-V ) , a contradiction to Proposition 5.3. Suppose that n 1 ≥ 6 is even and n 1 = n 2 . We set m = n 2 /2 and consider the atom

and assert that is a factorization of length n 1 + m -2.

Since n 1 ≥ 6, L V (-V ) \ {2} consists of seven elements but it is not an interval. Thus Proposition 5.3 implies that L V (-V ) / ∈ L(C 2 ⊕ C 2n ), a contradiction to L(G) ⊂ L(C 2 ⊕ C 2n ).