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ON THE INCOMPARABILITY OF SYSTEMS OF SETS OF LENGTHS

ALFRED GEROLDINGER AND WOLFGANG A. SCHMID

Abstract. Let H be a Krull monoid with finite class group G such that every class contains a prime
divisor. We consider the system L(H) of all sets of lengths of H and study when L(H) contains or is
contained in a system L(H′) of a Krull monoid H′ with finite class group G′, prime divisors in all classes
and Davenport constant D(G′) = D(G). Among others, we show that if G is either cyclic of order m ≥ 7
or an elementary 2-group of rank m− 1 ≥ 6, and G′ is any group which is non-isomorphic to G but with
Davenport constant D(G′) = D(G), then the systems L(H) and L(H′) are incomparable.

1. Introduction

Let H be a Krull monoid or a Krull domain with class group G such that every class contains a prime
divisor. The system L(H) of all sets of lengths of H is a well-studied invariant describing factorizations
in H . It is classic that H is factorial if and only if |G| = 1 and that H is half-factorial (i.e., |L| = 1 for
all L ∈ L(H)) if and only if |G| ≤ 2. All sets of lengths L ∈ L(H) are finite and, if |G| ≥ 3, then for
every N ∈ N there is LN ∈ L(H) such that |LN | ≥ N . Every finite subset of N≥2 lies in L(H) if and only
if the class group G is infinite. Suppose that G is finite with |G| ≥ 3. Then sets of lengths in L(H) are
well-structured and depend only on the class group G. More precisely, we have L(H) = L(G) := L

(

B(G)
)

,
where B(G) denotes the monoid of zero-sum sequences over G. We refer to [8, 9] for background on Krull
monoids and their connection to additive combinatorics and to [23, 3, 2, 18, 24] for recent work on sets of
lengths.

The standing conjecture is that the system L(H) determines the class group G (apart from two trivial
exceptions, given in Theorem A below). This means that, if H ′ is a Krull monoid with class group G′

such that every class contains a prime divisor, then L(H) = L(H ′) if and only if the class groups G and
G′ are isomorphic. For small groups it is easy to write down their systems of sets of lengths. We denote
by Cn a cyclic group of order n ∈ N and recall the following well-known result ([12, Proposition 3.3 and
Theorem 3.6]).

Theorem A.

1.
{

{k} : k ∈ N0

}

= L(C1) = L(C2).

2.
{

y + 2k + [0, k] : y, k ∈ N0

}

= L(C3) = L(C2 ⊕ C2) ( L(G) for all finite abelian groups G with
D(G) ≥ 4.

The above result covers all groups G with Davenport constant D(G) ≤ 3, and the above mentioned
conjecture expects an affirmative answer to the following problem.

The Characterization Problem. Let G be a finite abelian group with Davenport constant D(G) ≥ 4,
and let G′ be an abelian group with L(G) = L(G′). Are G and G′ isomorphic?

We refer to the surveys ([5, 16]) for background on the Characterization Problem and to [1, 26, 25, 11, 15]
for recent progress. In [12], the Characterization Problem was studied with a new approach, and in the
present paper we further pursue this novel point of view. Indeed, we consider the family

Ω =
(

L(G)
)

G
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of systems of sets of lengths L(G), where G is running through a set of representatives of non-isomorphic
finite abelian groups. If G′ is a subgroup of a group G, then L(G′) ⊂ L(G) and, given two groups G1 and
G2, we have L(Gi) ⊂ L(G1 ⊕G2) for each i ∈ [1, 2]. Thus Ω is a directed family and, by Theorem A and
[8, Theorem 7.4.1], we have

L(C1) = L(C2) ( L(C3) = L(C2 ⊕ C2) ( L(G) ( L(G∗)

for every finite abelian group G with D(G) ≥ 4 and every infinite abelian group G∗.
If G and G′ are finite abelian groups with L(G) = L(G′), then their Davenport constants are equal

(Proposition 2.3). Furthermore, for every positive integer m ∈ N there are only finitely many non-
isomorphic finite abelian groups G with Davenport constant D(G) = m. We consider, for every m ∈ N,
the finite family

Ωm =
(

L(G)
)

G with D(G)=m

of all systems L(G), where G is running through a set of representatives of non-isomorphic finite abelian
groups G having Davenport constant D(G) = m. Thus, the Characterization Problem has an affirmative
answer if and only if the systems in Ωm are pairwise distinct for all m ≥ 4. We say that an element L(G)
of a subfamily Ω′ of Ω is

• maximal in Ω′ if L(G) ⊂ L(G′) implies that G = G′ for every element L(G′) in Ω′,
• minimal in Ω′ if L(G′) ⊂ L(G) implies that G = G′ for every element L(G′) in Ω′, and
• incomparable in Ω′ if it is maximal and minimal in Ω′, that is L(G) is not comparable to any other
element of Ω′.

Now we can formulate the main result of the present paper. By Theorem A, it is sufficient to consider
finite abelian groups G with Davenport constant D(G) ≥ 4.

Theorem 1.1.

1. For m ∈ [4, 6], L(Cm) is minimal in Ωm, L(Cm−1
2 ) is maximal in Ωm, and L(Cm) ( L(Cm−1

2 ).
2. For every m ≥ 7, L(Cm) is incomparable in Ωm and L(Cm−1

2 ) is incomparable in Ωm.

3. For every m ≥ 5, L(Cm−4
2 ⊕ C4) is maximal in Ωm.

4. For every n ≥ 2, L(C2 ⊕C2n) is maximal in Ω2n+1. Moreover, L(C2 ⊕C2n) is minimal among all

L(G) in Ω2n+1 stemming from groups G with D(G) = D
∗(G).

Corollary 1.2. Let G1 and G2 be non-isomorphic finite abelian groups with D(G1) = D(G2) = m ∈ [4, 7].

1. If m ∈ [4, 6] and L(G1) ⊂ L(G2), then G1 is cyclic of order m, G2 is an elementary 2-group of

rank m− 1, and L(G1) ( L(G2).
2. If m = 7, then L(G1) and L(G2) are incomparable.

Statements 1 and 2 of Theorem 1.1 will be proved, resp., in Section 3 and 4; while Statements 3 and
4 of Theorem 1.1 and Corollary 1.2 will be proved in Section 5. The proofs are based on deep results on
invariants controlling the structure of sets of lengths as well as on a careful case by case analysis when
handling small groups. In Section 2 we gather some background information on systems of sets of lengths
over finite abelian groups, and we refer to the survey [22] for more information.

2. Background on systems of sets of lengths over finite abelian groups

We denote by N the set of positive integers and by N0 the set of nonnegative integers. For integers
a, b ∈ Z, [a, b] = {x ∈ Z : a ≤ x ≤ b} is the discrete interval between a and b. Let L,L′ ⊂ Z be subsets
of the integers. Then L + L′ = {a+ b : a ∈ L, b ∈ L′} denotes their sumset, ∆(L) ⊂ N denotes the set of
successive distances of elements from L, and k ·L = {ka : a ∈ L} is the dilation of L by k. If L ⊂ N, then
ρ(L) = sup(L)/min(L) is the elasticity of L, and for L = {0} we set ρ(L) = 1. Let d ∈ N, ℓ, M ∈ N0,
and {0, d} ⊂ D ⊂ [0, d]. The set L ⊂ Z is called
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• an arithmetical multiprogression (AMP) with difference d, period D and length ℓ, if L is an
interval of minL + D + dZ (this means that L is finite nonempty and L = (minL + D + dZ) ∩
[minL,maxL]), and ℓ is maximal such that minL+ ℓd ∈ L.

• an almost arithmetical multiprogression (AAMP) with difference d, period D, length ℓ and
bound M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ

where L∗ is an AMP with difference d (whence L∗ 6= ∅), period D and length ℓ such that
minL∗ = 0, L′ ⊂ [−M,−1], L′′ ⊂ maxL∗ + [1,M ], and y ∈ Z.

For a set P , we denote by F(P ) the free abelian monoid with basis P . If a =
∏

p∈P pvp(a) ∈ F(P ), then

|a| =
∑

p∈P vp(a) ∈ N0 is the length of a, and supp(a) = {p ∈ P : vp(a) > 0} ⊂ P is the support of a.

Throughout this section, let G be an additively written finite abelian group, say G ∼= Cn1
⊕ . . .⊕Cnr

with 1 < n1 | . . . | nr, and let G0 ⊂ G be a subset.

In the above decomposition, r = r(G) is the rank of G and nr = exp(G) is the exponent of G. A tuple
(e1, . . . , es) of nonzero elements of G, with s ∈ N, is called a basis of G if G = 〈e1〉⊕ . . .⊕〈es〉. For a fixed
basis (e1, . . . , es) of G we write eI =

∑

i∈I ei for every subset I ⊂ [1, s]. In particular, we have e∅ = 0.

The monoid of zero-sum sequences over G0. The elements of the free abelian monoid F(G0) with
basis G0 are called sequences over G0. Let

S = g1 · . . . · gℓ =
∏

g∈G0

gvg(S) ∈ F(G0)

be a sequence over G0. Then |S| = ℓ ∈ N0 is the length of S and σ(S) = g1 + . . . + gℓ ∈ G is the sum
of S. We set −S = (−g1) · . . . · (−gℓ). The sequence S is said to be zero-sum free if

∑

i∈I gi 6= 0 for all
nonempty subsets I ⊂ [1, ℓ]. The monoid

B(G0) = {S ∈ F(G0) : σ(S) = 0} ⊂ F(G0)

of zero-sum sequences over G0 is a saturated submonoid of F(G0) and hence a Krull monoid. The set of
atoms of B(G0) (in other words, the set of the minimal zero-sum sequences over G0) is denoted by A(G0).
The set A(G0) is finite and

D(G0) = max{|U | : U ∈ A(G0)} ∈ N0

is the Davenport constant of G0. We have the following lower and upper bounds,

D
∗(G) := 1 +

r
∑

i=1

(ni − 1) ≤ D(G) ≤ |G| ,

where the left inequality is an equality for groups of rank r ≤ 2 and for p-groups (for recent progress on
the Davenport constant we refer to [19, 17]). Furthermore, d(G) := D(G) − 1 is the maximal length of a
zero-sum free sequence over G.

The arithmetic of B(G0). The free abelian monoid Z(G0) = F(A(G0)) is the factorization monoid of
B(G0). Let π : Z(G0) → B(G0) denote the canonical epimorphism. For every B ∈ B(G0), Z(B) = π−1(B)
is the set of factorizations of B and L(B) = {|z| : z ∈ Z(B)} is the set of lengths of B. Note that
L(1B(G0)) = {0}, and we have L(B) = {1} if and only if B ∈ A(G0). Then

L(G0) = {L(B) : B ∈ B(G0)}

is the system of sets of lengths of B(G0). The systems L(G) are of high relevance because of transfer results
in factorization theory. Indeed, if H is a transfer Krull monoid over G, then L(H) = L(G). Transfer
Krull monoids include commutative Krull monoids and Krull domains but also classes of non-commutative
Dedekind domains. We do not discuss these connections here but refer to the surveys [5, 16].
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We recall the concept of the g-norm, which is a powerful tool for the study of sets of lengths of zero-sum
sequences over cyclic groups. Let g ∈ G with ord(g) = n ≥ 2. For a sequence S = (n1g) · . . . · (nℓg) ∈
F(〈g〉), where ℓ ∈ N0 and n1, . . . , nℓ ∈ [1, n], we define

‖S‖g =
n1 + . . .+ nℓ

n
.

Note that σ(S) = 0 implies that n1 + . . .+ nℓ ≡ 0 mod n whence ‖S‖g ∈ N0. Thus, ‖ · ‖g : B(〈g〉) → N0

is a homomorphism, and ‖S‖g = 0 if and only if S = 1. If S ∈ A(G0), then ‖S‖g ∈ [1, n − 1], and if
‖S‖g = 1, then S ∈ A(G0). Arguing as above we obtain that

‖A‖g
n− 1

≤ min L(A) ≤ max L(A) ≤ ‖A‖g .

Next we define the distance of factorizations and the catenary degree. Two factorizations z, z′ ∈ Z(G0)
can be written, uniquely up to the order of the terms, in the form

z = U1 · . . . · UkV1 · . . . · Vℓ and z′ = U1 · . . . · UkW1 · . . . ·Wm

where all Ur, Vs,Wt ∈ A(G0) and all Vi 6= Wj for all i ∈ [1, ℓ] and all j ∈ [1,m]. Then d(z, z′) = max{ℓ,m}
is the distance between z and z′. For an element B ∈ B(G0), the catenary degree c(B) is the smallest
N ∈ N0 such that for any two factorizations z, z′ ∈ Z(B) there are factorizations z = z0, z1, . . . , zk = z′

of B such that d(zi−1, zi) ≤ N for all i ∈ [1, k]. Then c(G0) = max{c(B) : B ∈ B(G0)} is the catenary

degree of G0.
We say that the monoid B(G0) (resp. G0) is half-factorial if and only if |L| = 1 for all L ∈ L(G0). We

denote by

(2.1) ∆(G0) =
⋃

L∈L(G0)

∆(L) ⊂ N

the set of distances of G0 and we set

k(G0) = max{min(L \ {2}) | 2 ∈ L ∈ L(G0)} .

If ∆(G0) 6= ∅, then min∆(G0) = gcd∆(G0) and, by [8, Theorems 1.6.3 and 3.4.10]), we have

(2.2) k(G0) ≤ 2 + max∆(G0) ≤ c(G0) ≤ D(G0) .

The set of minimal distances ∆∗(G) ⊂ ∆(G) is defined as

∆∗(G) = {min∆(G0) : G0 ⊂ G with ∆(G0) 6= ∅} ⊂ ∆(G) .

For k ∈ N, the kth elasticity of G0 is defined as

(2.3) ρk(G0) = max{maxL : k ∈ L ∈ L(G0)} and ρ(G0) = sup{ρ(L) : L ∈ L(G0)}

is the elasticity of G0.

We end this section with three propositions. They gather some of the key properties and results on the
above invariants. The first proposition reveals the relevance of ∆∗(G) (see [8, Theorem 4.4.11]).

Proposition 2.1. Let G be a finite abelian group with |G| ≥ 3. There exists some M ∈ N0 such that

every set of lengths L ∈ L(G) is an AAMP with difference d ∈ ∆∗(G) and bound M .

Proposition 2.2. Let m ≥ 3.

1. ∆(Cm) = ∆(Cm−1
2 ) = [1,m− 2] and ∆∗(Cm) ⊂ [1,m− 2] = ∆∗(Cm−1

2 ).
2. max∆∗(G) = max{exp(G)− 2, r(G)− 1}.
3. Let k ∈ N. Then ρ2k(G) = kD(G), kD(G)+1 ≤ ρ2k+1(G) ≤ kD(G)+D(G)/2, and ρ(G) = D(G)/2.

If G is cyclic, then ρ2k+1(G) = kD(G) + 1 and if G is an elementary 2-group, then ρ2k+1(G) =
kD(G) + ⌊D(G)/2⌋.

Proof. The claim on max∆∗(G) follows from [14]. If G is cyclic, then ρ2k+1(G) = kD(G)+ 1 for all k ∈ N
by [9, page 75, Theorem 5.3.1]. Proofs of the remaining claims can be found in [8, Chapter 6]. �
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Proposition 2.3. Let G and G′ be finite abelian groups with D(G) ≥ 4 such that L(G) = L(G′).

1. ρ(G) = ρ(G′) and ρk(G) = ρk(G
′) for all k ∈ N. In particular, D(G) = D(G′).

2. ∆(G) = ∆(G′) and max∆∗(G) = max∆∗(G′).
3. If G is cyclic or an elementary 2-group with D(G) ≥ 4, then G ∼= G′.

Proof. 1. The claims on ρ(G) and on ρk(G) follow from Definition (2.3). Since D(G) = ρ2(G) and
D(G′) = ρ2(G

′) by Proposition 2.2, we obtain that D(G) = D(G′).
2. The claim on ∆(G) is clear by Definition (2.1). The claim on ∆∗(G) is based on Proposition 2.1

and is given in [8, Corollary 4.3.16].
3. This follows from [8, Theorem 7.3.3]. �

3. Proof of Theorem 1.1.1

The goal of this section is to prove Theorem 1.1.1. A main part is to show that L(C6) ⊂ L(C5
2 ). This

will be done in a series of subsections. We need a lot of computations with zero-sum sequences over C5
2 .

To simplify notation and to avoid repetitions, we fix the following notation until the end of this section.
We fix a basis (e1, . . . , e5) of C

5
2 . For every subset I ⊂ [1, 5], we define

eI =
∑

i∈I

ei, UI = eI
∏

i∈I

ei, and VI = eI
∏

i∈[0,5]\I

ei .

Moreover, we set e0 := e[1,5] and U := U[1,5]. If ∅ 6= I ( [1, 5], then UI and VI are minimal zero-sum
sequences over {eI , e0, . . . , e5}.

3.1. On intervals in L(C6) and L(C5
2 ). The goal of this subsection is to show that all intervals, that

lie in L(C6), also lie in L(C5
2 ). We start with two lemmas.

Lemma 3.1. Let L ∈ L(C6) with {2, 5} ⊂ L. Then L = {2, 5} or L = {2, 4, 5}, and both sets actually lie

in L(C6). In particular, [2, 5] /∈ L(C6).

Proof. Let B ∈ B(C6) with {2, 5} ⊂ L(B). Then B = U1U2 with U1, U2 ∈ A(C6) and |Ui| ≥ 5 for i ∈ [1, 2].
If g ∈ C6 with ord(g) = 6, then W = g6, V = g4(2g), −W , and −V are the atoms of length at least
5. Since L((−W )W ) = {2, 6}, L((−V )V ) = {2, 4, 5} and L((−W )V ) = L((−V )W ) = {2, 5}, the claim
follows. �

Lemma 3.2.

1. [2, 3], [2, 4], [3, 6], [3, 7], [4, 9], [4, 10], [4, 11] ∈ L(C5
2 ). Moreover, {2, 4}, {2, 5}, {2, 6}, {2, 3, 5}, and

{2, 4, 5} are in L(C5
2 ).

2. For each k ∈ N≥2 we have [2k, 6k − 4], [2k, 6k− 3], [2k, 6k − 2], [2k, 6k− 1] ∈ L(C5
2 ).

3. For each k ∈ N we have [2k + 1, 6k − 2], [2k + 1, 6k − 1], [2k + 1, 6k], [2k + 1, 6k + 1] ∈ L(C5
2 ).

Proof. 1. We have L(U2
[1,3]) = {2, 4}, L(U2

[1,4]) = {2, 5}, and L(U2
[1,5]) = {2, 6}. All remaining sets, apart

from [4, 11], are already in L(C4
2 ) ([12, Theorem 4.8 and Proposition 4.10]). It remains to verify that

[4, 11] ∈ L(C5
2 ). To do so we define

(3.1) V1 = e1e2e3e4e{3,4,5}e{1,2,5}, and V2 = e1e{1,2}e3e4e5e[2,5]

and we assert that L(U2V1V2) = [4, 11]. Since A = U2V1V2 is not a square and |A| = 24, it follows that
max L(A) ≤ 11 whence L(A) ⊂ [4, 11]. We assert that L(UV1) = {2, 4, 5} and that L(UV2) = {2, 3, 5}.

Let z be a factorization of UV1. The atoms, that divide z and contain e{1,2,5}, are U{1,2,5}, V{1,2,5},

V1, and V ′
1 = e0e5e{3,4,5}e{1,2,5}. If z is divisible by U{1,2,5}, then z = U{1,2,5}V{3,4,5}e

2
3e

2
4, whence |z| = 4.

If z is divisible by V{1,2,5}, then z = V{1,2,5}U{3,4,5}e
2
1e

2
2, whence |z| = 4. If z is divisible by V1, then

z = UV1, whence |z| = 2. If z is divisible by V ′
1 , then z = V ′

1e
2
1e

2
2e

2
3e

2
4, whence |z| = 5. This shows

L(UV1) = {2, 4, 5}.
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Let z be a factorization of UV2. The atoms, that divide z and contain e{1,2}, are U{1,2}, V{1,2}, V2,

and V ′
2 = e0e2e[2,5]e{1,2}. If z is divisible by U{1,2}, then z = U{1,2}V[2,5]e

2
3e

2
4e

2
5, whence |z| = 5. If z is

divisible by V{1,2}, then z = V{1,2}U[2,5]e
2
1, whence |z| = 3 If z is divisible by V2, then z = UV2, whence

|z| = 2. If z is divisible by V ′
2 , then z = V ′

2e
2
1e

2
3e

2
4e

2
5, whence |z| = 5. This shows L(UV2) = {2, 3, 5}.

Consequently, [4, 10] = {2, 3, 5}+ {2, 4, 5} ⊂ L(U2V1V2). Since

V1V2 =
(

e21

)(

e23

)(

e24

)(

e{1,2,5}e{1,2}e5

)(

e[2,5]e2e{3,4,5}

)

,

and since L(U2) = {2, 6}, it follows that 5 ∈ L(V1V2), whence 11 ∈ L(U2V1V2).
2. and 3. (i) Claim 1: [2k + 1, 6k + 1] ∈ L(C5

2 ) for each k ∈ N.
Let k ∈ N. We recall from [12, Proposition 4.10, proof of assertion A1] that

(3.2) U ′
1 = e[1,4]e1 · . . . · e4, U ′

2 = e1e2e{1,3}e{2,4}e{3,4}, and U ′
3 = e{1,3}e{2,4}e{3,4}e3e4

are atoms of lengths 5 and that L(U ′
1U

′
2U

′
3) = [3, 7]. We assert that L(U2k−2U ′

1U
′
2U

′
3) = [2k + 1, 6k + 1].

Since L(U2k−2) = 2k − 2 + 4 · [0, k − 1], it follows that 2k − 2 + 4 · [0, k − 1] + [3, 7] = [2k + 1, 6k + 1] ⊂
L(U2k−2U ′

1U
′
2U

′
3). It remains to show the converse inclusion. Since |U2k−2U ′

1U
′
2U

′
3| = 6(2k − 2) + 15, it

follows that the minimal length is at least (12k+3)/6 and as it is an integer it is at least 2k+1. Moreover,
as 0 does not occur in this sequence, the maximal length is at most (12k + 3)/2 and thus it is at most
6k + 1. This shows that [2k + 1, 6k + 1] ∈ L(C5

2 ).
(ii) Claim 2: [2k, 6k − 4] ∈ L(C5

2 ) for each k ≥ 2.
Since 1 + [2k + 1, 6k + 1] = [2(k + 1), 6(k + 1) − 4], we conclude that [2k, 6k − 4] ∈ L(C5

2 ) for each
k ∈ N≥2.

(iii) Claim 3: [2k, 6k − 1] ∈ L(C5
2 ) for each k ≥ 2.

Let k ≥ 2. We consider L(U2k−2V1V2) with V1, V2 as in (3.1). Since L(U2V1V2) = [4, 11] and L(U2k−4) =
2k− 4+ 4 · [0, k− 2], it follows that 2k− 4+ 4 · [0, k− 2]+ [4, 11] = [2k, 6k− 1] ⊂ L(U2k−2V1V2). To prove
the converse inclusion, it suffices to note that |U2k−2V1V2| = 12k, and thus the minimal length it is at
least 2k. Since the sequence does not contain 0 and is not a square it follows that the maximal length is
less than 6k.

(iv) Claim 4: [2k, 6k − 2] ∈ L(C5
2 ) for each k ≥ 2.

Let k ≥ 2. We recall from [12, Proposition 4.10, proof of assertion A3] that L(U ′2
1 U ′2

2 ) = [4, 10], where
U ′
1 and U ′

2 are as defined above. Now, we consider L(U2k−4U ′2
1 U ′2

2 ), with U ′
1 and U ′

2 as above. It follows
that 2k − 4 + 4 · [0, k − 2] + [4, 10] = [2k, 6k − 2] ⊂ L(U2k−4U ′2

1 U ′2
2 ). To prove the converse inclusion, it

suffices to note that |U2k−4U ′2
1 U ′2

2 | = 12k − 4, and thus the minimal length it is at least (12k − 4)/6 and
thus at least 2k. Since the sequence does not contain 0, it follows that that maximal length is at most
6k − 2 and the argument is complete.

(v) Claim 5: [2k, 6k − 3] ∈ L(C5
2 ) for each k ≥ 2.

Let k ≥ 2. We recall from [12, Proposition 4.10, proof of assertion A2] that L(U ′2
1 U ′

2U
′
4) = [4, 9], where

U ′
1 and U ′

2 are as in (3.2) and U ′
4 = e{1,2}e{1,3}e{2,4}e{3,4}. We consider L(U2k−4U ′2

1 U ′
2U

′
4), and obtain

2k − 4 + 4 · [0, k − 2] + [4, 9] = [2k, 6k − 3] ⊂ L(U2k−4U ′2
1 U ′

2U
′
4). For converse inclusion, we note that

|U2k−4U ′2
1 U ′

2U
′
4| = 12k−5, and thus the minimal length is at least 2k while the maximal length is at most

6k − 3.
(vi) Claim 6: [2k + 1, 6k − 2], [2k + 1, 6k − 1], [2k + 1, 6k] ∈ L(C5

2 ) for each k ∈ N.
Noting that [2k+1, 6k−2] = 1+[2k, 6k−3], [2k+1, 6k−1] = 1+[2k, 6k−2], [2k+1, 6k] = 1+[2k, 6k−1]

and the latter intervals are in L(C5
2 ) for k ≥ 2, it remains to study the case k = 1. By 1., we have [3, 6] ∈

L(C5
2 ). Moreover, [2, 3], [2, 4] ∈ L(C5

2 ), implies [3, 4] = 1+[2, 3 ∈ L(C5
2 ) and [3, 5] = 1+[2, 4] ∈ L(C5

2 ). �

Proposition 3.3. Every L ∈ L(C6), that is an interval, lies in L(C5
2 ).

Proof. Let L ∈ L(C6) be an interval. The claim holds if L is singleton. Suppose that |L| ≥ 2. We set
m = minL and n = maxL. By Proposition 2.2, we have ρ(C6) = 3, ρm(C6) = 3m for even m, and
ρm(C6) = 3(m−1)+1 for odd m. Thus n ≤ 3m, and we assert that n < 3m. Assume to the contrary that



ON THE INCOMPARABILITY OF SYSTEMS OF SETS OF LENGTHS 7

n = 3m, and letB ∈ B(C6) with L(B) = L. If 0 | B, then min L(0−1B) = m−1 and maxL(0−1B) = 3m−1,
a contradiction to ρ(C6) = 3. Thus 0 ∤ B. Moreover, each atom in a factorization of length m must have
length 6. However, the only two minimal zero-sum sequences of length 6 over C6 are g6 and (−g)6, where
g is a generating element of C6. Thus supp(B) ⊂ {−g, g}. However, ∆({−g, g}) = {4}, contradicting the
assumption that L(B) = L is an interval.

We now write n = m + l with l ∈ N. If l ≤ 2, then [m,m + l] = (m − 2) + [2, 2 + l] ∈ L(C5
2 ) by

Lemma 3.2. Suppose that l = 3. Since [2, 5] /∈ L(C6) by Lemma 3.1, it follows that m ≥ 3, whence
[m,m + l] = (m − 3) + [3, 6] ∈ L(C5

2 ) by Lemma 3.2. Now we suppose that l ≥ 4 and distinguish two
cases.

CASE 1: m is even, say m = 2k′.
By the argument above, we get n < 3m = 6k′. Thus, l ≤ 4k′ − 1, say l = 4k − i with k ∈ [2, k′] and

i ∈ [1, 4]. Then m− 2k ≥ 0 and [m,m+ l] = m− 2k + [2k, 6k − i] ∈ L(C5
2 ) by Lemma 3.2.

CASE 2: m is odd, say m = 2k′ + 1.
By the argument above, we get n ≤ 6k′ + 1. Thus l ≤ 4k′, say l = 4k − i with k ∈ [1, k′] and i ∈ [0, 3].

Then m− (2k + 1) ≥ 0 and [m,m+ l] = m− (2k + 1) + [2k + 1, 6k + 1− i] ∈ L(C5
2 ) by Lemma 3.2. �

3.2. On AMPs with periods {0, 1, 4} and {0, 3, 4} in L(C6) and L(C5
2 ). The goal of this subsection

is to show that all AMPs with period {0, 1, 4} or with {0, 3, 4}, that lie in L(C6), also lie in L(C5
2 ).

Lemma 3.4. The sets {3, 4, 7}, {3, 6, 7}, {4, 5, 8, 9}, {4, 7, 8, 11}, and {5, 8, 9, 12, 13} lie in L(C6) and

in L(C5
2 ).

Proof. 1. First we show that the given sets lie in L(C6). Let g ∈ G with ord(g) = 6 and set

A = (2g)gv+4(−g)w+2 , where v, w ∈ N0 with v ≡ w + 2 mod 6.

CASE 1: v ≡ 0 mod 6.
By [10, Lemma 3.6], we have

L(A) = 1 + (L(gv(−g)w+2) ∪ L(gv+4(−g)w)),

L(gv(−g)w+2) =
v + w + 2

6
+ 4 · [0,

min{v, w + 2}

6
], and

L(gv+4(−g)w) = 3 +
v + w + 2

6
+ 4 · [0,

min{v, w − 4}

6
] .

If v = 6 and w = 4, then L(A) = {3, 6, 7}. If v = 6 and w = 10, then L(A) = {4, 7, 8, 11}. If v = 12 and
w = 10, then L(A) = {5, 8, 9, 12, 13}.

CASE 2: v ≡ 2 mod 6.
By [10, Lemma 3.6], we have

L(A) = 1 + (L(gv(−g)w+2) ∪ L(gv+4(−g)w)),

L(gv(−g)w+2) = 1 +
v + 4 + w

6
+ 4 · [0,

min{v − 2, w}

6
], and

L(gv+4(−g)w) =
v + 4 + w

6
+ 4 · [0,

min{v + 4, w}

6
] .

If v = 2 and w = 6, then L(A) = {3, 4, 7}. If v = 8 and w = 6, then L(A) = {4, 5, 8, 9}.
2. Now we show that the sets lie in L(C5

2 ). If A1 = U2(e1e2e[1,2]), then

A1 = Ue21e
2
2V[1,2] = e21 · . . . · e

2
5e

2
0U[1,2] ,

whence L(A1) = {3, 4, 7}. If A2 = U2(e1 · . . . · e4e[1,4]), then

A2 = Ue21 · . . . · e
2
4V[1,4] = e21 · . . . · e

2
5e

2
0U[1,4] ,
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whence L(A2) = {3, 6, 7}. Note that L(U2A2) = {3, 6, 7}+ {2, 6}= {5, 8, 9, 12, 13}. If A3 = U3U[1,2], then

A3 = U3U[1,2] = Ue21 · . . . · e
2
5e

2
0U[1,2] = U2e21e

2
2V[1,2] = (e21)

2(e22)
2e23e

2
4e

2
5e

2
0V[1,2] ,

whence L(A3) = {4, 5, 8, 9}. If A4 = U3V[1,2], then

A4 = U3V[1,2] = U2U[1,2]e
2
3e

2
4e

2
5e

2
0 = Ue20e

2
1e

2
2e

2
3e

2
4e

2
5V[1,2] = U[1,2]e

2
1e

2
2(e

2
3)

2(e24)
2(e25)

2(e20)
2 ,

whence L(A4) = {4, 7, 8, 11}. �

Proposition 3.5. Every L ∈ L(C6), that is an AMP with period {0, 3, 4}, lies in L(C5
2 ).

Proof. Let L ∈ L(C6) be an AMP with period {0, 3, 4} and set m = minL. If L is a singleton, then the
claim holds. Suppose that L is not a singleton. Then there is k ∈ N0 such that L has one of the following
two forms.

• L = {m,m+ 3}+ 4 · [0, k].
• L =

(

{m,m+ 3}+ 4 · [0, k]
)

∪ {m+ 4(k + 1)}.

We distinguish two cases.
CASE 1: L = {m,m+ 3}+ 4 · [0, k] for some k ∈ N0.
Then

ρ(L) =
m+ 4k + 3

m
≤ ρ(C6) = 3 ,

whence m ≥ 2k + 2. Clearly, if {2k + 2, 2k + 5} + 4 · [0, k] ∈ L(C5
2 ), then the same is true for L. Thus

we may assume that m = 2k + 2. If k = 0, then L = {2, 5} ∈ L(C5
2 ) by Lemma 3.2. Now suppose that

k ≥ 1. Then we have

L = {2k + 2, 2k + 5}+ 4 · [0, k] = {2k + 2, 2k + 5, 2k + 6, 2k + 9}+ 4 · [0, k − 1]

= {4, 7, 8, 11}+ 2(k − 1) + 4 · [0, k − 1] .

If A4 = U3V[1,2], then L(A4) = {4, 7, 8, 11} by Lemma 3.4, whence

L
(

A4U
2(k−1)

)

= L(C) + L
(

U2(k−1)
)

= {4, 7, 8, 11}+ 2(k − 1) + 4 · [0, k − 1] = L .

CASE 2: L =
(

{m,m+ 3}+ 4 · [0, k]
)

∪ {m+ 4(k + 1)} for some k ∈ N0.
Then

ρ(L) =
m+ 4k + 4

m
≤ ρ(C6) = 3 ,

whence m ≥ 2k+2. Assume to the contrary that m = 2k+2. Then ρ(L) = 3. Since every set L0 ∈ L(C6)
with ρ(L0) = 3 is an arithmetical progression with difference 4, it follows that ρ(L) < 3 and this implies
m ≥ 2k+3. Clearly, if

(

{2k+3, 2k+6}+4 · [0, k]
)

∪{6k+7} ∈ L(C5
2 ), then the same is true for L. Thus

we may assume that m = 2k + 3. Then we have

L =
(

{2k + 3, 2k + 6}+ 4 · [0, k]
)

∪ {6k + 7}

= {3, 6}+ 2k + 4 · [0, k] ∪ {6k + 7} = {3, 6, 7}+ 2k + 4 · [0, k] .

If A2 = U2U[1,4], then L(A2) = {3, 6, 7} by Lemma 3.4, whence

L
(

A2U
2k
)

= {3, 6, 7}+ 2k + 4 · [0, k] = L . �

Proposition 3.6. Every L ∈ L(C6), that is an AMP with period {0, 1, 4}, lies in L(C5
2 ).

Proof. Let L ∈ L(C6) be an AMP with period {0, 1, 4} and set m = minL. If L is a singleton, then the
claim holds. Suppose that L is not a singleton. Then there is k ∈ N0 such that L has one of the following
two forms.

• L = {m,m+ 1}+ 4 · [0, k].
• L =

(

{m,m+ 1}+ 4 · [0, k]
)

∪ {m+ 4(k + 1)}.
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We distinguish two cases.
CASE 1: L = {m,m+ 1}+ 4 · [0, k] for some k ∈ N0.
Then

ρ(L) =
m+ 4k + 1

m
≤ ρ(C6) = 3 ,

whence m ≥ 2k + 1. If m = 2k + 1, then L = {2k + 1, 2k + 2}+ 4 · [0, k] and thus

maxL = 6k + 2 ≤ ρ2k+1(C6) = 6k + 1 ,

a contradiction. Thus m ≥ 2k + 2. Clearly, if {2k + 2, 2k + 3}+ 4 · [0, k] ∈ L(C5
2 ), then the same is true

for L. Thus we may assume that m = 2k+ 2. If k = 0, then L = {2, 3} ∈ L(C5
2 ) by Lemma 3.2. Suppose

that k ≥ 1. Then

L = {2k + 2, 2k + 3}+ 4 · [0, k]

= {2k + 2, 2k + 3, 2k + 6, 2k + 7}+ 4 · [0, k − 1]

= {2(k − 1) + 4, 2(k − 1) + 5, 2(k − 1) + 8, 2(k − 1) + 9}+ 4 · [0, k − 1]

= {4, 5, 8, 9}+ 2(k − 1) + 4 · [0, k − 1] .

If A3 = U3U[1,2], then L(A3) = {4, 5, 8, 9} by Lemma 3.4, whence

L
(

A3U
2k−2

)

= {3, 4, 7}+ 2(k − 1) + 4 · [0, k − 1] = L .

CASE 2: L =
(

{m,m+ 1}+ 4 · [0, k]
)

∪ {m+ 4(k + 1)} for some k ∈ N0.
Then

ρ(L) =
m+ 4k + 4

m
≤ ρ(C6) = 3 ,

whence m ≥ 2k+2. Assume to the contrary that m = 2k+2. Then ρ(L) = 3. Since every set L0 ∈ L(C6)
with ρ(L0) = 3 is an arithmetical progression with difference 4, it follows that ρ(L) < 3 and this implies
m ≥ 2k+3. Clearly, if

(

{2k+3, 2k+4}+4 · [0, k]
)

∪{6k+7} ∈ L(C5
2 ), then the same is true for L. Thus

we may assume that m = 2k + 3. Then we have

L =
(

{2k + 3, 2k + 4}+ 4 · [0, k]
)

∪ {6k + 7}

= {3, 4}+ 2k + 4 · [0, k] ∪ {6k + 7} = {3, 4, 7}+ 2k + 4 · [0, k] .

If A1 = U2U[1,2], then L(A1) = {3, 4, 7} by Lemma 3.4, whence

L
(

A1U
2k
)

= {3, 4, 7}+ 2k + 4 · [0, k] = L . �

3.3. On AMPs with periods {0, 1, 2, 4}, {0, 1, 3, 4}, and {0, 2, 3, 4} in L(C6) and L(C5
2 ). The goal

of this subsection is to show that all AMPs with period {0, 1, 2, 4}, {0, 1, 3, 4}, or {0, 2, 3, 4}, that lie in
L(C6), also lie in L(C5

2 ). We start by determining all AMPs with these periods in L(C6). To this end we
make use of the arguments in [10], which already contains a fairly precise description of theses sets but
stops short of giving a full characterization.

Proposition 3.7. Let L ∈ L(C6) with |L| ≥ 4.

1. If L is an AMP with period {0, 1, 2, 4}, then L equals one of the following sets for some y, k ∈ N0:
(a) y + 2k + {4, 5, 6, 8}+ 4 · [0, k].
(b) y + 2k + {4, 5, 6, 8, 9}+ 4 · [0, k].
(c) y + 2k + {5, 6, 7, 9, 10, 11}+ 4 · [0, k].

2. If L is an AMP with period {0, 1, 3, 4}, then L equals one of the following sets for some y, k ∈ N0:
(a) y + 2k + {3, 4, 6, 7}+ 4 · [0, k].
(b) y + 2k + {4, 5, 7, 8, 9}+ 4 · [0, k].
(c) y + 2k + {5, 6, 8, 9, 10, 12}+ 4 · [0, k].

3. If L is an AMP with period {0, 2, 3, 4}, then L equals one of the following sets for some y, k ∈ N0:
(a) y + 2k + {3, 5, 6, 7}+ 4 · [0, k].
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(b) y + 2k + {4, 6, 7, 8, 10}+ 4 · [0, k].
(c) y + 2k + {4, 6, 7, 8, 10, 11}+ 4 · [0, k].

Moreover, all these sets actually are elements of L(C6).

Proof. Clearly, it suffices to prove the claim for y = 0. The results from [10], specifically the proof of
Proposition 3.8 as well as the statements of Lemmas 3.3. to 3.7 show that the only cases to consider are
those that are treated in Lemmas 3.6 and 3.7 in that paper. More specifically, AMPs with these periods
arise in Case 2 of the proof of Lemma 3.6 and at the end of the proof of Lemma 3.7.

We start by considering the details of the sets that occur in Lemma 3.6 from [10]. As established there

these sets arise as the sets of lengths of zero-sum sequences of the form (2g)2gv
′

(−g)w
′

with v, w ∈ N0

where g is a generating element of the group.
Specifically, the first sets of cardinality at least 4 that arise in Case 2, the sets in Case 1 are not of the

relevant form, are the set of lengths of (2g)2g6(−g)−m+4 with m ∈ N, which are {3+m, 4+m, 5+m, 7+m}.
These are thus exactly the sets of the form given in 1.a with k = 0 and y ∈ N0 (note that m ≥ 1).

Then, the sets of lengths of A = (2g)2gv+8(−g)w+4 with v, w ∈ N0 are considered. More precisely one
has (we refer to the argument there for missing details):

In case v ≡ 0 mod 6, the set is an AMP with period {0, 2, 3, 4}; its minimum is 2 + (v + w + 4)/6
and its maximum is the maximum of 2 + (v + w + 4)/6 + 4min{v + 6, w + 4}/6 and 2 + (v + w + 4)/6 +
4min{v+ 6, w− 2}/6 With v = 0+ 6k and w = 2+ 2k for k ∈ N0, this yields exactly the sets in 3.a with
y = 0 while with v = 0 + 6k and w = 8 + 2k this yields exactly the sets in 3.b with y = 0.

In case v ≡ 2 mod 6, the set is an AMP with period {0, 1, 3, 4}; its minimum is 2 + (v + w + 6)/6
and its maximum is the maximum of 3 + (v + w + 6)/6 + 4min{v + 4, w + 2}/6 and 5 + (v + w + 6)/6 +
4min{v+4, w− 4}/6. With v = 2+6k and w = 4+2k for k ∈ N0, this yields exactly the sets in 2.b with
y = 0 while with v = 2 + 6k and w = 10 + 2k this yields exaxtly the sets in 2.c with y = 0.

In case v ≡ 4 mod 6, the set is an AMP with period {0, 1, 2, 4}; its minimum is 2+(v+w+8)/6 and its
maximum is the maximum of 2+(v+w+8)/6+4min{v+8, w}/6 and 4+(v+w+8)/6+4min{v+2, w}/6.
For k ≥ 1 with v = 4 + 6(k − 1) and w = 6 + 6k, this yields exactly the sets in 1.a with k ≥ 1 and y = 0
while with v = 4 + 6k and w = 6 + 6k for k ∈ N0 this yields exactly the sets in 1.c with y = 0.

It remains to consider the sets arising in Lemma 3.7 from [10]; it turns out these yield the sets in 1.b,
2.a and 3.b. We see that the AMPs with these periods arise towards the end in Case 2. Specifically, they
arise as the sets of length of A = (2g)(4g)gv(−g)w with v, w ∈ N0 where g is a generating element of the
group. More concretely, v and w are congruent modulo 6 and we set v = r + 6m and w = r + 6n with
r ∈ [0, 5] and m,n ∈ N0.

If r ∈ [4, 5], the set is an AMP with period {0, 2, 3, 4}; its minimum is r− 2 +m+ n and its maximum
is r + 1 +m+ n+ 4min{m,n}. With m = n = k + 1 for k ∈ N0, this yields exactly the sets in 3.c with
y = 0 and y = 1 for r = 4 and r = 5, respectively.

If r ∈ [2, 3], the set is an AMP with period {0, 1, 2, 4}; its minimum is r +m+ n and its maximum is
r + 1 + m + n + 4min{m,n}. With m = n = k + 1 for k ∈ N0, this yields exactly the sets in 1.b with
y = 0 and y = 1 for r = 2 and r = 3, respectively.

If r ∈ [0, 1], the set is an AMP with period {0, 1, 3, 4}; its minimum is r+ 1+m+ n and its maximum
is r + 1 +m+ n+ 4min{m,n}. With m = n = k + 1 for k ∈ N0, this yields exactly the sets in 2.a with
y = 0 and y = 1 for r = 0 and r = 1, respectively. �

In a series of lemmas we show that all sets, listed in Proposition 3.7, lie in L(C5
2 ).

Lemma 3.8. Let y, k ∈ N0.

1. y + 2k + {3, 4, 6, 7}+ 4 · [0, k] ∈ L(C5
2 ).

2. y + 2k + {4, 5, 6, 8, 9}+ 4 · [0, k] ∈ L(C5
2 ).

Proof. It suffices to show the claim for y = 0. Let k ∈ N0.
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1. We set A = e2[1,2]U
2k+2 and assert that L(A) = 2k+ {3, 4, 6, 7}+4 · [0, k]. Every factorization z of A

can be written as z1z2, where z1 is a factorization of A1 = e2[1,2]U
2 and z2 is a factorization of U2k. Since

L(U2k) = 2k + 4 · [0, k], it suffices to show that L(e2[1,2]U
2) = {3, 4, 6, 7}.

Let z be a factorization of e2[1,2]U
2. We do a case analysis depending on the atom dividing z and

containing the element e[1,2]. If z is divisible by e2[1,2], then |z| = 3 or |z| = 7. If z is divisible by

U[1,2]V[1,2], then z = U[1,2]V[1,2]U , whence |z| = 3. If z is divisible by U2
[1,2], then z = U2

[1,2]e
2
0e

2
3e

2
4e

2
5,

whence |z| = 6. If z is divisible by V 2
[1,2], then z = V 2

[1,2]e
2
1e

2
2, whence |z| = 4.

2. We set A = U2
[1,2]U

2k+2 and assert that L(A) = 2k + {4, 5, 6, 8, 9}+ 4 · [0, k]. Every factorization z

of A can be written as z1z2, where z1 is a factorization of A1 = U2
[1,2]U

2 and z2 is a factorization of U2k.

Thus, it suffices to show that L(U2
[1,2]U

2) = {4, 5, 6, 8, 9}.

Let z be a factorization of U2
[1,2]U

2. We do a case analysis depending on the atom dividing z and

containing the element e[1,2]. If z is divisible by U2
[1,2], then |z| = 4 or |z| = 8. If z is divisible by e2[1,2],

then z = e2[1,2]e
2
1e

2
2y, where y is a factorization of U2, whence |z| = 5 or |z| = 9. If z is divisible by

U[1,2]V[1,2], then z = U[1,2]V[1,2]e
2
1e

2
2U , whence |z| = 5. If z is divisible by V 2

[1,2], then z = V 2
[1,2](e

2
1)

2(e22)
2,

whence |z| = 6. �

Lemma 3.9. Let y, k ∈ N0.

1. y + 2k + {3, 5, 6, 7}+ 4 · [0, k] ∈ L(C5
2 ).

2. y + 2k + {4, 5, 6, 8}+ 4 · [0, k] ∈ L(C5
2 ).

3. y + 2k + {5, 6, 7, 9, 10, 11}+ 4 · [0, k] ∈ L(C5
2 ).

4. y + 2k + {4, 5, 7, 8, 9}+ 4 · [0, k] ∈ L(C5
2 ).

5. y + 2k + {5, 6, 8, 9, 10, 12}+ 4 · [0, k] ∈ L(C5
2 ).

6. y + 2k + {4, 6, 7, 8, 10}+ 4 · [0, k] ∈ L(C5
2 ).

Proof. It suffices to show the claim for y = 0. Let k ∈ N0. We set G0 = {e0, e1, e2, e3, e4, e5}∪{e[1,2], e[3,4]}
and observe that the atoms of B(G0) of length at least three are U , U[1,2], U[3,4], V[1,2], V[3,4], and
W = e0e[1,2]e[3,4]e5.

1. We set A = WU2k+2 and assert that L(A) = 2k + {3, 5, 6, 7}+ 4 · [0, k]. Every factorization z of A
can be written as z1z2, where z1 is a factorization of A1 = WU2 and z2 is a factorization of U2k. Since
L(U2k) = 2k + 4 · [0, k], it suffices to show that L(WU2) = {3, 5, 6, 7}.

Let z be a factorization of WU2. We do a case analysis depending on the atoms dividing z and
containing the elements e[1,2] and e[3,4]. If z is divisible by W , then |z| = 3 or |z| = 7. If z is divisible

by U[1,2]U[3,4], then z = U[1,2]U[3,4]e
2
0e

2
5U , whence |z| = 5. If z is divisible by U[1,2]V[3,4], then z =

U[1,2]V[3,4]e
2
0e

2
1e

2
2e

2
5, whence |z| = 6. Similarly, if z is divisible by V[1,2]U[3,4], then |z| = 6.

2. We set A = U[1,2]U[3,4]U
2k+2 and assert that L(A) = 2k + {4, 5, 6, 8}+ 4 · [0, k]. Every factorization

z of A can be written as z1z2, where z1 is a factorization of A1 = U[1,2]U[3,4]U
2 and z2 is a factorization

of U2k. Thus, it suffices to show that L(U[1,2]U[3,4]U
2) = {4, 5, 6, 8}.

Let z be a factorization of U[1,2]U[3,4]U
2. We do a case analysis depending on the atoms dividing z

and containing the elements e[1,2] and e[3,4]. If z is divisible by U[1,2]U[3,4], then |z| = 4 or |z| = 8. If z is

divisible by U[1,2]V[3,4], then z = U[1,2]V[3,4]e
2
3e

2
4U , whence |z| = 5. Similarly, if z is divisible by V[1,2]U[3,4],

then |z| = 5. If z is divisible by V[1,2]V[3,4], then z = V[1,2]V[3,4]e
2
1e

2
2e

2
3e

2
4, whence |z| = 6. If z is divisible

by W , then z = WUe21e
2
2e

2
3e

2
4, whence |z| = 6.

3. We set A = U[1,2]U[3,4]U
2k+3 and assert that L(A) = 2k + {5, 6, 7, 9, 10, 11} + 4 · [0, k]. Every

factorization z of A can be written as z1z2, where z1 is a factorization of A1 = U[1,2]U[3,4]U
3 and z2 is a

factorization of U2k. Thus, it suffices to show that L(U[1,2]U[3,4]U
3) = {5, 6, 7, 9, 10, 11}.

Let z be a factorization of U[1,2]U[3,4]U
3. If z is divisible by U , then 2. implies that |z| ∈ 1+{4, 5, 6, 8} =

{5, 6, 7, 9}. Suppose that z is not divisible by U . Then z is divisible by e20, because all atoms containing
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e0, other than e20 and U , contain e[1,2] or e[3,4]. Moreover, z is divisible by exactly one of the atoms W ,
V[1,2], V[3,4]. If z is divisible by W , then all other atoms dividing z have length 2, whence |z| = 11. If
z is divisible by V[1,2], then z is divisible by U[3,4], and all other atoms dividing z have length 2, whence
|z| = 10. If z is divisible by V[3,4], then the same argument shows that |z| = 10.

4. We set A = U[1,2]V[3,4]U
2k+2 and assert that L(A) = 2k+{4, 5, 7, 8, 9}+4 · [0, k]. Every factorization

z of A can be written as z1z2, where z1 is a factorization of A1 = U[1,2]V[3,4]U
2 and z2 is a factorization

of U2k. Thus, it suffices to show that L(U[1,2]V[3,4]U
2) = {4, 5, 7, 8, 9}.

Let z be a factorization of U[1,2]V[3,4]U
2. We do a case analysis depending on the atoms dividing z and

containing the elements e[1,2] and e[3,4]. If z is divisible by U[1,2]V[3,4], then |z| = 4 or |z| = 8. If z is

divisible by W , then z = W (e21)(e
2
2)z

′, where z′ is a factorization of U2, whence |z| = 5 or |z| = 9. If z is
divisible by U[1,2]U[3,4], then z = U[1,2]U[3,4]e

2
0e

2
1e

2
2e

2
5U , whence |z| = 7. If z is divisible by V[1,2]V[3,4], then

z = V[1,2]V[3,4]e
2
1e

2
2U , whence |z| = 5. If z is divisible by V[1,2]U[3,4], then z = V[1,2]U[3,4](e

2
1)

2(e22)
2e20e

2
5,

whence |z| = 8.
5. We set A = U[1,2]V[3,4]U

2k+3 and assert that L(A) = 2k + {5, 6, 8, 9, 10, 12} + 4 · [0, k]. Every

factorization z of A can be written as z1z2, where z1 is a factorization of A1 = U[1,2]V[3,4]U
3 and z2 is a

factorization of U2k. Thus, it suffices to show that L(U[1,2]V[3,4]U
3) = {5, 6, 8, 9, 10, 12}.

Let z be a factorization of U[1,2]V[3,4]U
3. If z is divisible by U , then 4. implies that |z| ∈ 1 +

{4, 5, 7, 8, 9} = {5, 6, 8, 9, 10}. Suppose that z is not divisible by U . Then z is divisible by e20, because
all atoms containing e0, other than e20 and U , contain e[1,2] or e[3,4]. Since ve0(A1) = 4, it follows that

z is either divisible by V[1,2] and V[3,4] or divisible by (e20)
2. In the former case, all atoms dividing z,

other than V[1,2] and V[3,4], have length 2, whence |z| = 2 + (26 − 10)/2 = 10. In the latter case, z is
divisible by U[1,2] and U[3,4], and all atoms dividing z, other than U[1,2] and U[3,4], have length 2, whence
|z| = 2 + (26− 6)/2 = 12.

6. We set A = WU2k+3 and assert that L(A) = 2k + {4, 6, 7, 8, 10}+ 4 · [0, k]. Every factorization z of
A can be written as z1z2, where z1 is a factorization of A1 = WU3 and z2 is a factorization of U2k. Thus,
it suffices to show that L(WU3) = {4, 6, 7, 8, 10}.

Let z be a factorization of WU3. If z is divisible by U , then 1. implies that |z| ∈ 1 + {3, 5, 6, 7} =
{4, 6, 7, 8}. Suppose that z is not divisible by U . Then z is divisible by e20, because all atoms containing
e0, other than e20 and U , contain e[1,2] or e[3,4]. Since ve0 (A1) = 4, it follows that z is either divisible by

V[1,2] and V[3,4] or divisible by (e20)
2. In the former case, we obtain that z = V[1,2]V[3,4]e

2
0 · . . . · e

2
5, whence

|z| = 8. In the latter case, z is divisible by U[1,2] and U[3,4] and all other atoms dividing z have length 2,
whence |z| = 2 + (22− 6)/2 = 10. �

Lemma 3.10. For all y, k ∈ N0, we have y + 2k + {4, 6, 7, 8, 10, 11}+ 4 · [0, k] ∈ L(C5
2 ).

Proof. It suffices to prove the claim for y = 0. Let k ∈ N0. We set G0 = {e0, e1, e2, e3, e4, e5} ∪
{e{1,2,5}, e{3,4,5}} and observe that the atoms of B(G0) of length at least three are U , U{1,2,5}, U{3,4,5},
V{1,2,5}, V{3,4,5}, W = e1e2e3e4e{1,2,5}e{3,4,5}, and W ′ = e0e5e{1,2,5}e{3,4,5}.

We set A = WU2k+3 and assert that L(A) = 2k+ {4, 6, 7, 8, 10, 11}+ 4 · [0, k]. Every factorization z of
A can be written as z1z2, where z1 is a factorization of A1 = WU3 and z2 is a factorization of U2k. Since
L(U2k) = 2k + 4 · [0, k], it suffices to show that L(A1) = {4, 6, 7, 8, 10, 11}.

Let z be a factorization of WU3. We do a case analysis depending on the atoms dividing z and
containing the elements e{1,2,5} and e{3,4,5}. If z is divisible by W , then |z| = 4 or |z| = 8. If z is

divisible by W ′, then z = W ′e21e
2
2e

2
3e

2
4y, where y is a factorization of U2, whence |z| = 7 or |z| = 11. If z

is divisible by U{1,2,5}U{3,4,5}, then z = U{1,2,5}U{3,4,5}e
2
0e

2
1e

2
2e

2
3e

2
4U , whence |z| = 8. If z is divisible by

V{1,2,5}V{3,4,5}, then z = V{1,2,5}V{3,4,5}e
2
1e

2
2e

2
3e

2
4e

2
5U , whence |z| = 8. If z is divisible by U{1,2,5}V{3,4,5},

then z = U{1,2,5}V{3,4,5}e
2
3e

2
3y, where y is a factorization of U2, whence |z| = 6 or |z| = 10. Similarly, if z

is divisible by V{1,2,5}U{3,4,5}, then |z| = 6 or |z| = 10. Thus L(A1) = {4, 6, 7, 8, 10, 11}. �
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Proposition 3.11. Every L ∈ L(C6), that is an AMP with period {0, 1, 2, 4}, {0, 1, 3, 4}, or with

{0, 2, 3, 4}, lies in L(C5
2 ).

Proof. Let L ∈ L(C6) be an AMP with period {0, 1, 2, 4}, or with {0, 1, 3, 4}, or with {0, 2, 3, 4}. If L is a
singleton, then the claim is holds. If |L| = 2, then L = {y + 2, y + 3} or L = {y + 2, y + 4} with y ∈ N0.
Both sets are in L(C5

2 ) by Lemma 3.2. If |L| = 3, then L = {y+2, y+3, y+4}, or L = {y+2, y+4, y+5},
or L = {y + 3, y+ 4, y+ 6} with y ∈ N0; recall that {2, 3, 5} /∈ L(C6) by Lemma 3.1. All these sets are in
L(C5

2 ) by Lemma 3.2. If |L| ≥ 4, then L has one of the forms given in Proposition 3.7. All these sets are
in L(C5

2 ) by Lemmas 3.8, 3.9, and 3.10. �

3.4. On L(G0) ⊂ L(C5
2 ) for some subsets G0 ⊂ C6. The goal of this subsection is to prove that

L(G0) ⊂ L(C5
2 ) for several subsets G0 of a cyclic group G of order |G| = 6. The first lemma is of interest

in its own rights. It shows that – in contrast to the expected affirmative answer to the Characterization
Problem – groups G may have proper subgroups G0 such that L(G0) and further arithmetical invariants
are equal to the invariants of a different group G′.

Lemma 3.12. Let G be a finite abelian group, g ∈ G with ord(g) = 6 and G0 = {0, g, 2g, 3g, 4g}. Then

c(G0) = 3, ρ(G0) = 3/2, and

L(G0) = {y + 2k + [0, k] : y, k ∈ N0} = L(C3) = L(C2 ⊕ C2) ⊂ L(C5
2 ) .

Proof. Theorem A (stated in the Introduction) implies that L(C3) = L(C2 ⊕ C2) has the given form
and, clearly, L(C2 ⊕ C2) ⊂ L(C5

2 ). Thus it remains to show that L(G0) has the indicated form. We set
G1 = {0, g, 2g, 4g} and proceed in two steps.

1. Since G2 = {0, 2g, 4g} is a cyclic group of order three, we obtain that c(G2) = 3, ρ(G2) = 3/2, and

L(G2) = {y + 2k + [0, k] : y, k ∈ N0} = L(C3) = L(C2 ⊕ C2) ⊂ L(C5
2 ) .

For every B ∈ B(G1) the multiplicity vg(B) is even. Thus the homomorphism θ : B(G1) → B(G2),

defined by θ(B) = g−vg(B)(2g)vg(B)/2B, is a transfer homomorphism. This implies that c(G1) = c(G2),
ρ(G1) = ρ(G2) = 3/2, and L(G1) = L(G2) (for background on transfer homomorphism we refer to [8,
Section 3.2]).

2. Since B(G1) is a divisor-closed submonoid of B(G0), it follows that 3 = c(G1) ≤ c(G0), 3/2 =
ρ(G1) ≤ ρ(G0), and L(G1) ⊂ L(G0). There are precisely four atoms containing 3g, namely

U0 = (3g)2, U1 = g3(3g), U2 = g(2g)(3g), and U3 = (4g)2(3g)g .

We continue with the following two assertions. Let A ∈ B(G0).

A1. c(A) ≤ 3
A2. ρ(L(A)) ≤ 3/2.

Suppose that A1 and A2 hold. Then c(G0) = 3, ρ(G0) = 3/2, and L(G0) = L(G1).

Proof of A1. There is a 3-chain of factorizations from any factorization z ∈ Z(A) to a factorization
z∗ ∈ Z(A) where vU0

(z∗) is maximal, say z∗ = z1U
m
0 and A = A1U

m
0 . First, we suppose that v3g(A) is

even. Then m = v3g(A)/2, and A1 ∈ B(G1). Since c(A1) ≤ 3, any two factorizations of A, which are
divisible by Um

0 , can be concatenated by a 3-chain of factorizations, whence c(A) ≤ 3. If v3g(A) is odd,
then there is an i ∈ [1, 3] with vUi

(z1) = 1 and vUj
(z1) = 0 for j ∈ [1, 3] \ {i}. Arguing as above we infer

that c(A) ≤ 3.

Proof of A2. In order to verify that ρ(L(A)) ≤ 3/2, we have to show that, for any two lengths
m1,m2 ∈ L(A), we have m2/m1 ≤ 3/2. There are precisely two atoms with g-norm greater than one.
These are U3 and U4 = (4g)3 and we have ‖U3‖g = ‖U4‖g = 2. When in a 3-chain of factorizations the
length increases, then the number of atoms with g-norm two decreases by one and the number of atoms
with g-norm one increases by two. Let z1 and z2 be factorizations of length m1 and m2 and consider a
3-chain of factorizations from z1 to z2. Suppose there are k atoms with g-norm one and ℓ atoms with
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g-norm two in the factorization z1. It follows that in the factorization z2 there are k − s atoms with
g-norm one and ℓ+ 2s atoms with g-norm two for some s ∈ [0,min{k, ℓ}]. Then

m2

m1
=

k + ℓ+ s

k + ℓ
≤

3

2
. �

Lemma 3.13. Let G be a finite abelian group, g ∈ G with ord(g) = 6 and G0 = {0, g,−g}. Then

L(G0) = {y + 2k + 3 · [0, k] : y, k ∈ N0} ⊂ L(C5
2 ) .

Proof. Let A ∈ B(G0). Without restriction we may suppose that vg(A) ≥ v−g(A). Thus there are
j ∈ [0, 4], k, ℓ,m ∈ N0 such that

A = g5k+j(−g)5k+j0mg5ℓ .

Thus

L(A) = j + ℓ+m+ L(g5k(−g)5k = j + ℓ+m+ 2k + 3 · [0, k] ,

whence the claim follows. �

Lemma 3.14. Let G be a finite abelian group, g ∈ G with ord(g) = 6, and G0 = {0, g, 3g,−g}. Then

L(G0) ⊂ L(C5
2 ).

Proof. Let A ∈ B(G0). By Lemmas 3.12 and 3.13, we may suppose that vg(A), v−g(A), and v3g(A) are
positive. Without restriction we may suppose that v0(A) = 0 and vg(A) ≥ v−g(A). Then A can be written
in the form

A =
(

(−g)g
)6r+s(

(3g)2
)t(

(3g)g3
)u(

g6
)v

,

where r, t, v ∈ N0, s ∈ [0, 5], and u ∈ [0, 1]. Since all atoms in the decomposition have g-norm one, it
follows that maxL(A) = 6r + s+ t+ u+ v. Thus, we obtain that

L(A) = u+ v + L(A1), where A1 =
(

(−g)g
)6r+s(

(3g)2
)t
.

Defining

A2 = U2r
(

(e1 + e2 + e3)(e4 + e5 + e[1,5])
)t

s
∏

i=1

(e2i ) where U = e[1,5]e1 · . . . · e5 ,

we infer that L(A1) = L(A2) ∈ L(C5
2 ). �

3.5. Proof of Theorem 1.1.1. We have to consider finite abelian groups G with D(G) ∈ [4, 6]. Let
m ∈ [4, 6]. The claims that L(Cm) is minimal in Ωm and that L(Cm−1

2 ) is maximal in Ωm follow from

[12, Theorem 3.5]. It remains to verify that L(Cm) ( L(Cm−1
2 ). Since L(Cm) 6= L(Cm−1

2 ) by Proposition
2.2.3, it suffices to verify inclusion.

1. By [8, Theorem 7.3.2], we have

• L(C4) =
{

y + k + 1 + [0, k] : y, k ∈ N0

}

∪
{

y + 2k + 2 · [0, k] : y, k ∈ N0

}

,

• L(C3
2 ) =

{

y + (k + 1) + [0, k] : y ∈ N0, k ∈ [0, 2]
}

∪
{

y + k + [0, k] : y ∈ N0, k ≥ 3
}

∪
{

y + 2k + 2 · [0, k] : y, k ∈ N0

}

,

whence L(C4) ⊂ L(C3
2 ).

2. Theorems 4.3 and 4.8 in [12] provide explicit descriptions of L(C5) and of L(C4
2 ). These descriptions

show that L(C5) ⊂ L(C4
2 ).

3. Let G be a cyclic group of order |G| = 6 and let g ∈ G with ord(g) = 6. Let A′ ∈ B(G). If A′ = 0kA,
with k ∈ N0 and A ∈ B(G \ {0}), then L(A′) = k + L(A) and it suffices to verify that L(A) ∈ L(C5

2 ).
If {g,−g} 6⊂ supp(A), say −g 6∈ G0, then supp(A) ⊂ {g, 2g, 3g, 4g}, whence Lemma 3.12 implies that
L(A) ∈ L(C5

2 ). Thus from now on we suppose that {g,−g} ⊂ supp(A). If supp(A) ⊂ {g, 3g,−g}, then
L(A) ∈ L(C5

2 ) by Lemma 3.14. Thus it remains to consider the following four cases.

CASE 1: supp(A) = {g, 2g,−g} or supp(A) = {g, 4g,−g}.



ON THE INCOMPARABILITY OF SYSTEMS OF SETS OF LENGTHS 15

Then [10, Lemma 3.6] implies that L(A) is either an interval or an AMP with periods {0, 1, 4}, {0, 3, 4},
{0, 1, 2, 4}, {0, 1, 3, 4}, or {0, 2, 3, 4}, and all these cases actually occur. Thus L(A) ∈ L(C5

2 ) by Propositions
3.3, 3.5, 3.6, and Proposition 3.11.

CASE 2: supp(A) = {g, 2g, 4g,−g}.
Then [10, Lemma 3.7] implies that L(A) is either an interval or an AMP with periods {0, 1, 2, 4},

{0, 1, 3, 4}, or {0, 2, 3, 4}, and all these cases actually occur. Thus L(A) ∈ L(C5
2 ) by Proposition 3.3 and

Proposition 3.3.

CASE 3: supp(A) = {g, 2g, 3g,−g} or supp(A) = {g, 3g, 4g,−g}.
Then [10, Lemma 3.3] shows that L(A) is an interval, whence L(A) ∈ L(C5

2 ) by Proposition 3.3.

CASE 4: supp(A) = G \ {0}.
Then L(A) is an interval by [8, Theorem 7.6.9], whence L(A) ∈ L(C5

2 ) by Proposition 3.3. �

4. Proof of Theorem 1.1.2

The goal in this section is to prove Theorem 1.1.2. We start with three lemmas.

Lemma 4.1. Let G be a finite abelian group with |G| ≥ 3.

1. The following statements are equivalent.

(a) Every L ∈ L(G) with {2,D(G)} ⊂ L satisfies L = {2,D(G)}.
(b) {2,D(G)} ∈ L(G).
(c) G is either cyclic or an elementary 2-group.

2. We have k(G) ≤ 2+max∆(G) ≤ c(G) ≤ D(G), and k(G) = D(G) if and only if G is either cyclic

or an elementary 2-group.

Proof. 1. See [8, Theorem 6.6.3].
2. The chain of inequalities was already observed in (2.2). If G is cyclic or an elementary 2-group, then

1. implies that k(G) = D(G). The reverse implication follows from [8, Theorem 6.4.7]. �

Lemma 4.2. Let G be a cyclic group of order |G| = n ≥ 4. Then {2, n− 2, n− 1} ∈ L(G).

Proof. Let g ∈ G with ord(g) = n. Then U = gn−2(2g) ∈ A(G) and L
(

U(−U)
)

= {2, n− 2, n− 1}. �

Lemma 4.3. Let G = Cr
2 with r ≥ 3. Then {2, r − 1, r} ∈ L(G) if and only if r ∈ [3, 5].

Proof. We have {2, 3} ∈ L(C2
2 ) ⊂ L(C3

2 ) by Theorem A. We have {2, 3, 4} ∈ L(C4
2 ) by [12, Theorem 4.8],

and {2, 4, 5} ∈ L(C5
2 ) by Lemma 3.2.1.

Suppose that r ≥ 6 and assume to the contrary that there are U, V ∈ A(G) such that L(UV ) =
{2, r − 1, r}. Without restriction we may suppose that |U | ≥ |V |. Clearly, we have |V | ≥ r. We
distinguish three cases.

CASE 1: |U | = |V | = r.
Then V = −U and 〈supp(U)〉 ∼= Cr−1

2 . Since D(Cr−1
2 ) = r and {2, r} ⊂ L(UV ), Lemma 4.1.1 implies

that L(UV ) = {2, r}, a contradiction.

CASE 2: |U | = r + 1 and |V | = r.
Then there are W0, . . . ,Wr−1 ∈ A(G) such that UV = W0W1 · . . . · Wr−1, where V = e0 · . . . · er−1

and Wi = e2i for all i ∈ [1, r − 1], |W0| = 3, and e0 | W0. Since 〈supp(U)〉 ∼= Cr
2 , there is er ∈ G such

that (e1, . . . , er) is a basis of G, U = (e0 + er)e1 · . . . · er, and W = (e0 + er)e0er. This implies that
L(UV ) = {2, r}, a contradiction.

CASE 3: |U | = |V | = r + 1.
We set UV = W1 · . . . · Wr , where W1, . . . ,Wr ∈ A(G) with 2 ≤ |W1| ≤ . . . ≤ |Wr|. There are the

following two cases.

CASE 3.1: |W1| = . . . = |Wr−2| = 2 and |Wr−1| = |Wr| = 3.
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We set Wi = e2i for i ∈ [1, r − 2], Wr−1 = er−1er(er−1 + er), and U = e1 · . . . · ere0. Then V has the
form

V = e1 · . . . · er−2(er−1 + er)g(e0 + g) for some g ∈ G .

Clearly, V ′ =
(

e1 · . . . ·er−2(er−1+er)e0

)

∈ A(G). Since e1 · . . . ·er is zero-sum free, U ′ = e1 · . . . ·erg(e0+g)

is a product of two atoms. Thus UV = U ′V ′ has a factorization of length three, a contradiction because
3 < r − 1.

CASE 3.2: |W1| = . . . = |Wr−1| = 2 and |Wr| = 4.
We set Wi = e2i for i ∈ [1, r − 1], U = e1 · . . . · er−1ere0, and Wr = ere0e

′
re

′
0. Then

V = e1 · . . . · er−1e
′
re

′
0 .

Then e′0 + e′r = e1 + . . .+ er−1, whence e′r = er + g and e′0 = e0 + g for some g ∈ G. Since Wr ∈ A(G), it
follows that g 6= 0. Since (e1, . . . , er) is a basis of G and e′r /∈ 〈e1, . . . , er−1〉, it follows that g = e′r + er ∈
〈e1, . . . , er−1〉. Thus g = eI =

∑

i∈I ei with ∅ 6= I ⊂ [1, r−1]. If I = [1, r−1], then e′r = e0, a contradiction
to Wr ∈ A(G). Thus UV has a factorization

UV =
(

er(er + eI)
∏

i∈I

ei

)(

e0(e0 + eI)
∏

i∈I

ei

)

∏

i∈[1,r−1]\I

e2i

of length 2 + (r − 1− |I|) = r + 1− |I| and a factorization

UV =
(

e0(er + eI)
∏

i∈[1,r−1]\I

ei

)(

er(e0 + eI)
∏

i∈[1,r−1]\I

ei

)

∏

i∈I

e2i

of length 2 + |I|. If 2 + |I| = r, then r + 1 − |I| = 3 < r − 1, a contradiction. If 2 + |I| = r − 1, then
r + 1− |I| = 4 < r − 1, a contradiction. �

Proof of Theorem 1.1.2. Let m ≥ 7. By [12, Theorem 3.5], L(Cm−1
2 ) is a maximal element of Ωm, L(Cm)

is a minimal element of Ωm, and if G is an abelian group with D(G) = m and L(G) ⊂ L(Cm−1
2 ), then G

is either cyclic or an elementary 2-group. Thus it remains to prove the following two assertions.

A1. L(Cm) is not contained in L(Cm−1
2 ).

A2. If G is a finite abelian group with D(G) = m and L(Cm) ⊂ L(G), then G is cyclic of order m.

Since m ≥ 7, A1 follows from Lemmas 4.2 and 4.3. To verify A2, let G be a finite abelian group with
D(G) = m such that L(Cm) ⊂ L(G). Then Lemma 4.1.1 implies that {2,D(G)} ∈ L(Cm) ⊂ L(G). Now,
again Lemma 4.1.1 implies that G is either cyclic or an elementary 2-group. Finally, A1 implies that G
is not an elementary 2-group, whence G is cyclic of order m. �

5. Proof of Theorem 1.1.3, 1.1.4, and of Corollary 1.2

The goal in this section is to prove Statements 3 and 4 of Theorem 1.1 and Corollary 1.2. We need
some lemmas.

Lemma 5.1. Let G be a finite abelian group with D(G) ≥ 5.

1. The following statements are equivalent.

(a) G is isomorphic to C2 ⊕ C2n with n ≥ 2.
(b) {2,D(G)− 1,D(G)} ∈ L(G).

2. The following statements are equivalent.

(a) k(G) = D(G)− 1.
(b) G is isomorphic either to Cr−1

2 ⊕ C4 for some r ≥ 2 or to C2 ⊕ C2n for some n ≥ 2.

Proof. See [13, Theorem 1.1 and Proposition 3.5]. �
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Lemma 5.2. Let G = C2 ⊕C2n with n ≥ 2. A sequence S over G of length D(G) = 2n+ 1 is a minimal

zero-sum sequence if and only if it has one of the following two forms.

(a) S = g2n−1h(g − h) for some g ∈ G with ord(g) = 2n and some h ∈ G \ 〈g〉.
(b) S = egv(g+e)2n−v for some g ∈ G with ord(g) = 2n, e ∈ G\〈g〉 with ord(e) = 2, and v ∈ [3, 2n−3]

odd.

Proof. See [4, Theorem 3.3]. �

Let G be a finite abelian group. Then every element g ∈ G with ord(g) = exp(G) can be extended
to a basis of G. Thus in Case (a) of Lemma 5.2 the element g can be extended to a basis. In Case (b),
(g, e) and (g + e, e) are bases of G. Let G = C2 ⊕C2n with n ≥ 2. Next we completely determine all sets
L ∈ L(G) with {2,D(G)} ⊂ L. This was done before in [1, Lemma 3.2] but, unfortunately, that result is
not correct.

Proposition 5.3. Let G = C2 ⊕ C2n with n ≥ 2. Then
{

L ∈ L(G) : {2,D(G)} ⊂ L}
}

=
{

{2, 2m, 2n− 2m+ 2, 2n, 2n+ 1} : m ∈ [1, n]
}

∪
{

{2, 2n− 2i, 2n+ 1− 2i : i ∈ [0, (v − 1)/2]} : v ∈ [3, 2n− 3] odd
}

.

Proof. Let L ∈ L(G) with {2,D(G)} ⊂ L. Then there exists an atom U ∈ A(G) with |U | = D(G) such
that L(U(−U)) = L. According to the structure of U , as given in Lemma 5.2, we distinguish two cases.

CASE 1: There exists a basis (e1, e2) of G with ord(e1) = 2n and ord(e2) = 2 such that

U = e2n−1
1 (x1e1 + e2)(x2e1 + e2), where x1, x2 ∈ [0, 2n− 1] with x1 + x2 ≡ 1 mod 2n .

Note that the congruence condition on x1 and x2 implies that x1 6= x2 and that |x1 − x2| is odd. By
symmetry, we may suppose that x1 > x2. We consider a factorization z ∈ Z

(

U(−U)
)

of length |z| ∈ [2, 2n].
Let W ∈ A(G) be an atom occurring in the factorization z and with x1e1+ e2 ∈ supp(W ). Since |W | = 2
would imply that |z| = 2n+ 1, it follows that |W | ∈ [3,D(G)]. If x2e1 + e2 ∈ supp(W ), then

W = U and |z| = 2 or W = (−e1)(x1e1 + e2)(x2e1 + e2) and |z| = 2n .

Suppose −x2e1 + e2 ∈ supp(W ). Then

W = (−e1)
x1−x2(x1e1 + e2)(−x2e1 + e2) and z = W (−W )

(

e1(−e1)
)2n−1−(x1−x2)

or

W = e
2n−(x1−x2)
1 (x1e1 + e2)(−x2e1 + e2) and z = W (−W )

(

e1(−e1)
)(x1−x2)−1

.

This implies that

L(U(−U)) = {2, (x1 − x2) + 1, 2n+ 1− (x1 − x2), 2n, 2n+ 1} .

We set x1 − x2 = 2m− 1 and note that all values m ∈ [1, n] can occur.

CASE 2: There exists a basis (e1, e2) of G with ord(e1) = 2 and ord(e2) = 2n such that

U = e1e
v
2(e1 + e2)

2n−v, where v ∈ [3, 2n− 3] odd .

Without restriction we may assume that v ≤ 2n− v. We list the atoms of A(G) which divide U(−U):

• U,−U , e21, e2(−e2), and (e1 + e2)(e1 − e2).
• (e1 + e2)(−e2)e1 and (e1 − e2)e2e1.
• (e1 + e2)

2(−e2)
2 and (e1 − e2)

2e22.

We set W = (e1 + e2)(−e2)e1 and consider a factorization z ∈ Z
(

U(−U)
)

of length |z| > 2. There are
precisely the following three types of factorizations.

CASE 2.1: The atom e21 divides z.
Then

z = (e21)
(

e22(e1 − e2)
2
)i(

(−e2)
2(e1 + e2)

2
)i(

e2(−e2)
)v−2i(

(e1 + e2)(e1 − e2)
)2n−v−2i
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with i ∈ [0, (v − 1)/2], whence |z| ∈ {2n+ 1− 2i : i ∈ [0, (v − 1)/2]}.

CASE 2.2: W (−W ) divides z.
Then

z = W (−W )
(

e22(e1 − e2)
2
)i(

(−e2)
2(e1 + e2)

2
)i(

e2(−e2)
)v−1−2i(

(e1 + e2)(e1 − e2)
)2n−1−v−2i

with i ∈ [0, (v − 1)/2], whence |z| ∈ {2n− 2i : i ∈ [0, (v − 1)/2]}.

CASE 2.3: W 2 divides z or (−W )2 divides z.
We may assume without restriction that W 2 divides z. Then

z = W 2
(

e22(e1 − e2)
2
)i+1(

(−e2)
2(e1 + e2)

2
)i(

e2(−e2)
)v−2−2i(

(e1 + e2)(e1 − e2)
)2n−2−v−2i

with i ∈ [0, (v − 3)/2], whence |z| ∈ {2n− 1− 2i : i ∈ [0, (v − 3)/2]}. Putting all together we infer that

L
(

U(−U)
)

= {2, 2n− 2i, 2n+ 1− 2i : i ∈ [0, (v − 1)/2]} . �

Lemma 5.4. Let G = C3
3 and let (e1, e2, e3) be a basis of G. If e0 = e1 + e2 + e3 and U = e21e

2
2e

2
3e0, then

L(U3k) = 3k + 2 · [0, 2k] for every k ∈ N .

In particular, ρ
(

L(U3k)
)

= 7/3 for every k ∈ N.

Proof. We set G0 = {e0, e1, e2, e3}, W = e1e2e3e
2
0, and Vi = e3i for each i ∈ [0, 3] Then A(G0) =

{V0, V1, V2, V3, U,W} and ∆(G0) = {2}, whence the assertion follows. �

A subset G0 ⊂ G is called an LCN-set if for every A = g1 · . . . · gℓ ∈ A(G0) the cross number

k(A) =
∑ℓ

i=1
1

ord(gi)
≥ 1 holds. We set

m(G) = max{min∆(G0) : G0 ⊂ G is a non-half-factorial LCN-set} .

For d ∈ N, M ∈ N0, and {0, d} ⊂ D ⊂ [0, d], let PM (D, G) denote the set of all B ∈ B(G) with L(B) is an
AAMP with period D and bound M .

Lemma 5.5. Let G = C4 ⊕ C4. Then, for every sufficiently large M ,

lim sup
B∈PM ({0,2},G),minL(B)→∞

ρ(L(B)) = 2 .

Proof. We have max∆∗(G) = 2 by Proposition 2.2.2 and m(G) = 1 by [20, Proposition 3.6]. For a
sufficiently large M , we consider P = PM ({0, 2}, G) and [21, Proposition 8.7] implies that

lim sup
B∈P,min L(B)→∞

ρ(L(B)) ≤ max{ρ(G0) : G0 ⊂ G, 2 | min∆(G0)} .

Let G0 ⊂ G with 2 | min∆(G0). Since max∆(G) = 3 by [13, Lemma 3.3], it follows that min∆(G0) = 2,
whence min∆(G0) = max∆∗(G). Now [21, Theorem 7.7] implies that G0 = ∪s

i=1Gi, where 〈G0〉 =
∑s

i=1〈Gi〉 and each Gi is either half-factorial or equal to {gi,−gi} for some gi with ord(gi) = 4. Thus
ρ(G0) = 2. �

Proof of Theorem 1.1.3. Let m ≥ 5. We have to show that L(Cm−4
2 ⊕ C4) is a maximal element in Ωm.

Let G be a finite abelian group with D(G) = m and suppose that L(Cr
2 ⊕ C4) ⊂ L(G), where r = m− 4.

We distinguish two cases and use Proposition 2.3 without further mention.

CASE 1: m ∈ [5, 6].
First suppose that m = 5. Then r = 1 and G is isomorphic to one of the following groups:

C3 ⊕ C3, C5, C2 ⊕ C4, C4
2 .

Since L(Cm) is minimal in Ωm by Theorem 1.1.1, it follows that G is not cyclic. Since, by Proposition 2.2,
max∆∗(C3 ⊕C3) = 1 < 2 = max∆∗(C2 ⊕C4), it follows that G is not isomorphic to C3 ⊕C3. Theorems
4.5 and 4.8 in [12] show that G is not isomorphic to C4

2 .
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Next suppose that m = 6. Then r = 2 and G is isomorphic to one of the following groups:

C6, C2
2 ⊕ C4, C5

2 .

Since G is not cyclic, it remains to show that L(C2
2 ⊕C4) 6⊂ L(C5

2 ). Lemma 5.1.1 implies that {2,D(G)−
1,D(G)} ∈ L(C2

2 ⊕C4). Since {2,D(G)− 1,D(G)} 6∈ L(C5
2 ) by Lemma 4.1.1, it follows that L(C2

2 ⊕C4) 6⊂
L(C5

2 ).

CASE 2: m ≥ 7.
Then Theorem 1.1.2 implies that G is neither cyclic nor an elementary 2-group. Thus Lemma 4.1.2

implies that k(G) < D(G). Since D(G) − 1 = k(Cr
2 ⊕ C4) ≤ k(G) by Lemma 5.1.2, it follows that

k(G) = D(G) − 1. It is again Lemma 5.1.2 that implies that G is either isomorphic to C2 ⊕ C2n or
isomorphic to Cs

2 ⊕ C4, where n ∈ N with m = D(G) = 2n+ 1 and s ∈ N with m = D(G) = s+ 4.
Thus it remains to consider the case where m is odd and to prove the following assertion.

A. L(Cr
2 ⊕ C4) 6⊂ L(C2 ⊕ C2n), with n = (m− 1)/2.

Proof of A. Assume to the contrary that L(Cr
2⊕C4) ⊂ L(C2⊕C2n). Then ρ3(C

r
2⊕C4) ≤ ρ3(C2⊕C2n).

Since n ≥ 3, [7, Theorem 5.1] implies that ρ3(C2⊕C2n) < D(G)+⌊D(G)/2⌋. We claim that ρ3(C
r
2 ⊕C4) =

D(G) + ⌊D(G)/2⌋, which yields a contradiction and ends the proof. Since 2n+ 1 = m = r + 4 ≥ 7, there
is s ∈ N0 such that r ∈ {2s+ 2, 2s+ 3}. We distinguish two cases.

Suppose that r = 2s+ 2. We set G = Cr
2 ⊕ C4, G1 = Cs+2

2 , and G2 = Cs
2 ⊕C4. Then d(G) = d(G1) +

d(G2) and d(G2) = s+3 = d(G1) + 1. Thus [8, Theorem 6.3.4.1] implies that ρ3(G) = D(G) + ⌊D(G)/2⌋.
Suppose that r = 2s+ 3. We set G = Cr

2 ⊕ C4, G1 = Cs+3
2 , and G2 = Cs

2 ⊕C4. Then d(G) = d(G1) +
d(G2) and d(G2) = s+3 = d(G1). Thus [8, Theorem 6.3.4.1] implies that ρ3(G) = D(G) + ⌊D(G)/2⌋. �

Proof of Theorem 1.1.4: First part. Let n ≥ 2. We show that L(C2⊕C2n) is a maximal element of Ω2n+1.
Let G be a finite abelian group with D(G) = 2n+1 and suppose that L(C2 ⊕C2n) ⊂ L(G). Then Lemma
5.1.1 implies that {2,D(G) − 1,D(G)} ∈ L(C2 ⊕ C2n) ⊂ L(G). Now, again Lemma 5.1.1 implies that
G ∼= C2 ⊕ C2n. �

Let G = Cn1
⊕ . . .⊕ Cnr

, with 1 < n1 | . . . | nr and r ≥ 3, be a finite abelian group. If nr−1 ≥ 3, then
[1, Theorem 4.2] implies that

[2,D∗(G)] ⊂
⋃

L∈L(G),{2,D∗(G)}⊂L

L .

The next lemma, which is needed in the proof of Corollary 1.2, shows that the above result does not hold
without the assumption that nr−1 ≥ 3.

Lemma 5.6. Let G = C3
2 ⊕ C4 and U ∈ A(G) with |U | = D(G) = 7. Then 3 /∈ L

(

U(−U)
)

.

Proof. We start with the following simple observations.

• The sum of any two elements of G of order four has order two.
• If W ∈ A(G), the number of elements of order four in W (counted with multiplicity) is even.
• Since D(C4

2 ) = 5, U cannot have five elements (counted with multiplicity) of order two.

Thus, the number of elements of order four in U is equal to four or six. We set U = g1 · . . . · g7
with ord(g1) ≤ . . . ≤ ord(g7). Suppose for a contradiction that there are W1,W2,W3 ∈ A(G) with
|W1| ≤ |W2| ≤ |W3| such that

U(−U) = W1W2W3 .

Assume to the contrary that |W3| = 7. This would mean that W3 arises from U by replacing some of the
elements from U by their inverses. Thus there is a subsequence T of U such that W3 = UT−1(−T ). But
this implies that W1W2 = (−U)(−T )−1T = (−W3) is an atom, a contradiction. Thus |W1|, |W2|, |W3| ∈
[2, 6]. We distinguish two cases.

CASE 1: ord(g3) = 2 and ord(g4) = 4.
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Then U ′ = g1g2g3(g4+ g5)(g6+ g7) is a minimal zero-sum sequence over an elementary 2-group of rank
four of length 5 = D(C4

2 ). Thus there is a basis (e1, . . . , e4) of G with ord(e1) = ord(e2) = ord(e3) = 2 and
ord(e4) = 4 such that g1 = e1, g2 = e2, g3 = e3, and gi = fi + aiei with fi ∈ 〈e1, e2, e3〉 and ai ∈ {1, 3} for
all i ∈ [1, 4]. This implies that f1 + f2 + f3 + f4 = e1 + e2 + e3. Since U is a minimal zero-sum sequence,
it follows that a1 = . . . = a4. Without restriction we may suppose that ai = 1 for all i ∈ [1, 4].

Since the number of elements of order four in each atom Wi is even, there is an i ∈ [1, 3] such that
Wi has four elements of order four, whence (f1 ± e4)(f2 ± e4)(f3 ± e4)(f4 ± e4) is a subsequence of
W1. The only way to extend this to a zero-sum sequence is to use the elements e1, e2 and e3, whence
Wi = e1e2e3(f1 ± e4)(f2 ± e4)(f3 ± e4)(f4 ± e4), a contradiction to |Wi| ∈ [2, 6].

CASE 2: ord(g1) = 2 and ord(g2) = 4.
We choose a basis (e1, . . . , e4) of G with ord(e1) = ord(e2) = ord(e3) = 2 and ord(e4) = 4. Then

gi = fi + aie4 with ai ∈ {1, 3} and fi ∈ 〈e1, e2, e3〉 for all i ∈ [2, 7]. We continue with three assertions.

A1. g1 6= 2e4.
A2. Without restriction we may suppose that g1 = e1.
A3. |W1| > 2.

Proof of A1. Assume to the contrary that g1 = 2e4. Consider the sequence S = f2 · . . . ·f7. If f2 = f3,
then g1g2g3 is a proper zero-sum subsequence of U , a contradiction. Thus all elements of S are pairwise
distinct, whence S has no zero-sum subsequence of length two. Further, S is a zero-sum sequence over a
group isomorphic to C3

2 . If one of the fis is equal to zero, then f−1
i S is still a zero-sum sequence, which

is not minimal. Thus f−1
i S is a product of a zero-sum sequence of length two and of length three, a

contradiction. Thus S is a product of two minimal zero-sum sequences S1 and S2, and both have length
three. After renumbering if necessary, we may suppose that S1 = f2f3f4 and S2 = f5f6f7. Since all
elements of S are pairwise distinct, none of the fis is equal to zero. Since f4 = f2 + f3, f7 = f5 + f6 and
f2, . . . , f7 ∈ 〈e1, e2, e3〉, it follows that not all these six elements can be pairwise distinct, a contradiction.

Proof of A2. By A1, we have g1 = f or g1 = f + 2e4 with 0 6= f ∈ 〈e1, e2, e3〉. After renumbering
if necessary, we may suppose that f = e1 + f ′ with f ′ ∈ 〈e2, e3〉. The map f : G → G, defined by
(e1, e2, e3, e4) 7→ (g1, e2, e3, e4), is a group isomorphism. Thus there exists a basis of G containing the
element of S having order two.

Proof of A3. Assume to the contrary that |W1| = 2. Then W3 = −W2. If supp(W1) consists of two
elements of order four, then W2 consists of one element of order two and five elements of order four, a
contradiction to W2 being a zero-sum sequence. Thus W1 = g21 . Thus W2 arises from g−1

1 U by exchanging
fi + aie4 by fi − aie4 for some i ∈ [2, 7]. Thus the sum of the first three coordinates of g−1

1 U equals the
sum of the first three coordinates of W2 and this is zero. Since U is a zero-sum sequence and ord(g1) = 2,
it follows that g1 = 2e4, a contradiction to A1.

By A1, A2, and A3, it remains to handle the following two cases.

CASE 2.1: W1 = e1W
′
1, W2 = e1W

′
2, with |W ′

1| = 2 and |W ′
2| = 4, and W3 consists of six elements of

order four.

Since U(−U) = W1W2W3 = W3

(

e21

)

(−W3), U(−U) has a factorization of length three, where one

atom has length two, a contradiction to A3.

CASE 2.2: |W1| = 4 and Wi = e1W
′
i with |W ′

i | = 4 for i ∈ [2, 3].
Thus W1 | g2 · . . . · g7(−g1) · . . . · (−g7). After renumbering if necessary, we infer that either

W1 = g2g3(−g4)(−g5) or W1 = g2g3g4(−g5) .

If W1 = g2g3(−g4)(−g5), then g2+g3 = g4+g5. Since ord(g2+g3) = 2, g2g3g4g5 is a zero-sum subsequence
of U , a contradiction.

Suppose that W1 = g2g3g4(−g5). After renumbering if necessary, we may assume that gcd(U,W ′
2) =

g5g6 and gcd(U,W ′
3) = g7. Thus there are i, j ∈ [2, 7] \ {5, 6} such that

W ′
2 = (−gi)(−gj)g5g6 .
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Then 0 = σ(W2) = e1 − gi − gj + g5 + g6 and thus g5 + g6 + e1 = gi + gj. Since ord(gi + gj) = 2, it follows
that e1g5g6gigj is a zero-sum subsequence of U , a contradiction. �

Proof of Corollary 1.2. Let G1 and G2 be non-isomorphic finite abelian groups with D(G1) = D(G2) =
m ∈ [4, 7]. We need the following results. Theorem 1.1.1 implies that for m ∈ [4, 6], L(Cm) is minimal
in Ωm, L(Cm−1

2 ) is maximal in Ωm, and L(Cm) ( L(Cm−1
2 ). By Theorem 1.1.2, L(C7) and L(C6

2 ) are
each incomparable in Ωm. Moreover, if G is an abelian group with D(G) = m and L(G) ⊂ L(Cm−1

2 ) for
m ≥ 4, then G is either cyclic or an elementary 2-group ([12, Theorem 3.5]). We use Proposition 2.3
without further mention.

CASE 1: m = 4.
Since the only groups with Davenport constant four are the cyclic group of order four and the elementary

2-group of rank three, the claim follows immediately from the above mentioned results.

CASE 2: m = 5.
Every finite abelian group G with D(G) = 5 is isomorphic to one of the following groups:

C5, C2 ⊕ C4, C3 ⊕ C3, C4
2 .

Note that L(C5) ( L(C4
2 ), that L(C5) is a minimal element in Ω5, that L(C4

2 ) is a maximal element in
Ω5, and that the only group G with D(G) = 5 and L(G) ⊂ L(C4

2 ) is cyclic of order five.
Since max∆(C5) = 3 by Lemma 4.1.2, max∆(C3 ⊕ C3) = 1 by [8, Corollary 6.4.9], and max∆(C2 ⊕

C4) = 2 by Lemma 5.1.2, it follows that L(C5) 6⊂ L(C2 ⊕ C4) 6⊂ L(C3 ⊕ C3) and L(C5) 6⊂ L(C3 ⊕ C3).
Theorems 4.1 and 4.5 in [12] show that [2, 5] ∈ L(C3 ⊕ C3) \ L(C2 ⊕ C4). Thus the claim follows.

CASE 3: m = 6.
Every finite abelian group G with D(G) = 6 is isomorphic to one of the following groups:

C6, C2
2 ⊕ C4, C5

2 .

Again, we note that L(C6) ( L(C5
2 ). Since L(C6) is minimal in Ω6, and L(C5

2 ) and L(C2
2 ⊕C4) are both

maximal in Ω6, it remains to show that L(C6) 6⊂ L(C2
2 ⊕ C4). Since max∆∗(C6) = 4 and max∆∗(C2

2 ⊕
C4) = 2 by Proposition 2.2, it follows that L(C6) 6⊂ L(C2

2 ⊕ C4).

CASE 4: m = 7.
Every finite abelian group G with Davenport constant D(G) = 7 is isomorphic to one of the following

groups:
C7, C2 ⊕ C6, C4 ⊕ C4, C3

2 ⊕ C4, C3
3 , C6

2 .

By Theorem 1.1.2, L(C7) and L(C6
2 ) are incomparable in Ω7. Since all groups G in the above list satisfy

D(G) = D
∗(G) = 7, Theorem 1.1.4 implies that L(C2 ⊕ C6) is incomparable in Ω7. Next we show that

L(C3
2 ⊕ C4) is incomparable in Ω7. By Theorem 1.1.3, it is maximal in Ω7. Thus we have to verify that

L(C3
3 ) 6⊂ L(C3

2 ⊕ C4) and L(C4 ⊕ C4) 6⊂ L(C3
2 ⊕ C4) .

If (e1, e2, e3) is a basis of C3
3 and U = e21e

2
2e

2
3(e1 + e2 + e3), then L

(

U(−U)
)

= {2, 3, 4, 5, 7} and Lemma

5.6 shows that {2, 3, 4, 5, 7} /∈ L(C3
2 ⊕ C4).

Let (e1, e2) be a basis of C4 ⊕ C4 with ord(e1) = ord(e2) = 4 and let U = e32e1(e1 + e2)(e1 + 2e2)
2.

Then

U(−U) =
(

e32(e1 + 2e2)(−e1 − e2)
)(

(−e2)
2(e1 + 2e2)(−e1)

)

(

(−e2)e1(e1 + e2)(−e1 + 2e2)
2
)

=
(

(−e2)e1(e1 + e2)(e1 + 2e2)
2
)(

e2(−e1)(−e1 − e2)(−e1 + 2e2)
)(

(e2(−e2)
)2

=
(

e22(e1 + 2e2)(−e1)
)(

(−e2)
2(−e1 + 2e2)e1

)(

e2(−e2)
)(

(e1 + e2)(−e1 − e2)
)(

(e1 + 2e2)(−e1 + 2e2)
)

=
(

e2(e1 + e2)(−e1 + 2e2)
)(

(−e2)(−e1 − e2)(e1 + 2e2)
)(

e2(−e2)
)2(

(e1 + 2e2)(−e1 + 2e2)
)(

e1(−e1)
)

,

whence L
(

U(−U)
)

= [2, 7]. By Lemma 5.6, we infer that [2, 7] /∈ L(C3
2 ⊕ C4).
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Finally, it remains to show that L(C4 ⊕C4) and L(C3
3 ) are incomparable. Since 2+max∆(C3

3 ) = 4 by
[6, Proposition 5.1] and 2+max∆(C4 ⊕C4) = 5 by [13, Lemma 3.3], it follows that L(C4 ⊕C4) 6⊂ L(C3

3 ).
Lemmas 5.4 and 5.5 imply that L(C3

3 ) 6⊂ L(C4 ⊕ C4). �

Proof of Theorem 1.1.4: Second part. It remains to show the moreover statement. Let n ≥ 2 and let G
be a finite abelian group with D

∗(G) = D(G) = 2n + 1 such that L(G) ⊂ L(C2 ⊕ C2n). We assert that
G ∼= C2 ⊕ C2n.

If n = 2, then D(G) = 5 and the claim follows from Corollary 1.2. Suppose that n ≥ 3. We set
G ∼= Cn1

⊕ . . . ⊕ Cnr
with 1 < n1 | . . . |nr and we choose a basis (e1, . . . , er) of G with ord(ei) = ni for

i ∈ [1, r]. By Theorem 1.1.2, G is neither cyclic nor an elementary 2-group, whence r ≥ 2 and nr ≥ 3. We
consider the atom U = en1−1

1 · . . . · enr−1
r (e1+ . . .+ er) ∈ A(G) and observe that {2,D(G)} ⊂ L(U(−U)) ∈

L(G) ⊂ L(C2 ⊕ C2n).
If r ≥ 3, then U(−U) has no minimal zero-sum subsequence of length 3, which implies that 2n =

D(G) − 1 6∈ L(U(−U)), a contradiction to Proposition 5.3. Thus r = 2 and we distinguish several cases.
By [8, Lemma 6.6.4], L(U(−U)) = {2, n1, n2, n1 + n2 − 2, n1 + n2 − 1} ∈ L(Cn1

⊕ Cn2
). Thus, if n1 is

odd, then the second largest number of this set is odd, a contradiction to Proposition 5.3.
If n1 = 2, then D(G) = n1 + n2 − 1 = 2n+ 1 implies that n2 = 2n, whence G ∼= C2 ⊕ C2n.

If n1 ≥ 4 is even and n1 = n2, then ρ3(G) = D(G) + ⌊D(G)
2 ⌋ > ρ3(C2 ⊕ C2n) (the first equation

follows from [8, Theorem 6.3.4] and the inequality follows from [7, Theorem 5.1]), a contradiction to
L(G) ⊂ L(C2 ⊕ C2n).

Suppose that n1 = 4. We consider the atom V = e4n−1
2 e1(e1 + e2)(e1 − 2e2)(e1 + 2e2). Then

V (−V ) =
(

e4n−1
2 (e1+2e2)(−e1−e2)

)(

(−e2)
4n−2(e1−2e2)(−e1)

)(

e1(−e2)(e1+e2)(−e1+2e2)(−e1−2e2)
)

,

whence {2, 3,D(G)} ⊂ L
(

V (−V )
)

, a contradiction to Proposition 5.3.
Suppose that n1 ≥ 6 is even and n1 6= n2. We set m = n2/2 and consider the atom

V = en2−1
2 en1−3

1 (e1 +me2)
2(e1 + e2)

and assert that

L
(

V (−V )
)

= {2, n1 +m− 2, n1 +m− 1, n1 +m,n2, n1 + n2 − 3, n1 + n2 − 2, n1 + n2 − 1} .

Clearly, {2,D(G)} ⊂ L
(

V (−V )
)

. If W = (e1 + e2)(−e1)(−e2), then W (−W ) divides V (−V ) and gives

rise to a factorization of length D(G) − 1. Now we consider a factorization z ∈ Z
(

V (−V )
)

with |z| /∈
{2,D(G)−1,D(G)}. Then there is an atomW ∈ A(G) withW divides z, |W | ≥ 3, and with (e1+me2) | W .

If W = (−e2)e
n1−3
1 (e1 +me2)

2(e1 + e2), then W (−W ) divides V (−V ) and gives rise to a factorization
of length n2. If W = (e1 +me2)

2(−e1)
2, then

V (−V ) = W (−W )
(

(e1 + e2)(−e1 − e2)
)(

e1(−e1)
)n1−5(

e2(−e2)
)n2−1

is a factorization of length n1 + n2 − 3. If W = (e1 +me2)(−e1 − e2)(−e2)
m−1, then

V (−V ) = W (−W )
(

(e1 +me2)(−e1 +me2)
)(

e2(−e2)
)m(

e1(−e1)
)n1−3

is a factorization of length n1 +m. If W = (e1 +me2)(−e1)e
m
2 , then

V (−V ) = W (−W )
(

(e1 +me2)(−e1 +me2)
)(

(e1 + e2)(−e1 − e2)
)(

e1(−e1)
)n1−4(

e2(−e2)
)m−1

is a factorization of length n1+m−1. IfW = (e1+me2)(−e1)(−e2)
m, then we obtain again a factorization

of length n1 +m− 1. If W = (e1 +me2)(−e1 − e2)e
m+1
2 , then

V (−V ) = W (−W )
(

(e1 +me2)(−e1 +me2)
)(

e1(−e1)
)n1−3(

e2(−e2)
)m−2

is a factorization of length n1 +m− 2.
Since n1 ≥ 6, L

(

V (−V )
)

\ {2} consists of seven elements but it is not an interval. Thus Proposition

5.3 implies that L
(

V (−V )
)

/∈ L(C2 ⊕ C2n), a contradiction to L(G) ⊂ L(C2 ⊕ C2n). �
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