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The Besicovitch pseudodistance defined in [BFK99] for one-dimensional configurations is invariant by translations. We generalize the definition to arbitrary groups and study how properties of the pseudodistance, including invariance by translations, are determined by those of the sequence of finite sets used to define it. In particular, we recover that if the Besicovitch pseudodistance comes from a nondecreasing exhaustive Følner sequence, then every shift is an isometry. For non-Følner sequences, we prove that some shifts are not isometries, and the Besicovitch pseudodistance with respect to some subsequence even makes them non-continuous.

Introduction

The Besicovitch pseudodistance was proposed by Blanchard, Formenti and Kůrka in [START_REF] Blanchard | Cellular automata in the Cantor, Besicovitch and Weyl spaces[END_REF] as an "antidote" to sensitivity of the shift map in the prodiscrete (Cantor) topology of the space of 1D configurations over a finite alphabet. The idea is to take a window on the integer line, which gets larger and larger, and compute the probability that in a point under the window, chosen uniformly at random, two configurations will take different values. The upper limit of this sequence of probabilities behaves like a distance, except for taking value zero only on pairs of equal configurations: this defines an equivalence relation, and the resulting quotient space is a metric space on which the shift is an isometry, or equivalently, the distance is shift-invariant.

The original choice of windows is X n = [-n : n], the set of integers from -n to n included. This notion can be easily extended to arbitrary dimension d ≥ 1, taking a sequence of hypercubic windows. If we allow arbitrary shapes, the notion of Besicovitch space can be extended to configurations over arbitrary groups; in this case, however, the properties of the group and the choice of the windows can affect the the distance being or not being shift-invariant. An example of a Besicovitch pseudodistance which is not shift-invariant is given in [START_REF] Capobianco | Surjunctivity for cellular automata in Besicovitch spaces[END_REF], where it is also proved that, if a countable group is amenable (cf. [START_REF] Capobianco | Surjective cellular automata far from the Garden of Eden[END_REF] and [CSC10, Chapter 4]), then the Besicovitch distance with respect to any nondecreasing exhaustive Følner sequence is shift-invariant. The class of amenable groups is of great interest and importance in group theory, symbolic dynamics, and cellular automata theory.

In this paper, we explore the relation between the properties of Besicovitch pseudodistances over configuration spaces with countable base group and those of the sequence of finite sets used to define it. In Section 3, we give the main definition and prove that if a sequence of finite subsets is increasing, then the corresponding Besicovitch space is pathwise connected: this generalizes [BFK99, Proposition 1]. In Section 4, we introduce a notion of synchronous Følner equivalence between sequences, and a related order relation where one sequence comes before another sequence if it is synchronously Følner-equivalent to a subsequence of the latter. This, on the one hand, generalizes that of Følner sequences, and on the other hand, allows us to compare the Besicovitch distances and submeasures associated to different sequences. In particular, we prove that an increasing sequence of finite sets is Følner if and only if every shift is an isometry for the corresponding Besicovitch distance: this provides the converse of [START_REF] Capobianco | Surjunctivity for cellular automata in Besicovitch spaces[END_REF]Theorem 3.5]. Finally, we give conditions for absolute continuity and Lipschitz continuity of Besicovitch submeasures with respect to each other.

Background

We use the notation X Y to mean that X is a finite subset of Y . We denote the symmetric difference of two sets X and Y as X∆Y .

Given α ∈ R, its integer part α is the largest m ∈ Z such that m ≤ α.

If (α n ) and (β n ) are nonzero number sequences, we write

α n ∼ n→∞ β n if lim n→∞ α n /β n = 1, and α n = o n→∞ β n if lim n→∞ α n /β n = 0.

Submeasures

The following definition appears for instance in [START_REF] Sablik | Étude de l'action conjointe d'un automate cellulaire et du décalage: une approche topologique et ergodique[END_REF].

Definition 2.1. A submeasure over a set G is a map µ : 2 G → R {+∞} such that: 1. µ(∅) = 0; 2. µ(W ) < ∞ if W is finite; 3. µ(V ∪ W ) ≤ µ(V ) + µ(W ) for every V, W ⊂ G.
If G and A are two sets, the difference set of two functions x, y :

G → A is the set ∆(x, y) = { i ∈ G| x(i) = y(i)}.
Any submeasure over G gives rise to an associated pseudodistance over A G :

d µ (x, y) = µ(∆(x, y)) ∀x, y ∈ A G .
Remark 2.2. The topological space corresponding to such a pseudodistance is homogeneous in the following sense: the balls around every two points y and z are isometric. Indeed, identify A with the additive group Z/ |A| Z. Then for every y, z ∈ A G the map ψ y,z :

A G → A G defined by ψ y,z (x)(i) = x(i) -y(i) + z(i)
for every x ∈ A G and i ∈ G is an isometry between any ball around y and the corresponding one around z.

We say that submeasure µ is absolutely continuous (resp. α-Lipschitz, for some α > 0) with respect to submeasure ν if ν(W ) = 0 =⇒ µ(W ) = 0 (resp. µ(W ) ≤ αν(W )) for any W ⊂ G.

Remark 2.3. Let ε, δ > 0, µ, ν two submeasures on G, and z ∈ A G . The following are equivalent.

For every set

W ⊂ G, µ(W ) ≥ ε =⇒ ν(W ) ≥ δ.

For every x, y

∈ A G , d µ (x, y) ≥ ε =⇒ d ν (x, y) ≥ δ.

For every

x ∈ A G , d µ (x, z) ≥ ε =⇒ d ν (x, z) ≥ δ.
Consequently, the identity map, from space A G endowed with d µ onto space A G endowed with d ν , is continuous (resp. α-Lispchitz) if and only if µ is absolutely continuous (resp. α-Lispchitz) with respect to ν. In that case the identity is even absolutely continuous.

Shifts and translations

If A is an alphabet, G is a group, and g ∈ G, the shift by g is the function σ g : A G → A G defined by σ g (x)(i) = x(gi) for every x ∈ A G and i ∈ G. A map ψ from A G to itself is shift-invariant if ψσ g = σ g ψ for every g ∈ G. Note that ∆(σ g (x), σ g (y)) = g -1 ∆(x, y) for every x, y ∈ A G and g ∈ G, as:

∆(σ g (x), σ g (y)) = { i ∈ G| x(gi) = y(gi)} = g -1 j j ∈ G, x(j) = y(j) = g -1 { j ∈ G| x(j) = y(j)} = g -1 ∆(x, y) .
Since the maps ψ y,z from Remark 2.2 are shift-invariant, one can see that the shift is continuous, Lipschitz, etc in every x if and only if it is in one x.

The shift by g, within space A G endowed with d µ , is topologically the same as the identity map, from A G endowed with d µ onto space A G endowed with d ν , where ν(W ) = g -1 µ(W ) = µ(g -1 W ) for any set W ⊂ G. Remark 2.2 can then be rephrased into the following.

Remark 2.4. If G is a group, g ∈ G, and A G is endowed with d µ , then the shift map by g is continuous (resp. α-Lispchitz) if and only if µ is absolutely continuous (resp. α-Lispchitz) with respect to g -1 µ. In that case, the shift by g is even absolutely continuous.

Besicovitch submeasure and pseudodistance

Among classical examples of submeasures are the ones that induce the Cantor topology, or shift-invariant Besicovitch, or Weyl pseudodistance (see [START_REF] Hadeler | Cellular Automata : Analysis and Applications[END_REF]Def 4.1.1]. We will focus on the Besicovitch topology.

Definition

Let X and Y be nonempty sets and let (X n ) be a nondecreasing sequence of finite subsets of X. We may or may not require that (X n ) be exhaustive, that is, n X n = X.

Let us denote

P (W |V ) = |W ∩V | |V | (by convention, this is +∞ if V = ∅).
Remark 3.1.

1. P (W ∪ U |V ) ≤ P (W |V ) + P (U |V )
, and the equality holds if the union is disjoint.

2. If V ⊂ U , then P (V |U ) P (W |V ) = P (V ∩ W |U ) ≤ P (W |U )
The Besicovitch submeasure µ (Xn) : 2 X → [0, 1] is defined by:

µ (Xn) (W ) = lim sup n P (W |X n ) .
The Besicovitch pseudodistance is d (Xn) = d µ (Xn) . For example, if X = N, Y = {0, 1}, and

X n = [0 : n -1], x(i) = 0 for every i ∈ N and y ∈ {0, 1} N is the characteristic function of the prime numbers, then d (Xn) (x, y) = 0.
The topology of the quotient space is very different from the prodiscrete (Cantor) topology.

Remark 3.2. Remark obviously two dual cases (in general we will be in the first case, but not the second one):

1. If every U G appears finitely many times in (X n ), then µ (Xn) (W ) = 0 if W is finite.

2. If all U G appear (or, more generally, if for every n, cofinitely many U G of cardinality n appear) in (X n ), then µ (Xn) (W ) = 1 if W is infinite.

We will now concentrate on the nondecreasing case.

Connectedness

Theorem 3.3. If (X n ) is nondecreasing and has unbounded cardinality, then the Besicovitch space is pathwise-connected.

Proof. It is enough to build, for every W ⊂ G and for every α ∈ [0, 1], a set V (α) such that:

1. if 0 ≤ α < β ≤ 1 then V (α) ⊂ V (β), 2. V (0) = ∅ and V (1) = W ∩ n X n (the submeasure does not account
for what is outside the union), and

3. µ(V (α)) = αµ(W ).
Let us assume that there is a total order on each

Y n = X n \ i<n X i (independent of our α). Now define, inductively on n ∈ N, the set U n ⊂ W ∩ Y n by taking the minimal α |W ∩ X n | - i<n |U i | elements in W ∩ Y n . Provided that this definition is valid, it maintains, for all n ∈ N, the property that i≤n |U i | = α |W ∩ X n | . It is actually valid because, by induction, α |W ∩ X n+1 | - i≤n |U i | = α |W ∩ X n+1 | -α |W ∩ X n | < α (|W ∩ X n+1 | -|W ∩ X n |) + 1 < α (|W ∩ Y n+1 |) + 1 < |W ∩ Y n+1 | + 1 .
We now define V (α) = n∈N U n . By construction, thanks to the common total order, we immediately get that α

< β =⇒ V (α) ⊂ V (β). Moreover, µ(V (α)) = lim sup n∈N P (V (α)|X n ) = lim sup n∈N i≤n U i |X n | = lim sup n∈N α |W ∩ X n | |X n | Since α |W ∩ X n | -1 < α |W ∩ X n | ≤ α |W ∩ X n | and |X n | is unbounded, we get that: µ(V (α)) = αµ(W ) .
4 Følner equivalence and Besicovitch submeasures

Følner equivalence

Let (X n ) and (Y n ) be nondecreasing sequences of finite subsets of G. We say that they are synchronously Følner-equivalent if

lim n→∞ |X n ∆Y n | |X n | = 0 . Proposition 4.1. Consider nondecreasing sequences (X n ) and (Y n ).
The following are equivalent.

1.

(X n ) and (Y n ) are synchronously Følner-equivalent. 2. |X n ∩ Y n | ∼ n→∞ |X n | ∼ n→∞ |Y | n . 3. |X n | ∼ n→∞ |Y n | and |X n \ Y n | = o n→∞ (|X n |).
Proof. 

=⇒
\ Y n | = |X n | -|X n ∩ Y n |.
=⇒ 1 Note that:

|X n ∆Y n | = |X n \ Y n | + |Y n \ X n | = |X n \ Y n | + |Y n | -|X n ∩ Y n | = 2 |X n \ Y n | + |Y n | -|X n | = o n→∞ (|X n |) .
Corollary 4.2. Synchronous Følner equivalence is an equivalence relation.

Proof.

• From Proposition 4. • Transitivity follows from Proposition 4.1 and the inclusion X∆Z ⊆ (X∆Y ) ∪ (Y ∆Z), which holds for every X, Y and Z.

• Reflexivity is trivial.

Since the definition involves a lim (and not a lim inf), we immediately note the following.

Remark 4.3. (X n ) and (Y n ) are synchronously Følner-equivalent if and only if (X kn ) and (Y kn ) are synchronously Følner-equivalent, for every increasing sequence (k n ).

We also denote (

X n ) (Y n ) if (X n ) is synchronously Følner-equivalent to a subsequence (Y mn ). Equivalently, lim n→∞ min m∈N |X n ∆Y m | |X n | = 0 .
To be convinced of the equivalence, note that the minimum is reached by some m n for each n ∈ N, because (Y m ) is nondecreasing and X n is finite. Thanks to symmetry of synchronous equivalence, we also have that (X n ) (Y n ) if and only if lim n→∞ min m∈N |Xn∆Ym| |Ym| = 0. We say that they are Følner-equivalent, and write (

X n ) ∼ (Y n ), if both (X n ) (Y n ) and (Y n ) (X n ).
This is the case if they are synchronously Følner equivalent, but the converse is false. As counterexamples, one can consider twice the same sequence, but with repetitions on both sides that are longer and longer, and not synchronized. If one wants to obtain strictly increasing sequences, repetitions can be replaced by very slowly increasing sequences (point by point).

Remark 4.4.

1.

is a preorder relation.

2. Følner-equivalence is an equivalence relation.

Proof.

1. Reflexivity is obvious, and transitivity is not difficult.

2. Følner-equivalence is defined as the equivalence corresponding to a preorder, which is classical.

Proposition 4.5. Assume that 

|X n | ∼ n→∞ |Y n |. Then (X n ) and (Y n ) are synchronously Følner-equivalent if and only if (X n ) (Y n ). Proof. Assume (X n ) (Y n ) (the converse implication is trivial). Let n, m ∈ N. If m ≤ n, then |X n \ Y n | ≤ |X n \ Y m | and |Y n \ X n | ≤ |Y n \ Y m | + |Y m \ X n | since (Y n ) is nondecreas- ing. Summing up, |X n ∆Y n | ≤ |X n ∆Y m | + |Y n \ Y m |. Symmetrically, if n ≤ m, |X n ∆Y n | ≤ |X n ∆Y m |+|Y m \ Y n |.

Comparing Besicovitch submeasures

A basic tool in our set constructions will be the following elementary remark.

Remark 4.6. If (X n ) is nondecreasing and exhaustive, then for every finite set W and every ε > 0, there exists n (Xn) (W, ε) such that ∀n ≥ n (Xn) (W, ε), P (W |X n ) < ε and W ⊂ X n . We deduce the following, which will be useful in our constructions.

Lemma 4.7. Let (X n ) be a nondecreasing exhaustive sequence of an infinite group G. Let W = i∈N W i where ∅ = W i G for each i ∈ N, such that, for every n ∈ N, there are at most finitely many i's such that W i ∩ X n = ∅ (this is the case, for example, if the W i 's are pairwise disjoint); in that case j n = max W j ∩Xn =∅ j is well-defined for every n. Then:

1. µ (Xn) (W ) ≥ lim sup i→∞ max m∈N P (W i |X m ) . 2. If there is a sequence (ε n ) converging to 0 such that ∀n ∈ N, n (Xn) ( i<jn W i , ε n ) ≤ n, then: µ (Xn) (W ) = lim sup i→∞ max m∈N P (W i |X m ) .
3. In general, there exists a nondecreasing integer sequence l such that, noting W l = i∈N W l i :

µ (Xn) (W l ) = lim i→∞ max m∈N P (W l i |X m ) .
Proof.

1. Let (m i ) i∈N be a sequence of integers such that P (W i |X m i ) = max m∈N P (W i |X m ). We know that this sequence goes to infinity (even though it may not be nondecreasing), because only finitely many W i 's intersect each X m , but they all intersect at least one. Hence, µ (Xn) (W ) = lim sup n→∞ P (W |X n ) ≥ lim sup i→∞ P (W |X m i ). We get the desired inequality by noting that W i ⊂ W .

2. Point 1 already gives one inequality. For the converse:

µ (Xn) (W ) = lim sup n→∞ P   i<jn W i ∪ W jn ∪ i>jn W i |X n   ≤ lim sup n→∞   P   i<jn W i |X n   + P (W jn |X n ) + P   i>jn W i |X n     ≤ lim sup n→∞ ε n + max m∈N P (W jn |X m ) + 0 ≤ lim sup n→∞ ε n + lim sup n→∞ max m∈N P (W jn |X m ) ≤ 0 + lim sup i→∞ max m∈N P (W i |X m ) .
The last inequality comes from the fact that the sequence (j n ) is nondecreasing (because (X n ) is nondecreasing), and not upper-bounded (because the W i 's are nonempty), so it goes to infinity.

3. Let us define some sequence l by recurrence, from any seed l 0 ∈ N. Assume that l n is defined, and write k n = n (Xn) ( j≤n W l j ). Choose any l n+1 such that for every m ≥ l n+1 , W m does not intersect X kn-1 (this is possible by assumption). If j n = max W l j ∩Xn =∅ j, then n (Xn) ( j<jn W l j ) = k jn-1 . By definition, W l jn does not intersect X k jn-1 -1 . Since W l jn intersects X n , we can deduce that n > k jn-1 -1. This means that (W l i ) satisfies the hypothesis of Point 2.

Replacing the lim sup by a lim can be achieved by taking, again, a subsequence.

Lemma 4.8. Let ε, δ > 0, and (X n ), (Y n ) be nondecreasing and exhaustive. The following are equivalent.

For every

W ⊂ G, if µ (Yn) (W ) ≥ ε, then µ (Xn) (W ) ≥ δ. 2. lim inf n∈N max m∈N ε |Y n | -|Y n \ X m | |X m | ≥ δ.
If m n realizes the maximum for each n ∈ N, and if ε < 1, then these properties imply that

δ ε ≤ lim inf n∈N |Y n | |X mn | ≤ lim sup n∈N |Y n | |X mn | ≤ 1 -δ 1 -ε .
In particular, the properties imply that δ ≤ ε.

Proof.

• 

|Xm n | ≤ 1-δ 1-ε , provided that ε < 1. 2⇒1 µ (Xn) (W ) = lim sup m→∞ P (W |X m ) ≥ lim sup n→∞ P (W |X mn ) ≥ lim sup n→∞ |W ∩ Y n ∩ X mn | |X mn | = lim sup n→∞ |W ∩ Y n | -|W ∩ Y n \ X mn | |X mn | ≥ lim sup n→∞ |W ∩ Y n | -|Y n \ X mn | |X mn | = lim sup n→∞ ε |Y n | -|Y n \ X mn | |X mn | + |W ∩ Y n | -ε |Y n | |Y n | |Y n | |X mn | ≥ lim inf n→∞ ε |Y n | -|Y n \ X mn | |X mn | + lim sup n→∞ |W ∩ Y n | |Y n | -ε lim inf n∈N |Y n | |X mn | ≥ δ + 0 δ ε
by the two premises and the first inequalities.

1⇒2 Assume that lim inf i→∞

ε|Y i |-|Y i \X k i | |Xk i | < δ.
Let us build a set W that contradicts Point 1.

For each n ∈ N, there exists

k n = min { k| |Y n \ X k | ≤ ε |Y n |}, because for large k, Y n \X k = ∅ (because (X k ) is exhaustive and Y n is finite). By noting that (Y n ∩ X kn ) \ X kn-1 = (Y n \ X kn-1 )\(Y n \X kn ) (by convention X -1 is empty), we can write that |(Y n ∩ X kn ) \ X kn-1 | = |Y n \ X kn-1 | -|Y n \ X kn |, which is bigger than ε |Y n | -|Y n \ X kn |, by minimality of k n . Hence (Y n ∩ X kn ) \ X kn-1 admits a subset Z n of cardinality |Z n | = ε |Y n | -|Y n \ X kn |. Define W n = (Y n \ X kn ) Z n . Note that W n ⊂ Y n , and that ε -1 |Yn| < P (W n |Y n ) ≤ ε.
The W i satisfy the hypotheses of Lemma 4.7, so that Point 3 gives an integer sequence l, with µ (Xn) (W l ) = lim i→∞ max m∈N P (W l i |X m ). By construction, we have:

P (W i |X m ) = P (Y i \ X k i |X m ) + P (Z i |X m ) = |Y i ∩ X m \ X k i | + |Z i ∩ X m | |X m | . If m < k i , then X m ⊆ X k i , and Z i ∩ X m ⊆ Z i ∩ X k i -1 = ∅, so that this quantity is 0. On the contrary, if m ≥ k i , then Z i ⊆ X k i ⊆ X m , and Y i ∩ X m \ X k i = (Y i \ X k i ) \ (Y i \ X m ),
so that:

P (W i |X m ) = |Y i ∩ X m \ X k i | + |Z i ∩ X m | |X m | = |Y i ∩ X m \ X k i | + |Z i | |X m | = |Y i \ X k i | -|Y i \ X m | + ε |Y i | -|Y i \ X k i | |X m | ≤ max m∈N | ε |Y i | | -|Y i \ X m | |X m | < δ by hypothesis.
Taking the limit, we get that µ (Xn) (W l ) < δ. On the other hand, applying now Point 1 of Lemma 4.7 to sequence (Y n ):

µ (Yn) (W l ) ≥ lim i∈N max m∈N P (W l i |Y m ) ≥ P (W l i |Y l i ) = ε .
The previous lemma now allows to characterize the main properties of interest for comparing two Besicovitch submeasures. Proposition 4.9. Let (X n ) and (Y n ) be nondecreasing and exhaustive.

1. µ (Yn) is λ-Lipschitz with respect to µ (Xn) , where λ > 0, if and only if

∀ε > 0, lim inf n→∞ max m∈N |Y n | -1 ε |Y n \ X m | |X m | ≥ 1 λ .
2. µ (Yn) is absolutely continuous with respect to µ (Xn) if and only if it is Lipschitz.

3. µ (Yn) ≤ µ (Xn) if and only if (Y n ) (X n ). 4. µ (Yn) = µ (Xn) if and only if (Y n ) ∼ (X n ).
One can even see from the proof that (Y n ) (X n ) if and only if there exists

ε ∈]0, 1[ such that ∀W ⊂ G, µ (Xn) (W ) < ε =⇒ µ (Yn) (W ) < ε.
Proof.

1. Just note that the λ-Lipschitz property of µ (Yn) is equivalent to the properties in Lemma 4.8, for every δ and ε = λδ, and hence to:

lim inf n∈N max m∈N |Y n | -1 ε |Y n \ X m | |X m | ≥ 1 λ .
2. From Lemma 4.8, µ (Yn) is absolutely continuous with respect to µ (Xn) if and only if

∀ε > 0, lim inf n→∞ max m∈N |Y n | -1 ε |Y n \ X m | |X m | > 0 .
From Point 1, this is equivalent to the existence of some λ such that µ (Yn) is λ-Lipschitz with respect to µ (Xn) .

Consider a sequence (m

n ) which witnesses that (Y n ) (X n ): lim n→∞ |Yn∆Xm n | |Yn| = 0. Then lim n∈N |Y n | -1 ε |Y n \ X mn | |X mn | = lim n∈N |Y n | |X mn | 1 - 1 ε lim n∈N |Y n \ X mn | |Y n | = 1 .
We can conclude by Point 1. Conversely, suppose that

lim inf n∈N |Y n | -1 ε |Y n \ X mn | |X mn | ≥ 1 .
By the last inequalities in Lemma 4.8, we know that lim n∈N

|Yn| |Xm n | = 1. Moreover, lim n→∞ |Y n \ X mn | |X mn | ≤ lim n→∞ ε |Y n | |X mn | -ε lim inf n∈N |Y n | -1 ε |Y n \ X mn | |X mn | = ε -ε = 0 . By Point 3 of Proposition 4.1, we obtain that (Y n ) (X n ).
4. This is direct from the definitions and the Point 3.

The following is direct from Proposition 4.9 and Remark 2.3.

Corollary 4.10. Let (X n ) and (Y n ) be nondecreasing and exhaustive. Then

(Y n ) (X n ) (resp. (Y n ) ∼ (X n ))
if and only if the identity map from space A G endowed with d (Xn) onto space A G endowed with d (Yn) is 1-Lipschitz (resp. an isometry).

Here are particular classes of sequences, where the proposition can be applied.

Corollary 4.11. Let (X n ) and (Y n ) be nondecreasing and exhaustive.

1. If there exist a real number λ > 0 and a sequence (m n ) such that lim inf n→∞ P (X n |Y mn ) ≥ 1 λ and X n ⊂ Y mn , then µ (Xn) is λ-Lipschitz with respect to µ (Yn) .

2. If for cofinitely many n ∈ N, Y n ⊂ X n+1 and lim inf n→∞ P (X n |X n+1 ) ≥ λ, then µ (Xn) is λ-Lipschitz with respect to µ (Yn) .

3. On the other hand, if

|X n | ∼ n→∞ |Y n | but (X n
) and (Y n ) are not (synchronously) Følnerequivalent , and n (Ym) (X n , ε n ) = n + 1 for some real sequence (ε n ) converging to 0, then µ (Xn) is not absolutely continuous with respect to µ (Yn) .

Proof.

1. For every ε > 0, lim inf 

n→∞ max m∈N |X n | -1 ε |X n \ Y m | |Y m | ≥ lim inf n→∞ |X n | -1 ε |X n \ Y mn | |Y mn | = lim inf n→∞ |X n | |Y mn | ≥ 1 λ .

Apply

|X n | -1 ε |X n \ Y m | |Y m | ≤ max |X n | -1 ε |X n \ Y n | |Y n | , ε n .
Putting things together, lim inf n→∞ max m∈N |Xn|-1 ε |Xn\Ym| |Ym| is 0. We conclude by Point 2 of Proposition 4.9. 2. µ (Y ln ) = µ (X ln ) , for every increasing sequence (l n ) ∈ N N .

3. µ (Y ln ) is absolutely continuous with respect to µ (X ln ) , for every increasing sequence (l n ).

Proof.

=⇒ 2 By Remark 4.3, synchronous Følner equivalence is transmitted to all subsequences (provided that one takes the same subsequence for (X n ) and for (Y n )). We conclude thanks to Proposition 4.9.

=⇒ 3 This is obvious.

=⇒ 3 If (X n ) and (Y n ) are not synchronously Følner-equivalent, then there exists an infinite set I ⊂ N and a real number α > 0 such that ∀n ∈ I, |Xn∆Yn| |Xn| ≥ α. This implies that for every increasing sequence (l n ) ∈ I N , (X ln ) and (Y ln ) are not synchronously Følner-equivalent. We can take an increasing sequence (l n ) ∈ I N such that n (Ym) (X ln , ε ln ) = l n+1 , for some real sequence (ε n ) converging to 0. Then (X ln ) and (Y ln ) satisfy the assumptions for Point 3 of Corollary 4.11.

Shift

If G is a group and (X n ) ∼ (gX n ), then we say that (X n ) is (left) g-Følner. Since |X n | = |gX n |, Proposition 4.5 says that it is enough to require (X n ) (gX n ), and that in this case, (X n ) and (gX n ) are synchronously Følner-equivalent.

A (left) Følner sequence for a countable group G is a g-Følner sequence for every g ∈ G. A countable group is amenable if and only if it admits a Følner sequence: cf. [CSC10, Chapter 4], in particular for many alternative definitions.

A group G is finitely generated (briefly, f.g.) if E G exists such that for every g ∈ G there exists e 1 , . . . , e n ∈ E ∪ E -1 such that e 2. This comes from Corollary 4.12.

3. This comes from Point 2 and the characterization of amenability through Følner sequences.

There are nondecreasing non-Følner sequences for which the shift is Lipschitz (but not an isometry) in Z d . Here's an example: X n = ( -n, n ∪ 2 -n, n ) d . Indeed, for every n, 1 + X n ⊂ X 2n and |X 

Propagations and right Følner sequences

Let G be a group and let g ∈ G. A sequence (X n ) of finite subsets of G is right g-Følner if (X n ) ∼ (X n g); equivalently, if (X -1 n ) is left g -1 -Følner. A right Følner sequence is then a sequence which is right g-Følner for every g ∈ G.

Let now A be an alphabet. The propagation in direction g ∈ G is the function π g : A G → A G defined by π g (x)(i) = x(ig -1 ) for every x ∈ A G and i ∈ G. With this definition, the value of π g (x) at point ig equals the value of x at point i: that is, the information moves in direction g. Points 1, 2 and 3 of Corollary 4.13 can then be dualized to right Følner sequences and propagations:

1. A nondecreasing exhaustive sequence of finite subsets of a group G is right Følner if and only if all of its subsequences yield a Besicovitch pseudodistance for which every block map is continuous.

2. A finitely generated group is amenable if and only if it admits a nondecreasing exhaustive sequence (X n ) of finite subsets such that, for every k ≥ 1 and every increasing (l n ) ∈ N N , every block map with neighborhood size k is k-Lipschitz with respect to d (X ln ) .

Conclusions

We have presented a way to compare Besicovitch submeasures (in terms of absolute continuity, Lipschitz continuity, equality) thanks to the sequences of finite sets which describe them. In a shift space (with respect to a countable group) endowed with the Besicovitch topology, we have derived conditions on the defining sequence for the shift maps to be continuous, Lipschitz or isometric. As part of this, we gave another characterization of amenable groups.

Possible future work could involve extension to configuration spaces on possibly uncountable groups. This would require the use of the more general notions of directed set and of net, and although the definition of Besicovitch pseudodistance and submeasure would be immediate to extend, the techniques used to prove the main lemmas could need a major revision.

  Overall for every m ∈ N, we get |X n ∆Y n | ≤ |X n ∆Y m |+||Y m | -|Y n ||. If we apply this with (m n ) the subsequence from the definition of , which is such that (X n ) ∼ (Y mn ), we have |X n ∆Y mn | = o n→∞ (|X n |), and by Proposition 4.1 (applied to (X n ) and (Y mn )), |Y mn | ∼ n→∞ |X n | ∼ n→∞ |Y n |. Summing up, we deduce that |X n ∆Y n | = o n→∞ (|X n |).

  Corollary 4.12. Let (X n ) and (Y n ) be nondecreasing and exhaustive. Assume that |X n | ∼ n→∞ |Y n |. Then the following are equivalent. 1. (X n ) and (Y n ) are synchronously Følner-equivalent.

  2n | |Xn| = (8n-1) d (4n-1) d , which converges to 2 d when n goes to infinity. We conclude by Point 1 of Corollary 4.11, with m n = 2n and α = 2 d . But the shift is not an isometry because the sequence is not Følner: µ((2Z) d ) = 2 d /3 d > µ((2Z + 1) d ) = 1/3 d .

  Let us start by proving the final inequalities. Suppose lim inf n∈N Then on the one hand, it is clear that lim inf n∈N ε|Yn| |Xm n | is even bigger, which gives the first inequality. On the other hand, since |Y n \ X mn | ≥ |Y n | -|X mn |, we can see that lim inf n∈N (ε-1) Yn

				ε|Yn|-|Yn\Xm n | |Xm n |	≥ δ.
	Xm n	+1 ≥ lim inf n∈N	ε|Yn|-|Yn\Xm n | |Xm n |	≥ δ, which gives that lim sup n∈N	|Yn|

  Point 1 with m n = min { m ∈ N| X n ⊂ Y m }; the hypothesis is that m n is ultimately n + 1. 3. Suppose |X n | ∼ n→∞ |Y n | and (X n ) and (Y n ) are not synchronously Følner-equivalent. By Proposition 4.5, (X n ) (Y n ), that is, ε = lim sup n→∞By the second assumption, for every m > n, X n \ Y m = ∅ and |Xn| |Ym| ≤ ε n . We get:

			|Xn\Yn| |Yn|	> 0. We can write
	lim inf n→∞	|Xn|-1 ε |Xn\Yn| |Yn|	= 0.
		max m∈N	

  • • • e n = g. Remarkably (cf. [Pet, Lemma 5.3]) if a f.g. group is amenable, then it has a nondecreasing exhaustive Følner sequence. In addition, if the size of the balls grows polynomially with the radius, then they form a Følner sequence, so Point 3 of Corollary 4.13 generalizes [HM17, Cor 4.1.4]. The following is a rephrasing of Corollary 4.10. The first point generalizes [HM17, Prop 4.1.3]. Note that it still applies in nonamenable groups, but the shifts are no longer isometries, and there is a subsequence of balls with respect to which the Besicovitch pseudodistance makes them non-continuous. We remark (cf. [dlH00, VII.34]) that the sequence of balls is Følner if and only if the group has polynomial growth, and has a Følner subsequence if and only if it has subexponential growth. If E is the generating set and E n the corresponding radius-n ball, then E 0 = {e} where e is the identity of G and E

	Proof.
	1.

Corollary 4.13. Let G be a countable group and let (X n ) be a nondecreasing exhaustive sequence. n+1 = (E ∪ E -1 ) • E n , so |E n | ≤ (2 |E| + 1) n . We can apply Point 2 of Corollary 4.11.

† This research was supported by the Estonian Ministry of Education and Research institutional research grant no. IUT33-13.

Corollary 4.15. Let G be a group. 1. A nondecreasing exhaustive sequence (X n ) is right g-Følner if and only if µ (Xn) = µ (Xng -1 )

if and only if the propagation in direction g is an isometry.

2. A nondecreasing exhaustive sequence is right Følner if and only if every propagation is an isometry.

3.

A finitely generated group is amenable if and only if there exists a nondecreasing exhaustive sequence (X n ) of finite subsets of G such that every propagation is an isometry.

Proof. The first equivalence of Point 1 is immediate. For the other one, given x ∈ A G , let x(i) =

x(i -1 ) for every x ∈ A G and i ∈ G: then for every x, y ∈ A G and g ∈ G it is x = x, ∆(x, y) = (∆(x, y)) -1 and π g (x) = σ g (x), thus also

), so that the propagation in direction g is an isometry for d (Xn) if and only if the shift by g is an isometry for d X -1 n . Points 2 and 3 follow easily.

Block maps

A block map on a group G with source alphabet A, target alphabet B, neighborhood N = {j 1 , . . . , j k } and local rule φ :

defined as the synchronous application of φ at the "N -shaped neighborhood" of each point of the group: that is, for every

. By the Curtis-Lyndon-Hedlund theorem [START_REF] Hedlund | Endomorphisms and automorphisms of the shift dynamical system[END_REF] (see also [CSC10, Chapter 1]), block maps are all and only those functions from A G to B G which are continuous in the prodiscrete topology and commute with all the shifts. Every propagation is a block map, but the shift by g ∈ G is a block map if and only if g is central in G, that is, gh = hg for every h ∈ G; in this case, σ g = π g -1 . Note that the local rule φ itself can be identified with a block map Φ with source alphabet A k , target alphabet B, and neighborhood N = {e}, where e is the identity element of G. Such a function is surely 1-Lipschitz, but not necessarily an isometry: for example, φ could be constant. Block maps can be defined equivalently as follows. For f 1 , . . . , f k :

Then a block map F with source alphabet A, target alphabet B, neighborhood N = {j 1 , . . . , j k } and local rule φ has the form

), where Φ is as in the previous paragraph.

Lipschitz with respect to d (Xn) . In particular, if α q = α for every q ∈ [1 : k], then f is kα-Lipschitz, and if each f q is an isometry, then f is k-Lipschitz.

Proof. For every x, y ∈ A G and i ∈ G, we have f (x Corollary 4.17.