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Abstract: (75 words) 18 

While antibiotic use is a risk factor of carbapenemase-producing Enterobacteriaceae 19 

(CPE) acquisition, the importance of timing of antibiotic administration relative to CPE 20 

exposure remains unclear. In a murine model of gut colonization with NDM-1-producing 21 

Klebsiella pneumoniae, a single injection of clindamycin within at most one week before 22 

or after CPE exposure induced colonization persisting up to 100-days. Timing of 23 

antibiotic administration relative to CPE exposure may be relevant to infection control 24 

and antimicrobial stewardship approaches.  25 
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Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging public health 32 

issue, considered a critical priority by the World Health Organization (1). Among CPE, 33 

New Delhi metallo-beta-lactamase-1-(NDM-1)-producing Enterobacteriaceae are 34 

particularly preoccupying. Indeed, NDM-1 confers resistance to most β-lactams, 35 

including carbapenems, and has spread worldwide (2), raising fears of severe infections 36 

without therapeutic options (3). 37 

In the hospital setting, contact with a CPE-colonized patient or prior antibiotic use are 38 

major risk factors for CPE acquisition (4, 5). Among antibiotics, anti-anaerobes (e.g., 39 

piperacillin-tazobactam or clindamycin) seem particularly at risk (6, 7).  40 

While antibiotics are a known risk factor, the role of the timing of CPE exposure relative 41 

to antibiotic administration is unclear. We describe a murine model of gut colonization 42 

with NDM-1-producing Klebsiella pneumoniae following a single administration of 43 

clindamycin and assess the effects of timing of clindamycin administration relative to 44 

CPE exposure on effective CPE colonization.  45 

The French Ethical Committee for Animal Experimentation approved this study (APAFIS 46 

#7166). Seven-week-old C57BL/6 male mice housed under specific pathogen-free 47 

conditions and a clinical isolate of Klebsiella pneumoniae producing NDM-1-48 

carbapenemase (8) were used. 49 

First, we validated the murine model of CPE gut colonization. Mice were divided into 50 

four groups with or without 24-hour CPE exposure in drinking water (107 CFU/mL at day 51 

0) and/or intraperitoneal clindamycin (200µg) (Figure 1). CPE load was evaluated by 52 

plating stool samples onto selective medium (lysogeny broth agar with 32 mg/L 53 
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cefotaxime and 6 mg/L vancomycin). In mice exposed to both CPE and clindamycin, 8.3 54 

to 8.7 log CPE/g stools were recovered at Days 7 through 14 (Figure 1A). In mice 55 

exposed to CPE without clindamycin, CPE load in stools briefly peaked at 5.6 log of 56 

CPE/g of stool at Day 2 but fell below detection threshold from Day 7 onwards. Without 57 

clindamycin administration, there was no effective colonization. 58 

Microbiota alterations observed with CPE exposure and/or clindamycin injection were 59 

analyzed by next-generation sequencing (n=2 per group) of ileal samples taken at Day 7 60 

by 16S rDNA gene amplification using the Ion 16STM Metagenomics kit and sequencing 61 

on the Ion PGM System (Life Technologies, Carlsbad, USA). Bioinformatic analyses 62 

were performed using QIIME2 (9) and R phyloseq package (10). CPE exposure without 63 

clindamycin did not alter gut microbiota compared to controls: more than 90% of 16S 64 

rDNA sequences were classified as Firmicutes, either Clostridiales or Lactobacilliales 65 

(Figure 1B, 1C). Clindamycin administration without CPE exposure led to an increase in 66 

Bacteroidetes (approximately 45%) and Proteobacteria, mainly Enterobacteriales (up to 67 

26%). Clindamycin administration with CPE exposure resulted in a major increase in 68 

Proteobacteria (up to 84%), mostly Enterobacteriales (up to 76%). 69 

To determine CPE colonization localization along the intestinal tract, intraluminal 70 

contents from terminal ileum, caecum, colon, and stool samples were taken at Day 7 in 71 

five CPE-exposed and clindamycin-treated mice. A higher load of CPE/g of digestive 72 

contents was found in the caecum (8.2 log ± 0.5), colon (8.0 log ± 0.4) and feces (8.1 log 73 

± 0.2) compared to ileum (5.0 log ± 0.8, p < 0.0001) (Figure 1D).  74 
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Finally, to determine the effects of timing of clindamycin administration relative to CPE 75 

exposure on effective CPE colonization, CPE exposed mice received clindamycin at 76 

different days before or after CPE exposure (figure 2). Stool samples were collected 77 

twice weekly for a month, then once weekly for two months to assess CPE load. 78 

Clindamycin injection at most one week before or after CPE exposure was necessary to 79 

achieve gut colonization (Figure 2). Indeed, when clindamycin was injected at either 80 

Days-21/-14 or Days+14/+21, the mice were not durably colonized, despite CPE 81 

exposure at Day-0. 82 

The timing of antibiotics relative to CPE exposure is a key factor of effective CPE 83 

colonization. In our murine model, a single clindamycin injection within a week before or 84 

after CPE exposure induced gut colonization for at least 100 days. Remarkably, in a 85 

study predating the “omics” era, van der Waaij et al. also demonstrated 2-week selective 86 

window for persistent digestive colonization with streptomycin/neomycin resistant Gram-87 

negative bacteria following oral administration of these antibiotics (11). Other murine 88 

models of digestive CPE colonization have been described. In one model, when mice 89 

were exposed to KPC-producing Klebsiella pneumoniae three days after the first 90 

administration of clindamycin, CPE load initially attained 10 log CFU/g of stool, then 91 

decreased to 5-6 log CFU/g of stool five days after the last clindamycin injection (6). In 92 

another model, in which mice were exposed to NDM-1-producing Escherichia coli four 93 

days after the first administration of vancomycin, metronidazole, and ceftriaxone (12), 94 

CPE load in stools was 2-3 log CFU/g (close to the detection limit) twenty days after 95 

ending antimicrobials. In our model, with a single injection of clindamycin, CPE load over 96 

7 log CFU/g of stool persisted for 100 days. Furthermore, our study is original in 97 
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assessing not only the window of opportunity for colonization after administration of 98 

antibiotics, but also before and showing that this opportunity exists both one week 99 

before and after antibiotics. 100 

Gut microbiota analysis confirms that CPE exposure alone does not lead to colonization 101 

since Enterobacteriales, which CPE belong to, remained undetected seven days after 102 

exposure, similar to unexposed controls. Seven days after clindamycin administration, 103 

there was a marked decrease in Clostridiales from over 75% to 30% at most, an 104 

increase in Bacteroidetes (45%), and an appearance of Enterobacteriales (23%), even 105 

without CPE exposure. Enterobacteriales are resistant to clindamycin; therefore their 106 

expansion can be enhanced by clindamycin, as described previously in a murine model 107 

of Clostridium difficile infection (13). Interestingly, in their pre-“omics” demonstration of a 108 

selective window for digestive colonization induced by antibiotics, van der Waaij et al., 109 

using germ-free mice recolonized with the flora from mice in which colonization was no 110 

longer possible late after antibiotic exposure, found (in preliminary experiments) that this 111 

flora conferring what was termed “colonization resistance” was characterized by a major 112 

proportion of Clostridiales (11). A more recent study using conventional culture methods 113 

showed that antibiotics allowed colonization by the ESBL E. coli strain ST 131 114 

regardless of effect on Bacteroidales (clindamycin) or not (cefuroxime, dicloxacillin) (14). 115 

These results suggest that the timing of antimicrobials relative to CPE exposure in 116 

providing ecologic space for implantation and expansion is an important parameter to 117 

consider. 118 

Clinical studies focusing on healthy travelers at high risk of being exposed to CPE or 119 

other multidrug-resistant Enterobacteriaceae found a high rate of acquisition of 120 
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multidrug-resistant Enterobacteriaceae (15). Although initially at 51%, colonization was 121 

short-lived as only 5% remained colonized three months after their return. In this 122 

population of healthy travelers, only 10% reported antibiotic use during their trip. While 123 

studies of acquisition and persistence of colonization by NDM-1-producing 124 

Enterobacteriaceae after travel to endemic countries concern few subjects, larger 125 

studies concentrating on extended spectrum β-lactamase-producing Enterobacteriaceae 126 

show that a significant risk factor is the use of antimicrobials during travel (16). These 127 

studies suggest that a healthy gut microbiota protects travelers exposed to CPE or other 128 

multidrug-resistant Enterobacteriaceae from long-term colonization (17).  129 

Antibiotic use is a major risk factor of CPE colonization (5). In a context of up to 50% of 130 

antibiotic misuse (18, 19), avoiding an epidemic spread of CPE requires antimicrobial 131 

stewardship approaches. Our study suggests that more than the general notion of prior 132 

antibiotic use, it is the timing of antibiotics relative to CPE exposure that may be the 133 

main factor explaining colonization with CPE. This could be a crucial parameter to take 134 

into account in infection control and antimicrobial stewardship strategies. Indeed, our 135 

study shows there may be a specific window of opportunity for CPE colonization relative 136 

to antibiotics administration.  137 
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 146 

Figure 1. Gut microbiota alteration using clindamycin is a prerequiste for durable 147 

colonization with carbapenemase-producing enterobacteria (CPE) alongside the 148 

intestinal tract. (A) Quantification of CPE load in stools depending on clindamycin 149 
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administration and CPE exposure, 5 mice per group. Control group: no CPE exposure 150 

and no clindamycin; CPE exposure group: CPE in drinking water for the first 24 hours 151 

(Day 0) and no clindamycin; clindamycin group: no CPE exposure and intraperitoneal 152 

injection of clindamycin at Day 0; CPE + clindamycin group: CPE in drinking water for 153 

the first 24 hours (Day 0) and intraperitoneal injection of clindamycin at Day 0. (B-C) 154 

Relative abundance of bacterial phyla in terminal ileum samples using next generation 155 

16S rDNA sequencing. Same groups than in experiment 1A, 2 mice per group. (D) 156 

Quantification of CPE load along the gastro-intestinal tract. Five mice were exposed to 157 

CPE in drinking water for the first 24 hours (Day 0) associated with intraperitoneal 158 

injection of clindamycin at Day 0. Luminal samples were taken at Day 14.  159 

  160 
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 161 

 162 

Figure 2. Effective CPE colonization depends on the timing of clindamycin 163 

administration in relation to CPE exposure. Twenty-one mice were all exposed to 164 

CPE for 24-hours in drinking water (Day 0). Clindamycin was injected once at one of the 165 

following timepoints before or after CPE exposure: Day-21, Day-14, Day-7, Day-0, 166 

Day+7, Day+14 or Day+21. 167 
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