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Abstract. An algorithm is proposed to implement unsteady jump boundary conditions in the lattice Boltz-
mann method (LBM). This is useful for dealing with problems of mass transfer across membranes that
exhibit resistance and discontinuity in concentration. The algorithm is simple to implement into an existing
LBM-based code that computes diffusion and advection of a solute. Analytical solutions are recovered in
the limiting case of a planar membrane. When combined with the immersed boundary method, the algo-
rithm can handle moving deformable boundaries that adopt arbitrary geometries. Simulations of controlled
solute release from stationary rigid and moving deformable particles are given as a proof of concept.
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1 Problem statement

Transport of chemical species across interfaces or mem-
branes is encountered in many natural phenomena and
technological processes. For example, most of the material
exchange in biological and biomedical systems take place
across membranes [1,2]. The membranes act as a barrier to
filter and control the rate of material exchange between
two adjacently separated environments. The main prop-
erty that characterizes this transport functionality, at the
macroscopic scale, is the permeability or its inverse the
resistance.

Modeling the effect of a restricted permeability that
leads to a jump in the concentration at the membrane is
delicate. The resulting discontinuity represents numerical
challenges, specially when the membrane is moving and
adopting irregular geometrical configurations. Few works
have recently been proposed to handle this issue, with
applications, ranging from stationary planar interfaces or
membranes to moving deformable particles. Membranes
with restrictive permeability to both, solute and solvent,
or only to one of them have been considered. For example,
Wang [3] and Hickson et al. [4] have proposed finite differ-
ence schemes, Layton [5] and Jayathilake et al. [6,7] have
used the immersed interface method [8], Miyauchi et al. [9,
10] have proposed a finite element discretization method,
Huang et al. [11,12] have used the immersed boundary
method (IBM) [13], and Yao et al. [14] have combined the
IBM with a Cartesian grid embedded boundary method.
In the present article, another alternative algorithm is pro-
posed for the lattice Boltzmann method (LBM).

a badr.kaoui@utc.fr

The LBM has emerged as a modern efficient numerical
method for computational fluid dynamics (CFD) [15–19].
It is a discrete particle-based method that is capable to
simulate properly the dynamics of complex fluids that flow
in complex geometries [20]. It has been demonstrated that
the LBM can recover the solution of many partial differen-
tial equations [15], such as the advection-diffusion equa-
tion that is the subject of this work. Different schemes
have been proposed to implement boundary conditions
for solute concentration in the LBM: (i) The bounce-back
boundary conditions that consist in reflecting back the ad-
vected distribution populations that hit a solid boundary.
A generalized version for mass transport has been pro-
posed by Zhang et al. [21], (ii) Estimating the unknown
distribution populations at the boundaries, such as pro-
posed by Inamuro et al. [22] for temperature and which
can be also used for solute concentration, (iii) Evaluating
the unknown physical quantities at curved boundaries us-
ing finite difference method techniques, as done by Guo et
al. [23], (iv) Using a forcing term combined with the im-
mersed boundary method for moving objects, as proposed
by Kasparek et al. [24]. In this work, the forcing term
strategy is also used but to incorporate a time-varying
jump at a zero-thickness membrane separating two do-
mains, as illustrated in Fig. 1. The mathematical formu-
lation of the problem is given in Sec. 2, followed by a brief
presentation of the LBM solver in Sec. 3. The main steps
of the algorithm are detailed in Sec. 4, and the param-
eter calibration explained in Sec. 5. Two applications of
the algorithm, mass transfer across stationary and mov-
ing membranes are given in Sec. 6, before concluding the
article by Sec. 7.
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∂Ωm

Membrane

Fig. 1. The computational domain composed of two adjacent
subdomains, Ωin and Ωout, separated by a closed zero-thickness
membrane ∂Ωm. n is the unit normal vector to the membrane.

2 Mathematical formulation

The computational domain is composed of two adjacent
subdomains Ωin and Ωout, which are separated by a zero-
thickness membrane ∂Ωm (see Fig. 1). Diffusion and ad-
vection of a solute in each subdomain are given by,

∂c

∂t
+ (v · ∇c) = Din∇2c if r ∈ Ωin, (1)

and
∂c

∂t
+ (v · ∇c) = Dout∇2c if r ∈ Ωout. (2)

r is the vector position. c(r, t) and v(r, t) are respectively
the instantaneous local solute concentration and the sol-
vent velocity. Din and Dout are the diffusion coefficients of
the solute in the inner and the outer domains, respectively.
The initial condition of interest for this study is,

c(r, t = 0) =

{
1 if r ∈ Ωin

0 if r ∈ Ωout,
(3)

that models an initially loaded particle. This condition
establishes a concentration gradient, at the membrane,
which triggers solute transport from Ωin to Ωout with a
mass flux along the normal direction given by the jump
boundary condition (see Fig. 2),

J · n = P [c]∂Ωm
= P (cin − cout) if r ∈ ∂Ωm, (4)

where J is the mass flux through the membrane, n is the
unit normal vector on the membrane that points from Ωin

to Ωout, and P the intrinsic permeability of the membrane.
[c]∂Ωm

= (cin − cout) is the jump discontinuity, with cin
and cout are the concentrations on the inner and the outer
sides of the membrane ∂Ωin and ∂Ωout, respectively.
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Fig. 2. Typical concentration profile c(r) in the direction
normal to a membrane, whose finite resistance leads to the
jump discontinuity [c]∂Ωm

= (cin − cout).

Solving Eqs. 1 and 2, while considering the boundary
condition Eq. 4 is no easy task. A set of assumptions are
considered in this study:

– Two-dimensional simulations are performed r ≡ (x, y),
– P is constant and uniform along the membrane,
– At equilibrium, when t→∞,

cout(r,∞) = cin(r,∞) = ceq for r ∈ ∂Ωm, (5)

– The membrane is solvent-impermeable, which also im-
plies the continuity of the normal component of the
velocity across the membrane,

– One-way coupling is considered. That is the flow alters
locally the solute concentration via the advection term
in Eqs. 1 and 2, while the solute has no impact neither
on the flow nor on the properties of the solvent,

– No-slip velocity is considered on the membrane, which
implies the continuity of the tangential component of
the velocity across the membrane,

– The influx and outflux across the membrane are equal:

[cin (v − vm)−Din∇c|∂Ωin
] · n =

[cout (v − vm)−Dout (∇c|∂Ωout
)] · n

for r ∈ ∂Ωm, (6)

where ∇c|∂Ωin
and ∇c|∂Ωout

are the derivatives of the
concentration on either side of the membrane, and vm

the membrane velocity. vm = v since the normal and
tangential components of the velocity are assumed to
be continuous across the membrane. Thus, the above
equality is reduced to:

Din (∇c|∂Ωin · n) = Dout (∇c|∂Ωout · n)

for r ∈ ∂Ωm, (7)

– The diffusion coefficient is similar in both subdomains:

D = Din = Dout. (8)

One-dimensional analytical solution under the above
assumptions exists, as given by Crank [25],

c(x, t) =
1

2

[
1 +

{
erf

x

2
√
Dt

+ exp
(
ax+ a2Dt

)
erfc

(
x

2
√
Dt

+ a
√
Dt

)}]
,

(9)

for x > 0, and

c(x, t) =
1

2

{
erfc

|x|
2
√
Dt

− exp
(
a|x|+ a2Dt

)
erfc

(
|x|

2
√
Dt

+ a
√
Dt

)}
,

(10)

for x < 0 with

a = 2
P

D
. (11)

P is used as a fitting parameter for calibration in Sec. 5.
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3 Lattice Boltzmann method

The first necessary ingredient for the algorithm is a mass
transfer solver. In the present work, the LBM is adopted
instead of solving directly Eqs. 1 and 2 using, for exam-
ple, the finite difference method. The LBM has emerged
as an alternative fluid flow solver in the last decades with
high potential to handle complex fluid dynamics, while
avoiding the complicated weak formulations and the ex-
tensive pre-processing meshing needed by the finite ele-
ment method. More details about LBM could be found in
the following textbooks Refs. [15–19].

The main quantity of interest in the LBM is the dis-
tribution function gi. For the D2Q9 lattice, used in this
study, the two-dimensional discrete position is given by
r ≡ (x, y) and the nine discrete velocity directions by ei,
with i = 0 → 8. The evolution in time of gi is given by
the lattice-Boltzmann equation,

gi(r+ei, t+1)−gi(r, t) = −gi(r, t)− g
eq
i (r, t)

τg
+ωiSi. (12)

The first term on the right-hand side is the Bhatnagar-
Gross-Krook operator [26], and it gives the relaxation of
gi towards its equilibrium distribution geqi [27],

geqi (r, t) = ωi c(r, t)

[
1 + 3(v · ei) +

9

2
(v · ei)2 −

3

2
(v)2

]
,

(13)
where ωi are the D2Q9 lattice weight factors: ωi = 4/9
for i = 0, ωi = 1/9 for i = 1, 2, 3, 4 and ωi = 1/36
for i = 5, 6, 7, 8. The microscopic relaxation time τg in
Eq. 12 is related to the macroscopic diffusion coefficient
via D = 1

3

(
τg − 1

2

)
. The second term on the right-hand

side of Eq. 12 expresses the forcing term with Si is the
source term. The zeroth order moment of gi gives the local
concentration of the solute

c(x, y, t) =

8∑
i=0

gi(x, y, t). (14)

All the parameters and the physical quantities in this work
are given in the dimensionless lattice units. The spatial
and the temporal discretization used in Eq. 12 and here-
after are all set to h = ∆x = ∆y = ∆t = 1, which is the
convention adopted in the LBM. A rigorous physically-
based explanation of the lattice units is given by Succi
[16], and a practical conversion between the lattice and
the physical units (SI) is proposed by Dupin et al. [28].

4 Algorithm

The algorithm is proposed to handle study cases that in-
volve unsteady mass transfer across moving membranes
with zero thickness and having a finite permeability. The
resulting jump in the concentration at the membrane is
incorporated using a forcing term, somehow similar to
the way of including hydrodynamic stress jump at mov-
ing boundaries in the immersed boundary method [13].

Fig. 3. The membrane ∂Ωm, its four closer enveloping layers
(∂Ω′

in, ∂Ω′′
in, ∂Ω′

out and ∂Ω′′
out), and the LBM regular grid.

The main steps of the algorithm can be implemented in
any existing LBM-based code. Given the actual membrane
position rm(t) and the concentration scalar field c(x, y, t)
in the whole computational domain Ω, the scalar forc-
ing term Si(x, y, t) needed to compute the concentration
c(x, y, t+ 1) at the next time iteration is evaluated follow-
ing these consecutive steps:

1. Localize the inner and the outer enveloping layers of
the membrane,

∂Ω′
in, ∂Ω′′

in, ∂Ω′
out and ∂Ω′′

out, (15)

whose distances from the actual location of the mem-
brane are 2h and 3h, as illustrated in Fig. 3,

2. Compute the solute concentration along each layer us-
ing bilinear interpolation. The known concentrations
on the four nodes of the orange colored elements in
Fig. 3 give the concentration, for example, at r′out as:

c(r′out, t) =
∑
{x,y}

α(x, y, r′out)c(x, y, t). (16)

where α is used as an interpolation weight [28]. It is
the area shared by an off-lattice point r and one of its
four neighboring enveloping on-lattice points {x, y}, as
illustrated in Fig. 4. Layers that are 1h distant from
the membrane, as is the case in the blue colored ele-
ments in Fig. 3, are discarded because there the con-
centration and its local derivatives are not necessarily

Fig. 4. An off-lattice point r, and one of its four neighboring
on-lattice points (x, y). The area α(x, y, r) is the interpolation
weight associated to the concentration at (x, y) used to evalu-
ate the concentration at r, using Eq. 16.
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continuous to perform interpolation (see Fig. 7). The
smooth Diract function, largely used in the immersed
boundary method [13], is not adapted here to preserve
the sharp jump discontinuity. It smears out numeri-
cally the concentration,

3. Estimate the concentrations on either side of the mem-
brane using linear extrapolation,

cin(rm, t) = 3c(r′in, t)− 2c(r′′in, t), (17)

cout(rm, t) = 3c(r′out, t)− 2c(r′′out, t). (18)

4. Evaluate the ad hoc source term q(rm, t) along the
membrane by multiplying the estimated jump in the
concentration by a numerical prefactor R, hereafter
called resistance,

q(rm, t) = −R [cin(rm, t)− cout(rm, t)]n. (19)

5. Spread the source term q(rm, t) throughout the overall
computational domain using,

Q(x, y, t) =

∫
∂Ωm

α(x, y, rm)q(rm, t)ds, (20)

that has non-zero values solely on lattice nodes (x, y)
that surround closely each membrane node rm,

6. Plug the source term Q(x, y, t), after its projection into
the velocity space, in the lattice Boltzmann equation
as a forcing term :

gi(r + ei, t+ 1)− gi(r, t) = −gi(r, t)− g
eq
i (r, t)

τg

+ ωi (Q(x, y, t) · ei) .
(21)

In this way, the term Si = Q(x, y, t) · ei allows to control
the mass flux rate across the membrane. It acts as a source
term on the inner side of the membrane, and as a sink term
on the outer side of the membrane. The projection of Q
into the velocity space gives the possibility to set either a
sink or a source term on each velocity direction of a giving
lattice node. The scalar product n · ei assigns either a
positive or a negative sign to the final forcing term plugged
into the lattice Boltzmann equation. Thus, the source term
is velocity direction dependent, here, in contrast to the
classical way of incorporating source terms into the LBM.
For a planar membrane parallel to the y axis, at each of
its nodes, the above projection attributes source terms on
the directions e5, e1 and e8, and sink terms on e6, e3 and
e7. By the way, the projection conserves mass.

The evolution in time of the concentration on the inner
side of the membrane is given by the balance equation,

V
dcin
dt

= −AP (cin − cout), (22)

where V is the volume and A the area of the donor do-
main, here the inner domain Ωin. The concentration cin
drops down, and this leads to an increase of the concen-
tration on the outer side cout. The algorithm recovers the
same mechanism; however, by imposing a higher concen-
tration on the inner side of the membrane and a lower
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Fig. 5. Evolution in time of numerically computed concentra-
tion profiles c(x, t), in the x-direction, for a planar membrane
that has a finite resistance R = 0.48 (a). For comparison pur-
pose, profiles obtained for R = 0 are also shown in (b). (c)
Temporal evolution of the concentrations on either side of the
membrane, cin and cout, and the resulting decay of the jump
discontinuity [c]∂Ωm

= (cin − cout).

value on the outer side, both with respect to an average
value. With this alternative way, the algorithm is capable
to recover approximately the solutions of Eqs. 1 and 2,
with the initial condition Eq. 3 and the jump boundary
condition Eq. 4.

Figure 5a shows the obtained concentration profiles
over time for a planar membrane when using the algo-
rithm with an arbitrary non-zero value of the resistance
R = 0.48. The profiles are steep. They demonstrate slow
diffusion process compared to the case with zero resistance
R = 0, shown in Fig. 5b, which corresponds to a mem-
brane with infinite permeability (P →∞). The algorithm
produces successfully the decay over time of the jump dis-
continuity at the membrane, as quantified in Fig. 5c. De-
tails of these simulations are given in the next Sec. 5.
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5 Calibration and convergence analysis

The non-trivial step in the algorithm is how to set an ade-
quate value for the resistance R (Step 4 in Sec. 4), which is
capable to reproduce the same mass transport scenario as
a membrane with a given permeability P does. This issue
could be solved by running a series of trial and error tests
to calibrate the computer code. The one-dimensional ana-
lytical solution, given by Eqs. 9 and 10, is used as a refer-
ence. During each calibration test, a value is attributed to
R and the computed concentration profiles are fit with the
analytical solution by fine-tuning P until accomplishing
acceptable fit. Two-dimensional simulations are performed
on a square domain of size 200×200, where a straight line
representing a planar membrane is placed parallel to the
y-axis and at the origin of the x-axis (xm = 0). The mem-
brane is discretized with 199 nodes uniformly separated
by h = 1. Zero-flux is set on both domain edges in the x-
direction using the bounce-back boundary condition [17].
Periodic boundary condition is set along the y-direction
in order to model an infinite direction; and thus to recover
the one-dimensional solution. The initial concentration is
set to unity for x > 0, to zero for x < 0 and to half for
x = 0.

Computed concentration profiles at different elapsed
times t for a non-zero value of the resistance R = 0.48,
with their respective fit with P = 0.012, are reported in
Figs. 6a. The numerical data are represented by symbol
points, while the analytical solution with solid lines. The
Fig. 6a shows a zoom into the x range [−30, 30]. The fit is
not excellent all the time since a single value of P could
not achieve perfect data fit at all times. There is a range
of P , here within the interval [0.01, 0.02], that may fit well
the obtained data but with different quality. This quality
is measured by the instantaneous root-mean-square error

RMSE(t) =
1

nx

nx∑
x=0

(cnum(x, t)− ctheo(x, t))
2
, (23)

where nx is the half length of the computational domain
along the x-direction (number of the grid points with x >
0), cnum(x, t) is the computed solution and ctheo(x, t) the
theory (Eqs. 9 and 10). Because the concentration profiles
are antisymmetric with respect to the point (x = 0, c =
0.5), only the error for x > 0 is reported in Fig. 6b. The
perfect antisymmetric character of the curves is also a
signature of mass conservation. What is lost on one side
of the membrane is totally recovered by the other side.
RMSE(t) measures the deviation of the numerical data
from the analytical solution. It is the L2 norm divided
by nx. Figure 6b shows the evolution in time of RMSE(t)
for four values of P . For data within the time window
[0, 1200], values of P < 0.015 fit the data better at the
early stage of the simulations. While values of P > 0.015
fit the data better at later stage. In this situation, the
value of P should be chosen depending on whether high
accuracy is desired to be achieved at the early or at the
later stage of the simulations. The value of P could be
also chosen in such way to accomplish the same order of
error along the whole simulation. For example, by setting

P = 0.015 during the time window [0, 1200], the maximum
error is the same at the early as well as at the later stage
when approaching t = 1200. However, the value of P =
0.012 is used in other figures because it fits better the data
at the early stage when t < 800.

Figure 6c reports the evolution in time of the concen-
tration on either side of the membrane cin and cout. The
solid lines are the analytical solution with P = 0.012. At
the early stage, the theoretical solution is below the nu-
merical data and around t = 600 the two curves cross each
other, which explains the lower value of RMSE(t) observed
in Fig. 6b. Beyond t = 600, the numerical solution tends
faster to the equilibrium value, here ceq = 0.5, compared
to the theory that decays very slowly.

Another way to appreciate the deviation of the numer-
ical data from the theory is to compute the instantaneous
local error,

Error(x, t) = 100×
∣∣∣cnum(x, t)− ctheo(x, t)

ctheo(x, t)

∣∣∣. (24)

This gives the local relative deviation of the computed so-
lution from the theory. Along the overall simulation, every
locally computed error is less than 10% before t = 800.
But, as time evolves beyond t = 800, large deviations of
the numerical solution from the analytical solution occur
and lead to errors larger than 10%. These deviations may
be explained by accumulated errors caused during the es-
timation of the concentration on either side of the mem-
brane when using interpolation and extrapolation (Steps
2, 3 and 5 in Sec.4). The error goes back down when the
system approaches and reaches equilibrium. For some ap-
plications, the most relevant details take place at the early
stage of the simulations and not at long-term, as is the case
for the drug delivery problems (see Sec. 6).

Figure 6e gives the approximate adequate value of P
for every imposed value of R for three values of the dif-
fusivity: D = 0.167 (τg = 1), 0.133 (τg = 0.9) and 0.1
(τg = 0.8). The larger is R, the lower is P . There exists an
upper bound for the resistance Rmax measured at P = 0
(impermeable membrane), beyond which unphysical so-
lute transport takes place in the opposite direction to the
concentration gradient, see Appendix A. Here, Rmax de-
pends on D: Rmax = 0.5001 (D = 0.167), Rmax = 0.4445
(D = 0.133) and Rmax = 0.3750 (D = 0.1). The minimum
value of R can of course goes down to zero, and this cor-
responds to an infinitely permeable membrane (P →∞).
Figure 6e shows that the value of R depends on P and
also on the solute diffusivity D. For the same value of P ,
R should be reduced whenever D is decreased. The value
of R also needs to be adapted to the grid resolution of the
computational domain, as shown in Fig. 6f. It needs to be
increased when refining the resolution. Figure 6f reports
the convergence of the numerical data (the symbol points)
to the theory (the solid line), obtained at the same scaled
time Dt/n2x = 1/600, for three grid resolutions.

All the reported results indicate that the prefactor R is
apparently a function of the membrane permeability, the
diffusion coefficient, in the inner and in the outer domains,
and the grid resolution.
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Another factor that is found to influence the quality of
the computed solutions is the location of the membrane
nodes. For the planar membrane that is parallel to the y-
direction, if the x-coordinate of the nodes xm is off-lattice
then the fit is not anymore good, as shown in Fig. 7. How-
ever, the computer code still produces data that are rea-
sonably comparable to the expected theoretical solution
with a slight deviation. For the position of the membrane
nodes in the y-direction, and for the configuration studied
here, it is found not to influence the result. Exactly the
same concentration profile is obtained whether the mem-
brane nodes in the y-direction are on- or off-lattice.

Apparently the present numerical method introduces
an excess numerical viscosity; and therefore, the obtained
convincing results should be taken with precaution. Nu-
merical viscosity is directly proportional to the gradients.
At the early stages of simulation, gradients close to the
membrane are high which means numerical viscosity is
high. The numerical viscosity is qualitatively inversely pro-
portional to diffusivity, which makes effective diffusivity
small. For fixed R, permeability decreases with decreas-
ing diffusivity (Fig. 6e). This is why for fixed R, the nu-
merical results are matching well with analytical results
for small permeability at early stages (high numerical vis-
cosity) and large permeability at later stages (Fig. 6b).
Similarly Fig. 6c shows, for a given R, numerical results
are overestimating the analytical value as the numerical
viscosity is high (small effective diffusivity), and at later
stages it equilibrates faster as numerical viscosity goes to
zero (high diffusivity). When the membrane is off the grid,
as reported in Fig. 7, the numerical results are deviating
from the analytical results. This can be attributed to the
fact that the numerical viscosity is not symmetric on both
sides of the membrane, and R used for these tests are from
the calibration when the membrane is on the grid.

6 Applications

The proposed algorithm is used together with an LBM-
based code to carry out two-dimensional simulations of
solute release from particles. The particles are loaded ini-
tially with a solute that later on diffuses across the mem-
brane towards the external surrounding domain Ωout. The
release rate is controlled by tuning the resistance R. The
reported data are not meant to recover any existing exper-
imental data, but rather to demonstrate the ability of the
algorithm to reproduce the unsteady jump in the concen-
tration at stationary and moving deformable membranes.

6.1 Solute release from a stationary rigid particle

A circular particle with radius 20, whose membrane is
discretized with 125 points (∆s = h = 1), is placed at
the center of a square domain of size 160× 160. Zero-flux
boundary conditions are set on the four edges of the square
using the bounce-back boundary condition [17]. The initial
concentration c(x, y, t = 0) is set to c0 = 1 inside the par-
ticle, and zero elsewhere. This situation mimics a reservoir

loaded initially with a solute that later on diffuses across
the membrane to the outer domain. The solvent is at rest
and the particle does not move or undergo any shape de-
formation. Two situations are modeled: (i) a particle with
finite membrane permeability R = 0.48, and (ii) a particle
with infinite membrane permeability R = 0.

Figures 8a and 8b give the concentration c(x, y, t) in
the whole computational domain at time t = 300. For
both cases, the diffusion is isotropic and symmetric with
respect to the center of the particle. However, inside the
particle in Fig. 8a is more reddish than in Fig. 8b. For the
finite permeability case, the solute transport across the
membrane is remarkably slowed down. This is why more
solute is still retained inside the particle. The difference is
more appreciable when reporting the solute concentration
profiles along the radial coordinate r at different times, see
Figs. 8c and 8d. The concentration shows smooth varia-
tion for the case of infinitely permeable particle, while it
exhibits a steeper jump at the membrane for the restricted
permeability case. The resulting discontinuity jump in the
concentration at the membrane is unsteady and decays
over time. The respective heights of the profiles are lower
for the infinitely permeable membrane case. This means
the solute leaks out quickly in absence of membrane resis-
tance.

Figure 8e reports the release rate of the encapsulated
solute, which is a global quantity and computed as [29],

Release(t) = 100×
[
Min(0)−Min(t)

Min(0)

]
, (25)

where Min(t) is the total mass of the solute inside the
particle at time t,

Min(t) =

∫
Ωin

c(x, y, t)dxdy, (26)

and whose initial value is Min(0) = 1245 and that is found
to be conserved numerically

Min(0) = Min(t) +Mout(t) (27)

with Mout(t) is the total mass of the solute outside the
particle,

Mout(t) =

∫
Ωout

c(x, y, t)dxdy. (28)

By increasing R, the amount of the released solute is
slowed down dramatically. However, all the curves con-
verge into a single one when the concentration on both
sides of the membrane tend to equilibrium,

cin(rm,∞) = cout(rm,∞) = ceq. (29)

This leads to a vanishing forcing term; and therefore, to
the suppression of the resistance effect. The impact of the
restricted permeability is noticeable at short time before
the system reaches equilibrium.

This case study demonstrates the ability of the algo-
rithm to reproduce the jump discontinuity in the solute
concentration at a circular closed membrane, and its in-
tuitively expected unsteady decay over time. To the best
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Fig. 8. Comparison between the solute concentration fields c(x, y, t) at time t = 300 for two stationary rigid particles: one with
a finite membrane permeability R = 0.48 (a) and the other with an infinite membrane permeability R = 0 (b). The contour with
the black solid line represents the membrane location. (c,d) The corresponding numerically computed concentration profiles
along the radial coordinate r, (f) Evolution in time of the solute release, Release(t), before the system reaches the equilibrium.

of the author’s knowledge and as also stated by Sherk
[30], no exact analytical solution exists for this case study
that would allow to perform quantitative accuracy study.
Nevertheless, the proposed algorithm reproduces the same
qualitative features observed in the results computed by
Huang et al. [11] and Sherk [30] using the IBM.

6.2 Solute release from a moving fluid-filled particle

The proposed algorithm can also handle problems that
deal with fluid-solute-structure interaction. Here, the al-
gorithm is used to handle the solute jump boundary con-
dition at a moving deformable membrane of a fluid-filled
particle. This is encountered, for example, in the follow-
ing situations: oxygen uptake and delivery by red blood
cells or drug delivery by liposomes and capsules. The in-
teractions between different elements of such multiphysics
problem are summarized in Fig. 9. The flow transports and
deforms the membrane, which in its turn disturbs back

the flow at its vicinity. The membrane is assumed to be
inextensible and resists to bending. All the details about
the fluid-structure two-way coupling via the IBM and the
mechanics of the particle membrane have already been re-
ported by the same author in Refs. [31–34], which have
been confirmed by other research groups [35–37]. Here,
the fluid flow and the mass transfer are both computed
with the LBM [29,38].

Particle suspension  
dynamics and deformation 

Fluid flow Solute mass transfer 

Fluid-structure  
interaction 

Advection 

Restricted  
permeability 

Fig. 9. Interactions between different elements of the fluid-
solute-structure interaction problem studied in Sec. 6.2.
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times: (a,c,e) a particle with a membrane resistance R = 0.0027, and (b,d,f) a particle with an infinitely permeable membrane
R = 0, the contour with the black solid line represents the membrane location, the fluid flow is from left to right, (g,h) The
corresponding solute concentration profiles in the x-direction, (k) The solute release Release(t) for the two cases.

The originality of the present work consists in imple-
menting an explicit coupling between the membrane dy-
namics and the restrictive solute transport across it. The
membrane is assumed to be permeable to solute, with fi-
nite permeability, and strictly impermeable to solvent. All
these considerations are accomplished numerically via the
proposed algorithm (Sec. 4). Two recent works have used
only one-way coupling, i.e., absence of any explicit mass
transfer boundary condition on the membrane [29,39].
These studies are limited to situations where the mem-
brane has an extremely large permeability [1], while the
presently proposed algorithm handles the general case of
membranes with finite permeability.

In the present application, two cases are performed
to appreciate the impact of including a resistance to the
membrane permeability. For these simulations, the com-
putational domain is a rectangle of size 400 × 100. Peri-
odic boundary conditions, for both the flow and the mass
transfer, are set at the inlet and the outlet of the chan-
nel. The particle membrane is discretized with 120 points
uniformly separated by ∆s = h = 1, which is suitable for
the IBM. The initial concentration c(x, y, t = 0) is c0 = 1
inside the particle, and zero elsewhere. The particle has
initially an elliptical shape with long and minor axes 26.58
and 12.04, respectively. It is initially placed at the posi-
tion (−150, 0). The particle moves and deforms under the
action of the flow, while conserving both its enclosed area
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and its membrane perimeter due to its inextensibility. The
Reynolds number is Re = UR0/ν = 0.1, where U is the
flow velocity at the channel centerline in absence of the
particle, R0 the effective size of the particle and ν the
kinematic viscosity of the suspending fluid. The Schmidt
number is Sc = ν/D = 1000. The capillary number is
Ca = ηUR2

0/EB = 100, where η is the dynamic viscosity
and EB the bending elastic modulus of the membrane.

The snapshots in Figs 10 show the concentration of the
solute inside and outside the moving deformable particle
for both cases: with (Figs 10a, 10c and 10e) and without
membrane resistance (Figs 10b, 10d and 10f). The flow
direction is from left to right. The particle moves while
it undergoes shape deformation and it releases its encap-
sulated solute. All the snapshots have the same color bar
range [0, 1]. Again, it is remarkable how finite permeabil-
ity slows down the leakage of the solute from inside the
particle to its surrounding flowing fluid. This is more visi-
ble when comparing side-by-side the concentration profiles
(Figs. 10g and 10h) for both cases. The concentration pro-
files move due to advection. They exhibit a sharp jump in
the concentration, in particular at the front of the particle,
for the case of the membrane with resistance (Fig. 10g),
and their heights are lower for the case without resistance
(Fig. 10h). The profiles have almost a Gaussian like shape
for the membrane with infinite permeability. The sum of
the total mass of the solute, inside and outside the parti-
cle, is conserved for both cases during the simulations, and
it equals the initial value Min(0) = 1005. The membrane
resistance enhances the retention of the encapsulated so-
lute. Fig. 10i gives the solute release rate for both cases:
with and without resistance. A non-zero value of the resis-
tance restricts the solute transport across the membrane,
which slows down the overall release.

Again, this case study demonstrates the effectiveness
of the proposed algorithm to reproduce the jump in the
concentration at membranes of even moving deformable
particles. There is no available comparable data as shown
in Fig. 10 obtained by other theoretical, numerical or
experimental methods for quantitative comparison pur-
poses. The application situations computed, for example,
in Refs. [7,12,14] are for membranes with different me-
chanics and different type of mass transfer boundary con-
ditions. Here, the solute transport across the membrane
takes place only by diffusion and the membrane is per-
fectly non-permeable to solvent.

7 Concluding remarks

The proposed algorithm is simple to implement in any
existing code, which is based on the lattice Boltzmann
method. It uses an ad hoc forcing term that captures
the known behavior of solute transport across membranes
with restricted permeability. It recovers the unsteady jump
in the concentration at the membrane and its decay over
time towards equilibrium. The computer code including
the algorithm is validated with one-dimensional analytical
solution for the planar membrane case given by Crank [25].

The instantaneous concentration profiles are perfectly com-
puted for membranes with discretization nodes located ex-
actly on-lattice, and with a slight deviation for off-lattice
positions. Moreover, the algorithm can handle problems
that involve fluid-solute-structure interaction and parti-
cles with arbitrary shapes. These features have been demon-
strated by two case studies: mass transfer from a station-
ary rigid particle and from a moving deformable fluid-filled
particle. The obtained results are qualitatively compara-
ble to the ones reported in Refs. [11,30] for the case of a
circular particle at rest, and as qualitatively expected for
a moving deformable particle.

The concentration at the vicinity of either side of the
membrane could be described by combining together, for
example, Eq. 1 and Eq. 22 for the concentration on the
inner side of the membrane. Under static conditions, the
instantaneous adopted concentration on either side of the
membrane is controlled by the membrane permeability,
the Henry’s partition coefficient (set to unity along this
study), the diffusivities and the concentration derivatives
on either side of the membrane (this later is sensitive to
the degree of grid refinement), and by the equilibrium con-
centration that depends on other factors such as the size
of the donor and the receptor domains and the area of
the membrane. Under dynamical conditions, the concen-
tration on either side of the membrane is expected to be
controlled by the solvent speed as well. By taking into ac-
count all these considerations, −R [cin(rm, t)− cout(rm, t)]
is set phenomenologically as the leading-order term for the
forcing term in this study. However, this approximation
has revealed to not be accurate enough despite its success
to reproduce the expected physics. The prefactor R lumps
the effect of the diffusivity and the concentration deriva-
tives on either side of the membrane in a non-trivial way,
and this leads to non-constant effective membrane perme-
ability that depends non-linearly on R. This suggests that
the forcing term should be corrected by additional terms
in order to enhance the algorithm accuracy.

The open actual issue with the proposed algorithm is
the lack of physical meaning and a mathematical deriva-
tion of the ad hoc introduced numerical prefactor R. This
can be seen as the membrane resistance, which is usu-
ally defined as the inverse of the permeability 1

P (or δm
P

for membranes with non-zero thickness δm). However, this
is not the case here. R is a function of the permeabil-
ity, the diffusivity and the grid resolution. Nevertheless,
the computer code with the proposed algorithm and the
ad hoc incorporation of the forcing term captures the es-
sential physics of solute transport across stationary and
moving deformable membranes with finite permeability.
A computer code incorporating the proposed algorithm
could be used as a numerical tool by pharmaceutists to
predict qualitatively, at the moment, drug release kinet-
ics from particles with membranes presenting solute finite
permeability under blood flow conditions. Combination
with other advanced LBM schemes may enhance further
the stability and the accuracy of the algorithm. Extension
to three-dimensional space and adaptation to heat trans-
fer problems are expected to be straightforward.
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Appendix A.

Figure. 11 shows the evolution in time of the computed
concentration profile for the case of a planar membrane
when the numerical value of the resistance R is set be-
yond the upper bound mentioned in Sec. 5. All the nu-
merical set-up and parameters are the same as those used
in Sec. 5. The threshold is Rmax = 0.5001 for the solute
diffusion coefficient D = 0.167, see Fig. 4e. The obtained
concentration profiles when setting R = 0.51 show an un-
physical scenario that corresponds to solute diffusion from
the outer towards the inner domain, i.e., in the opposite
direction to the concentration gradient. When R is set to
its maximum, Rmax = 0.5001, the concentration profile
evolves to a steady profile shown in Fig. 12 and that re-
flects the case of a solute impermeable membrane.
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Fig. 11. The resulting computed concentration profiles nor-
mal to a planar membrane when setting the resistance to
R = 0.51, which is beyond the upper bound Rmax = 0.5001
for the diffusion coefficient D = 0.167.
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Fig. 12. The computed concentration profiles normal to a pla-
nar membrane when setting the resistance R to its maximum
Rmax = 0.5001 with the diffusion coefficient D = 0.167.
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