
HAL Id: hal-02566149
https://hal.science/hal-02566149v1

Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ascending implementation of the
Vickrey-Clarke-Groves mechanism for the Licensed

Shared Access
Ayman Chouayakh, Aurelien Bechler, Isabel Amigo, Loutfi Nuaymi, Patrick

Maillé

To cite this version:
Ayman Chouayakh, Aurelien Bechler, Isabel Amigo, Loutfi Nuaymi, Patrick Maillé. An ascending
implementation of the Vickrey-Clarke-Groves mechanism for the Licensed Shared Access. NETG-
COOP 2020 - 10th International Conference on NETwork Games, COntrol and OPtimization, Sep
2021, Cargèse, France. pp.87-100, �10.1007/978-3-030-87473-5_9�. �hal-02566149�

https://hal.science/hal-02566149v1
https://hal.archives-ouvertes.fr


An ascending implementation of the
Vickrey-Clarke-Groves mechanism for the

Licensed Shared Access
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Abstract. Licensed shared access is a new sharing concept that allows
Mobile Network Operators (MNOs) to share the 2.3-2.4 GHz bandwidth
with its owner. This sharing can be done after obtaining a license from
the regulator. The allocation is made among groups such that two base
stations in the same group can use the same spectrum simultaneously. In
this context, different auction schemes were proposed, however they are
all one-shot auctions. In this paper, we propose an ascending implemen-
tation of the well-known Vickrey-Clarke-Groves mechanism (VCG) when
the regulator has K identical blocks of spectrum to allocate. The imple-
mentation is based on the clinching auction. Ascending auctions are more
transparent than one-shot auctions because bidders see the evolution of
the auction. In addition, ascending auctions preserve privacy because
bidders do not reveal necessarily their valuations.

1 Introduction

In order to accommodate data traffic for 5G networks, Mobile Network Oper-
ators (MNOs) need more radio spectrum. At the same time many holders of
exclusive licenses –which we call incumbents– might not utilize all of their spec-
trum resources: usage varies with respect to time and location. Therefore the
idea of Licensed Shared Access (LSA) has emerged. LSA is a new concept of
spectrum sharing in which the holder of the 2.3-2.4 GHz bandwidth can share
his spectrum with MNOs. This concept was proposed by the radio spectrum
policy group (RSPG) in November 2011 [1]. Sharing is done after obtaining a
license from the regulator. This license guarantees a certain quality of service
to both the incumbent and the LSA licensees (MNOs). This differs from the
traditional concept of sharing in which MNOs have no guarantees on finding
the spectrum free for their own usage and have to use some techniques (such as
cognitive radio) before accessing the spectrum.

In this context, since the regulator ignores the value of the LSA spectrum,
then by auctioning that spectrum he can have an idea about the valuations of
MNOs for that spectrum. A well designed auction mechanism should be truthful
i.e., each player should not be able to play the system by bidding strategically.
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Also, in the case of LSA, it has to take into account the spacial reusability of
spectrum i.e., two base stations can use the same spectrum if they do not cause
interference to each other.

In [2–4], authors designed mechanisms which could be applied in the case
where there is one and only one block to allocate. On the other hand, in [5]
we have designed and analyzed a truthful scheme when spectrum is infinitely
divisible. A more realistic assumption is to suppose that spectrum can be split
in several sub-bands or blocks, that have a predetermined size. Therefore, in this
paper we suppose that the regulator has K identical blocks to allocate. Identical
means that besides being of the same width, there is no preference over blocks
from the point of view of base stations [6, 7].

All the previous mentioned mechanisms are one-shot auctions in which bid-
ders reveal all their valuations. Contrary to one-shot auctions, ascending auctions
preserve the privacy of the winning bidder(s) because the winner(s) do(es) not
need to reveal all his valuations. Hence in this paper we focus on ascending
auctions. Since the objective of the regulator (the auctioneer) is to optimize
the use of spectrum, we propose to implement an ascending version of Vickrey-
Clarke-Groves mechanism (VCG). To the best of our knowledge, this is the first
ascending mechanism for LSA context. In fact, we propose to implement VCG
using two approaches: the first approach is by adding representatives so that the
auction will be between the auctioneer and those representatives and the second
approach is by removing those representatives i.e., base stations communicate
directly with the auctioneer. In this paper we use player, bidder and base station
interchangeably.

The rest of this paper is organized as follows: Section 2 presents the system
model. In Section 3, we present the clinching mechanism and show how it can
be adapted for the LSA context using two approaches. In Section 4, we evaluate
the performances of our proposition. Section 5 concludes the paper.

2 System model

We consider N base stations of different MNOs in competition to obtain K blocks
of spectrum at a certain time and geographical area. We suppose that blocks
are identical. As it was presented in [4, 8], the problem can be modeled using
an interference graph. In order to optimize the use of spectrum, the regulator
constructs from the interference graph M groups such that two base stations of
the same group do not interfere with each other (and so they can use the same
spectrum block simultaneously). So finally, the competition between the N base
stations is transformed into a competition between M groups. In this paper we
suppose that groups are constructed before the auction takes place.

2.1 Preferences of base stations

We assume that each base station i has a private valuation vi vector of size K,
each element vi,k representing the willingness-to-pay for the k-th extra resource
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block. The valuation of a block can be interpreted as the revenue from that block.
As in [9], we suppose that the value of an extra block, for a base station, decreases
with the number of blocks already obtained. This corresponds to a discretization
of concave valuation function for spectrum [9], as illustrated in Figure 1. Finally,
we adopt a quasi-linear utility model: if a base station i obtains ni blocks and
pays pi, its utility then is

ui =

ni∑
n=1

vi,n − pi.

In particular, a base station obtaining no block gets a utility equal to zero.
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Fig. 1: An example of a concave valuation function of obtained spectrum, and the
corresponding block valuations vi,n for a player i.

2.2 Why implementing VCG?

In this paper, we suppose that the regulator wants to implement the ascending
version of VCG motivated by the following features:

1. Efficiency: Efficiency is defined as the sum of the valuations served
∑N

i=1

∑ni

n=1 vi,n
[10]. This means that the social value of the good being sold equals the max-
imum of the potential buyers’ individual valuations.

2. Truthfulness: This property means that bidders’ best strategy is to behave
sincerely, i.e., lying about one’s preferences is not beneficial. The strongest
version is when truth-telling is a dominant strategy, but it can also be a
(weaker) ex-post Nash equilibrium strategy: when truthful bidding is an ex-
post equilibrium, each player knows that bidding truthfully is a best strategy
if all other players also bid truthfully and without knowing the other players’
valuations [11].

3. Individual rationality: A mechanism is individually rational if each player has
an incentive to participate in the auction, i.e., it has a strategy guaranteeing
it a non-negative utility [12].
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3 VCG ascending implementation for the LSA context

In this section, we start by presenting the general framework of the clinching ap-
proach, then we show how to adapt it to the LSA context using two approaches.

3.1 Background

The clinching auction [13] is an ascendant auction for K homogeneous goods,
where bidders have valuations as described in Section 2. At each round t, the
auctioneer declares a price P t and each bidder i responds by demanding a quan-
tity, if demand is higher than supply, then the auctioneer increases the price at
the next round P t+1 = P t+1. The auction ends when demand is not higher than
supply. Bidder’s payments are computed during the auction. We detail in the
following how the clinching auction works. The cumulative clinch Clti of player i
at round t is defined as:

Clti = max{0,K −
∑
j 6=i

dtj}, (1)

with dtj the demand of player j at round t. The current clinch at round t of

player i (the number of blocks obtained at round t) is denoted by clti:

clti = Clti − Clt−1i . (2)

When the auction ends, each bidder i obtains a quantity equal to its cumulative
clinch Cli, and its payment pi is:

pi =

T∑
t=0

P tclti. (3)

It was proven in [13] that the clinching auction achieves the outcome of VCG i.e.,
it ensures an efficient allocation, charges each player with its Vickrey payment
and bidding truthfully is an ex post Nash equilibrium. Here bidding truthfully
means that each player reports its demand with respect to its valuations: di(P ) =
max{n such that vi,n > P}, for a given declared price P .
Remarks

1. We illustrate in the following example why truthful telling is not a dominant
strategy. We suppose we have two blocks and two players, where valuations
of the first player are {3, 2} and the second {2, 1}. Suppose that the second
player uses the following strategy: if the first player demands two blocks
at the first round then it will continue to demand 2 blocks until the end
of the auction (even though it will obtain a negative utility), otherwise it
demands one block. Clearly, given that strategy, player one has to demand
only one block at the first round so at the second round (P = 1) player two
demands one block. Thus the auction ends at the second round (since the
total demand is two). Each player gets one block, the utility of player one is
3− 1 = 2.
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K number of blocks on sale

vi,n valuation of base station i for an nth block.

di(P ) demand of player i at price P

gh group h

nh number of players of group h

Dh(P ) demand of group h (or representative h) at
price P

(Dh(P ))−i demand of group h at price P when player
i is absent

Bh,n group-bid of representative h for its nth

block

B−i
h,n group-bid of representative h for its nth

block when player i is absent

Fh,n The nth highest group-Bids of other repre-
sentatives facing representative h

Table 1: Notations

2. We denote by {fi,1, .., fi,K} the highest K valuations, extracted in a non
decreasing order, of other players facing player i. There is a relation between
clinching prices and those valuations: if player i clinches its nth block at price
P then that price is the minimum price such that the sum of demands of all
other players is K − n. This corresponds to the situation in which P = fi,n.

Table 1 summarizes the notations used throughout the paper. In the following,
in order to implement the ascending version of VCG, we propose at a fist time
to add a representative part per group, that part will represent the members of
that group. After that, we show how to implement VCG without those repre-
sentatives.

3.2 VCG implementation with a representative per group

In this section, we show how to implement the clinching approach for the LSA
concept when a representative part per group is introduced. It can be an in-
terface between base stations and the auctioneer. There is no communication
between base stations and the auctioneer. The auction will be between the M
representatives and the auctioneer. Before the auction takes place, each base
station i transmits to the representative of its group its bid vector bi (which can
be different from vi), then each representative h constructs the group-bid vector

Bh based on the received bids (Bh,n =
∑N

i=1 bi,n1i∈gh). At each round and for
each price P each representative h demands a quantity Dh(P ) with respect to
the group-bid vector (the demand corresponds to the number of components
that are higher than P ) as showing in the following equation .

Dh(P ) = max{n,Bh,n > P}
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If a representative obtains a block then it charges each base station of that group
an amount. The auction clears when the sum of demands of all representatives
is equal or lower than K. The steps of the auction can be summarized as follows:

1. Each base station reports to the corresponding representative its bids vector.
2. The representative constructs the group-bid vector.
3. At each round, each representative reports its demand Dh(P ) to the auc-

tioneer.
4. The auctioneer computes the cumulative clinch Clth of each representative h

at round t which is defined as:

Clth = max{0,K −
∑
j 6=i

Dt
j}, (4)

with Dt
j the demand of representative j at round t. The current clinch (the

number of blocks obtained at round t) of representative h is denoted by clth:

clth = Clth − Clt−1h . (5)

5. If a representative clinches (obtains) a block at a price P then it charges each
base station i of its group a price and sends that amount to the auctioneer.

6. If the demands of all representatives is higher than K, then the auctioneer
increases P at the next round, otherwise the auction ends.

Clearly, if each base station reports to the corresponding representative its true
valuations then the allocation is efficient (the procedure is similar to the original
one). However, reporting true valuations depends on the payment that will be
made, the question is how to charge each base station in a manner that guar-
antees truthful bidding? i.e., reporting its true valuations to the representative
is a dominant strategy. We denote by pi,n the payment of base station i for its
nth block and by Fh the vector of the K highest valuations of the other rep-
resentatives (extracted in a non decreasing order) facing representative h. The
following proposition proposes a payment rule ensuring truthful telling.

Proposition 1. The following payment rule ensures a truthful bidding (as dom-
inant strategy):

pi,n = [P −B−ih,n]+

Where B−ih,n = Bh,n − bi,n.

Proof. Suppose that by reporting its true valuations, player i obtains ni blocks
and pays pi. Any other reported bids may:

1. Increase the number of obtained blocks n′i, in this situation it will pay the
same amount for the first ni blocks (because its payment is independent of his
bids), however it will pay an amount higher than its valuation for the other
blocks: for each j in {ni+1, .., n

′
i} we have Fh,j > B−ih,j +vi,j (otherwise group

h would have obtained that block) thus Fh,j − Bh,j > vi,j i.e., pi,j > vi,j
which leads to reduce its utility.
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2. Obtain the same number of blocks, player i obtains the same utility.
3. Decrease the number of obtained blocks. In this situation it will decrease its

utility since those blocks are charged below its valuation for them.

We denote by BS the vector composed of all the group-bid vectors sorted in
a non increasing order. The size of BS is M × K. Please note that blocks are

allocated to the groups with the first K components of BS (efficiency is
K∑
i=1

BS
i ).

We now illustrate how the mechanism works for a given configuration.

Example 1. Suppose we have three group g1, g2 and g3, and three blocks.

– g1 is composed of three players with the following bids respectively {5, 3, 2},
{10, 6, 4} and {10, 6, 3}.B1 = {25, 15, 9}

– g2 is composed of two players with the following bids respectively {10, 6, 3}
and {8, 4, 2}. B2 = {18, 10, 5}

– g3 is composed of one player with bids {17, 11, 4}. B3 = {17, 11, 4}.

Applying the clinching approach with representatives leads to:

1. At P = 11, D1(P ) = 2, D2(P ) = 1 and D3(P ) = 1, thus group one clinches
his first block. Player one pays [11 − 20]+ = 0, similarly for player two and
three, each one pays zero.

2. At P = 15 we have D1(P ) = 1, D2(P ) = 1 and D3(P ) = 1. The auction
ends. The second and the third group obtain their first block each. The first
player of the second group pays 15−8 = 7, the second player pays 15−10 = 5.
The player of the third group pays 15.

Also, here BS = {25, 18, 17, 11, 15, 10, 9, 5, 4} and efficiency is 25 + 18 + 17 = 60.

In the following we study the convergence rate (the number of rounds that
the auction takes to end).

Efficiency and convergence rate trade-off
The convergence speed of the auction depends on the increment. A possible way

to accelerate the convergence of the auction is by increasing the increment from
round to another i.e., P will be increased by an amount q > 1. Before studying
the impact of changing the increment from 1 to q > 1, let us first introduce the
following proposition:

Proposition 2. When the increment is equal to 1, the auction concludes after
BS

K+1 rounds.

Proof. At each price P the demand of each representative corresponds to the
number of components that are higher than P . In particular if P = BS

K+1 then
the sum of demands of all representatives is exactly K, also P = BS

K+1 is the
first price at which the sum of demands is exactly K, for P = BS

K+1−1 the sum
of demands is K + 1. Therefore, the auction ends after BS

K+1 rounds.
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In the following proposition, we show that by increasing the increment we
may accelerate the convergence rate but this may lead to loose in terms of
efficiency. Please note that if the final price is higher than a component from the
set {BS

1 , .., B
S
K} then that component will not be demanded: suppose that we

have two blocks and two bidders with valuations {7, 5} and {4, 1}. Suppose that
q = 3. The auction ends at the second round when P = 6 and the total demand
is 1 (bidder one will not demand two blocks because his valuation for the second
block is lower than the final price) efficiency is therefore 7.

Proposition 3. After introducing an increment m > 1, the auction ends after

Tc rounds such that Tc =
⌈
BS

k+1

q

⌉
(where dxe is the least integer greater than or

equal to x) and the efficiency is
K∑
i=1

BS
i 1BS

i >Tc×q

Proof. The auction ends when P reaches a value higher than BS
K+1. That value

is reached after Tc rounds such that Tc× q > BS
K+1. Therefore Tc =

⌈
BS

K+1

q

⌉
. In

terms of efficiency, since if the final price is higher than a component from the set

{BS
1 , .., B

S
K} then that component will not be demanded then

K∑
i=1

BS
i 1BS

i >Tc×q.

Note that A necessarily condition to obtain the optimal efficiency is to have
BS

K+1 < Tc × q < BS
K

One may wonder if we can reduce the increment if the demands fall down
rapidly from round t to another t + 1 i.e., we reduce P at t + 2 and ask bidders
for their demands. By doing so the auction will not be truthful anymore because
bidders may reduce their demands in order to reduce their payments. So the
increment must be the same during the auction. Next, we set q to 1 in order to
obtain an efficient implementation..

In the original version of clinching [13] (without groups), clinching prices
represent also the payment of players. However, in our context, if a group clinches
a block at a price P , then P is the maximum amount that it may pay. We prove
that in the following proposition.

Proposition 4. If a group (representative) clinches its nth block at price P then
the sum of payments of players of that group can not be higher than P .

Proof. We can distinguish two cases:

1. It exists a player such that bi,n > P , then in this situation, each player j

except i pays zero because B−jh,n > P , for player i it will pay [P −B−ih,n]+ < P
thus the revenue in this situation is lower than P .

2. ∀ i, bi,n < P , we take any set Sh of group h such that the sum of bids of
its members is higher than P and lower than P when removing any player
of the set i.e.,

∑
i∈Sh

bi,n ≥ P and ∀ j ∈ Sh

∑
i∈Sh,i6=j

bi,n ≤ P , we can obtain

that set as follows: we sort bids of group h in a non increasing order. In
the beginning Sh is composed of the player with the highest bid. We keep
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extending Sh by adding players until both conditions hold. In this situation,
each player of group h which does not belong to Sh pays zero, payment of
group h is given by:

Ph,n =

|Sh|∑
i=1

(P −
nh∑
j 6=i

bj,n) (6)

= |Sh|P −
|Sh|∑
i=1

nh∑
j 6=i

bj,n) (7)

Since

|Sh|∑
i=1

nh∑
j 6=i

bj,n =

|Sh|∑
i=1

(

nh∑
j 6=i

bj,n + bi,n − bi,n) (8)

= |Sh|Vh,n −
|Sh|∑
i=1

bi,n (9)

We obtain

Ph,n = |Sh|P − |Sh|Vh,n +

|Sh|∑
i=1

bi,n (10)

≤ |Sh|P − |Sh|
|Sh|∑
i=1

bi,n +

|Sh|∑
i=1

bi,n (11)

= (|Sh| − 1)(P −
|Sh|∑
i=1

bi,n) + P (12)

≤ P (13)

This first implementation has the following advantages: first, truthful bidding
is a dominant strategy. Second, the auctioneer could not have a precised idea
about valuations of base stations, it may have only an idea about the total
valuation of group h for an nth block but he can not see the valuation of each
base station. In practice, it may be difficult to introduce those representatives
because we may have “the black box effect”: from the point of view of players,
they can not see the evolution of the auction (they are just asked to pay an
amount for an obtained block). For the auctioneer, he can not see how each
base station is charged. Thus in the following we show how to implement the
ascending version when removing those representatives so that the auction will
be held between the auctioneer and base stations directly.

3.3 VCG implementation without representatives

In this section, we propose to implement the ascending VCG auction when repre-
sentatives are removed. In this scenario, the auction will be between the regulator
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and base stations. Similarly to what was presented before, the auctioneer fixes a
price P and keep increasing P until demands of groups is no higher than supply.
The question here is how to compute the demand of groups? We propose to
introduce a price ph per group, for each price P , the auctioneer keep increasing
ph and ask each player of group h its demand di(ph), until he can compute the
demand of group h Dh(P ) which is defined as:

Dh(P ) = max{n : ∃ ω ⊂ gh and (r1, ..., r|ω|) ∈ R|ω|

s.t. di(ri) = n and

|ω|∑
i=1

ri > P ∀i ∈ ω}

Intuitively this demand means that there is a set of players of group h which
will pay P in order to obtain n blocks and there is not a set of players which are
willing to pay P for n + 1 blocks. Here demands of group is computed directly
by the auctioneer instead of the representatives. Also this demand is the same as
it was presented before. Therefore, if we assume truthful bidding we obtain an
efficient allocation. The question now, is how to compute the payment of each
player? In fact, the introduction of ph is not only to compute the demand of a
group as a function of demands of its members but also to compute payments

of players. We denote by
(
Dh(P )

)−i
the demand of group h without player i.

we propose to operate as follows: if group h clinches its nth block at price P
then, for each player i, we keep increasing ph until:

1. Either
(
Dh(P )

)−i
> 0, in this situation player i pays zero.

2. Or achieving the maximum amount (could be computed from demands)
that all players (without counting i) of group h can pay in order to obtain

n blocks i.e.,
(
Dh(m)

)−i
=n − 1 and

(
Dh(m − 1)

)−i
= n, i.e., m = V −ih,n. In

this situation player i pays P −m.

Thus we can see that payment is the same as the one of the previous implemen-
tation (with representatives).
In the following proposition we show that truthful telling (demanding a quantity
with respect to the valuations) is an ex post Nash Equilibrium.

Proposition 5. In the proposed auction mechanism, truthful telling is an ex
post-Nash equilibrium.

Proof. Let us fix a base station i, suppose that all other base stations report their
demand truthfully during the auction, by reporting its true demand player i will
obtain the same utility as in the auction with the representatives. we denote by
u1 that utility. Now we have to show that any other strategy of demanding for
player i will reduce his utility i.e., it obtains a utility u2 ≤ u1. Suppose that
strategy generates a higher utility, this means that player i could obtain the
same utility in the first implementation (with representatives) by proposing a
bids vector with respect to its reported demands. This is a contradiction because
in the first implementation, proposing the valuation is dominant strategy. Thus
u1 ≥ u2.
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We illustrate in the following example how the auction works.

Example 2. We take the same configuration of example 1, applying the clinching
approach without representatives leads to:

1. At P = 11, D1(P ) = 2 (could be obtained when p1 = 5, r1 = 2.5, r2 = r3 =
4.5), D2(P ) = 1 (p2 = 6) and D3(P ) = 1 (p3 = 11), thus group one clinches
its first block. The first player of that group pays zero because without it
and for r2 = r3 = 5.5 (p1 was increased until 6) the second and the third
players can always obtain that block. Similarly for player two, it pays zero
because without it player one and three can obtain that block for r1 = 3 and
r3 = 8 (p1 was increased till 8). Similarly for player three it pays zero.

2. At P = 15 we have D1(P ) = 1, D2(P ) = 1 and D3(P ) = 1. The second and
the third group obtain their first block each group. For the second group
we keep increasing p2 till 10 in order to compute the payments of players of
that group. The first player of the second group pays 15− 8 = 7, the second
player pays 15− 10 = 5. The player of the third group pays 15.

In the following section, we evaluate the performance of our proposed ascending
version VCG. Note that both approaches have the same performances but we
prefer the second approach (without representatives) since it is more transparent.
Also, we set the increment to 1.

4 Performance evaluations

We compare VCG with TLSAA and TLSAA2 [14], two truthful variants of LSAA
[4] that we have proposed in previous work. LSAA is the first auction mechanism
which was proposed as candidate for the LSA context. LSAA outperforms other
potential candidate mechanisms such as TAMES [2] and TRUST [3] in terms of
efficiency. However LSAA is not truthful.

Note that for LSAA, TLSAA and TLSAA2 all the available spectrum is
allocated as a one block for only one group via a single round auction. Each
bidder submits a bid which represents the maximum amount that it is willing to
pay in order to obtain all the available spectrum. Then the auctioneer computes
the group-bid of each group which is a positive real obtained via a function.
Spectrum is allocated to the group with the highest group-bid.

We compare our implementation with TLSAA and TLSAA2 in terms of
revenue of the auctioneer, efficiency and fairness of the allocation. In order to
quantify the fairness of the allocation, we use Jain’s index [15] which is a con-
tinuous function on the closed interval [ 1

N , 1] and measures the fairness of the
allocation between N players. In particular, that index achieves its maximum (1)
when all players obtain the same amount and achieves its minimum ( 1

N ) when
all the available spectrum is allocated to only one player.
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4.1 Simulation settings

We have fixed M = 10 groups, the number of players in each group is chosen
randomly from the discrete uniform distribution of integer values in the interval
[1 ; 30]. We suppose that there is a quantity of LSA spectrum that could be
divided into 100 blocks. For TLSAA and TLSAA2 that quantity is allocated as
a single block. We create the bid vector which is composed of 100 elements: the
first element is drawn from the uniform distribution over the interval [0, 100] and
the n-th element (n > 1) is drawn from the uniform distribution [0, bi,n−1] (For
TLSAA and TLSAA2, the bid is the sum of those components). The average
fairness, revenue and efficiency are computed over 1000 draws.

4.2 Simulation results

In terms of efficiency, by construction VCG is more efficient than the other
mechanisms. This result is confirmed by Table 3.Also, the more blocks we divide
the spectrum into, the more efficient the allocation is. In terms of fairness of the
allocation, VCG is fairer than the other two mechanisms as its shown in Table
4, this is natural since blocks will be distributed among groups and will not be
allocated to one and only one group. If the auctioneer wants only to increase his
revenue then our proposition is not the best as it is shown in Table 2. However,
our proposition offers a good trade-off between fairness, efficiency and revenue:
by splitting spectrum into five blocks.Compared to LSAA2 we loose 62% of the
revenue but we win more than 300% in terms of efficiency and more than 500% in
terms of fairness. In addition, we add transparency, price discovery and privacy
to the auction.

K 100 10 5 4 2 1

VCG 3.82 1.5 422 458 488 368
TLSAA - - - - - 380
TLSAA2 - - - - - 1304

Table 2: Average revenue as a function of the number of blocks for M = 10

K 100 10 5 4 2 1

VCG 15574 15487 11337 9962 5469 2945
TLSAA - - - - - 2887
TLSAA2 - - - - - 2558

Table 3: Average efficiency as a function of the number of blocks for M = 10
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K 100 10 5 4 2 1

VCG 0.98 0.99 0.71 0.6 0.33 0.18
TLSAA - - - - - 0.17
TLSAA2 - - - - - 0.11

Table 4: Average fairness as a function of the number of blocks for M = 10

5 Conclusion

In this paper we have proposed two ways in order to implement the ascending
version of VCG for the LSA context. For the first approach, we have introduced
a representative per group. At each round, each representative transmits to the
regulator the demand of its group based on bids of its members. Each base sta-
tion is charged a price computed by the representative of its group. There are two
advantages of this implementation. First, truthful telling is a dominant strategy
and second we preserve privacy of valuations of base stations. However, it can be
difficult to introduce those representatives in practice. Thus, at a second time,
we have proposed another ascending implementation of VCG without those rep-
resentatives and in which communication is directly between the auctioneer and
base stations. We have introduced a price per group and show how to compute
the payment of each player. In the second approach truthful telling is an ex post
Nash equilibrium. Transparency is the main advantage of the second approach
because each base station sees the evolution of the auction. In addition, we have
shown by simulations that our proposition offers a good trade-off between fair-
ness, efficiency and revenue compared to other mechanism proposed for the LSA
context.
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