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Unidirectional surface plasmon polaritons (SPPs) at the interface between a gyrotropic medium
and a simple medium are studied in a newly-recognized frequency regime wherein the SPPs form
narrow, beam-like patterns due to hyperbolic dispersion. The SPP beams are steerable by controlling
parameters such as the cyclotron frequency (external bias) or the frequency of operation. The bulk
band structure along different propagation directions is examined to ascertain a common bandgap,
valid for all propagation directions, which the SPPs cross. The case of a finite-thickness gyrotropic
slab is also considered, for which we present the Green function and examine the thickness and loss
level required to maintain a unidirectional SPP.

I. INTRODUCTION

Topological surface waves have several important fea-
tures; namely, they are unidirectional, and they operate
in the bulk bandgap of a topologically nontrivial mate-
rial [1–8]. Upon encountering a discontinuity, they are
immune to back-scattering, and because they operate in
the bulk bandgap, they do not radiate into the bulk. As
such, they are forced to pass over the discontinuity, and
the lack of scattering or diffraction makes them inter-
esting from a wave-propagation aspect, and promising
for device applications [9–12]. The topological SPPs can
be characterized by an integer invariant (e.g., the Chern
number), which cannot change except when the under-
lying momentum-space topology of the bulk bands is
changed [7, 13–17]. Thus, another view of the reflection-
and diffraction-free aspect of topological SPPs is that
they are governed by the bulk properties so that they
are not sensitive to surface features, and can only change
qualitatively when the bulk topology changes. A change
in topology arises when a bandgap is closed or opened,
which occurs for the biased plasma considered here when
the bias field is reversed in direction. A static magnetic
bias field applied to a plasma breaks time reversal sym-
metry and leads to topologically non-trivial properties,
bringing about the existence of topologically-protected
unidirectional photonic surface states [12, 16, 18].

In this paper, we examine a newly-discovered regime
of gyrotropic SPPs [19]-[20], wherein the SPPs are, simi-
lar to topological SPPs, unidirectional, operate in a bulk
bandgap (and so are diffraction-free), and only change
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their properties qualitatively when the topology of mo-
mentum space is changed. Moreover, they form narrow
beam-like patterns, similar to the case of hyperbolic me-
dia.

Unlike in isotropic media, which is described by a single
bulk dispersion diagram identical in every direction, for
the anisotropic case, the possibility of a bulk bandgap
must be considered in different propagation directions.
In this work, we have identified a bulk bandgap common
to all propagation directions, within which the SPPs ex-
ist. However, it seems difficult or perhaps impossible to
assign a topological integer-invariant to describe these
SPPs as they propagate in different directions at differ-
ent frequencies within the gap, and so, strictly-speaking,
these SPPs are not topological. Nevertheless, we show
that they still exhibit unidirectional propagation and in-
herent robustness to discontinuities.

In the following, the common bulk bandgap is dis-
cussed, the behavior of the SPPs is determined, and
a Green function is obtained for a finite-thickness gy-
rotropic layer. Additionally, we investigate the back-
scattering immune properties of a surface wave propa-
gating at the magnetized plasma-air interface, and also
on the surface of a magnetized plasma slab in the pres-
ence of a defect in the lower bandgap frequency regime.

II. BULK-MODE AND SPP DISPERSION
ANALYSIS

The geometry of interest is depicted in Fig. 1, showing
a finite-thickness gyrotropic slab immersed in a simple
medium characterized by εr,0 for z > z1 = 0 and εr,2 for
z < −z2 = −h. The gyrotropic medium is assumed to
be a plasma immersed in a static external magnetic field
B0 = ŷB0. Assuming time harmonic variation e−jωt,
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the magnetized plasma is characterized by the dielectric
tensor,

ε̄r = εt
(̄
I− ŷŷ

)
+ jεg

(
ŷ × Ī

)
+ εaŷŷ, (1)

where the permittivity elements, {εt, εa, εg} are [21]

εt = 1−
ω2
p

(ω + jΓ)
2 − ω2

c

,

εa = 1−
ω2
p

ω (ω + jΓ)
, εg =

ωcω
2
p

ω
[
ω2
c − (ω + jΓ)

2
] . (2)

such that ωp =
√
Nq2e/meε0, ωc = −qeB0/m, and

Γ = 1/τ denote the plasma, cyclotron, and collision fre-
quencies, respectively, where N is the free electron den-
sity, qe = −e is the electron charge, me is the electron
mass, and τ is the relaxation time between collisions. The
above model is local; as studied in [22], a nonlocal Drude
model leads to the presence of a backward propagating
modes. However, the effect of non-locality is evident only
for very large wavenumbers and the backward waves van-
ish when considering realistic levels of loss [20], and so
non-locality is ignored here.

FIG. 1. Slab of gyrotropic material with finite thickness, h.
The slab is biased with a static magnetic field in the xoy plane.
A vertical dipole is suspended a distance d above the slab and
is responsible for exciting the displayed field pattern near the
top surface of the slab. The wavenumber associated with a
bulk mode propagating within the slab is denoted kb, and is
represented in a local coordinate system where αb denotes the
angle which kb makes with respect to the y-axis.

A. Dispersion of bulk modes in a gyrotropic
medium – the existence of a common bandgap

The characteristics of the bulk modes in an anisotropic
medium depend on the direction of propagation. In a
structure exhibiting bulk band-gaps, these will also be
direction-dependent. In this section, we study the bulk
dispersion behavior of a gyrotropic medium in order to
identify a bulk bandgap, common to all propagation di-
rections. We begin with a plane wave having wave vec-
tor, kb, propagating in a gyrotropic medium at angle,

��� ���
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FIG. 2. Dispersion diagram of plasma bulk modes for different
angles of propagation, where kp = ωp/c. Gray shaded regions
highlight bandgaps in the dispersion. The dashed red line
corresponds to an ordinary wave (independent of bias) while
the solid black lines correspond to the extraordinary wave
(dependent on bias).

αb, with respect to the bias field (y) direction. Assuming
a plane wave solution to Maxwell’s equations leads to a
homogeneous system of equations for which non-trivial
solutions are obtained when [21]∣∣k20 ε̄r − k2b Ī + kbkb

∣∣ = 0, (3)

where kb = kt + ŷky such that |kt| = kb sinαb and
ky = kb cosαb. Evaluation of the determinant leads to
the dispersion equation for the bulk modes,

0 = k2bk
2
0

{[
εt (εt + εa)− ε2g

]
sin2 αb + 2εtεa cos2 αb

}
− k4b

[
εt sinαb + εa cos2 αb

]
− k40

(
ε2t − ε2g

)
εa. (4)

The dispersion diagrams associated with the bulk modes
of a magneto-plasma are shown in Fig. 2. We consider
ωp = 2π(20 THz) and ωc/ωp = 0.4 here and throughout
the rest of the paper. Figures 2a and 2b show the disper-
sion of bulk modes which propagate parallel (αb = 0◦)
and perpendicular (αb = 90◦) to the magnetic bias, re-
spectively. In the parallel case, the two intersection
points correspond to Weyl points arise from crossings be-
tween longitudinal plasma modes and transverse helical
modes [23]. Figures 2c and 2d show the dispersion for two
arbitrary angles in the range, 0◦ < αb < 90◦. As seen in
Fig. 2, there are four branches of the dispersion. The sec-
ond branch from the top (dashed red) corresponds to an
ordinary wave, independent of the magnetic bias, which
does not lead to a topological SPP. Two bandgaps form
between the other three branches as shown in the shaded
regions of Fig. 2. The size of the bandgaps depend on the
propagation direction as well as the magnetic bias field
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strength. The upper bandgap is smallest when αb = 90◦.
Conversely, the lower band-gap is smallest when αb = 0◦.
As such, we take the smallest upper (lower) band-gap
to represent the common upper (lower) bandgap for all
propagation angles, 0◦ < αb < 90◦. Points a and b do
not change with the propagation angle. The common
bandgap and its impact on surface waves is considered
further in the following.

B. Surface Plasmon Polariton Dispersion

A surface wave that propagates along the interface be-
tween a gyrotropic medium and an isotropic medium has
a longitudinal wave vector component, ks = x̂kx + ŷky,
where the propagation angle, φs, is made with respect
to the x axis. Solving the bulk dispersion equation (4),
we obtain kb,i = x̂kx + ŷky + ẑmkz,i for i ∈ {1, 2} and
m ∈ {±} where we define kz,i = jγi such that [24]

γ2i = k2x ∓
1

2εt

√
κ

− 1

2εt

[(
εt (εt + εa)− ε2g

)
k20 − (εa + εt) k

2
y

]
, (5)

and

κ =
[(
εt (εt + εa)− ε2g

)
k20 − (εa + εt) k

2
y

]2
− 4εtεa

[
(εg + εt) k

2
0 − k2y

] [
(εt − εg) k20 − k2y

]
. (6)

The dispersion relation for the SPP can be obtained
by matching the tangential components of the electric
and magnetic fields at the interface [Appendix C, [25]],
leading to the 4× 4 system of homogeneous equations

β−1 β−2 ky jγkx
kyθ1 kyθ2 −kx jγky
kyφ

−
1 kyφ

−
2 jγkx −kyk2

−δ1k2t,1 −δ2k2t,2 jγky kxk
2



A−1
A−2
B+

1

B+
2

 = 0, (7)

where k2 = k20εr,0, γ =
√
k2x + k2y − k2, and

δi = jεg/ξi, θi = −k2t,i/$i,

βmi = kx −mkz,iδi, φmi = δikx −mkz,i (θi − 1) , (8)

such that ξi = k20εt − k2i and $i = k20εa − k2t,i. Non-
trivial solutions are obtained when the determinant of
the coefficient matrix on the left hand side of (7) is set
equal to zero. Evaluation of the determinant and division
through by −jk2sky/$1$2ξ1ξ2 6= 0, leads to

0 =
(
k2y + k2z

)
nA − kxn−B + kxk

2
yn
−
C

−
(
k2x + k2z

)
n−D − jkz

(
n−E − εr,0χ

−) , (9)

where kz = jγ and the quantities nA, n−B , n−C , n−D and n−E
are defined in the Appendix. In what follows, we assume
that the upper medium is characterized by εr,0 = 1. For

���

���

FIG. 3. SPP dispersion surface for a biased-plasma-vacuum
interface, obtained by solving for the roots of (9), for ωc =
0.4ωp. (a) Perspective (zoomed) view of the upper and lower
bands. (b) Perspective view of the lower band where the
solid black lines are the equi-frequency contours for a few
representative frequencies and ω± outline the region of SPP
resonance. The designations, I-IV, refer to Fig. 5.

the well-studied [26] case of propagation perpendicular
to the bias (ky = 0) the SPP dispersion is found to be

√
k2x − k20 +

√
k2x − k20εeff
εeff

=
εgkx
εtεeff

, (10)

where εeff =
(
ε2t − ε2g

)
/εt. For ky 6= 0, the general

dispersion equation (9) must be used.
As considered in recent photonic topological work [27],

we are interested in bulk-bandgap crossing SPPs. Since
the upper bandgap for the perpendicular case and lower
bandgap for the parallel case determine the common
bandgap of all bulk modes, we consider the SPP modes
that cross these two common bandgaps.
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A surface mode propagating in the xoy plane gener-
ally possesses two wave vector components, kx and ky.
Therefore, a three-dimensional surface is needed to com-
pletely describe the SPP dispersion. As shown in Fig. 3
the SPP modes form two frequency bands. The upper
band is asymmetric about the kx = 0 plane and sym-
metric about the ky = 0 plane and passes through the
upper bulk bandgap. The upper band of SPP modes in
the magnetized plasma-opaque structure lead to topo-
logical unidirectional and back-scattering immune SPPs
which has been well studied in [6, 19, 27, 28]. For the
case that the magnetized plasma immersed in a trans-
parent medium, the upper band represents fast surface
waves. These surface waves leak rapidly into the trans-
parent medium. Similarly, the lower band is asymmetric
about the kx = 0 plane and symmetric about the ky = 0
plane. Furthermore, this lower band passes through the
lower bulk bandgap. Dispersion in this lower band leads
to beam-like SPPs and has only recently been considered
in our previous paper [20]; this is the main subject of this
work. Figure 4 shows several equi-frequency contours
(EFC) of the dispersion surface at different frequencies
(red lines). Also shown in Fig. 4 are density plots of the
distribution function, |F |, obtained from the Green func-

��� ���
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FIG. 4. Density plot of the Sommerfeld integrand, |F |, (27)
and equi-frequency contours (solid red) extracted from (9),
for a biased-plasma-vacuum interface at different frequencies
for Γ/ωp = 0.015. The notation I-IV refers to Fig. 5.
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FIG. 5. Two dimensional dispersion of the SPP for different
propagation angles, φs, with respect to the positive (negative)
x-axis for right (left) branches of the dispersion. The bulk dis-
persion (solid black) for αb = 0◦ indicates the lower bandgap
(BG), common to all propagation angles. The solid orange
lines, symmetric with respect to ks = 0, show the dispersion
of light in vacuum, e.g., ω/ωp = ±ks/kp.

tion and given by (27). The phase and group velocities

of an SPP are calculated as vp = k̂sω/ |ks| and

vg = ∇ksω (ks) = x̂
∂ω

∂kx
+ ŷ

∂ω

∂ky
, (11)

respectively. This means that the group velocity, repre-
senting the directional flow of electromagnetic energy, is
orthogonal to the equi-frequency contours. According to
Fig. 4a the EFCs at low frequencies are nearly circular
such that energy flows isotropically. Hence, the resulting
field pattern is essentially omni-directional (see Fig. 6a
discussed in the next section). As frequency increases,
the semi-major axis of the EFC becomes elongated (Fig.
4b) such that the energy begins to flow asymmetrically.
For ω = 0.53ωp, the EFC becomes hyperbolic with the
arms of the hyperbola widening as frequency increases
(see Fig. 4c-f). When the EFC becomes hyperbolic, two
directional, narrow beams form in the SPP field pattern
(see, e.g., Fig. 6c,d). Moreover, the equi-frequency con-
tours of the upper band in Fig. 3a show that the sur-
face plasmons in this frequency range are mainly directed
along the y direction (along the bias), existing down to
the limit ky → 0.

Figure 5 shows the SPP dispersion behavior for the
lower band, at different propagation angles (i.e., it shows
several two dimensional traces of the SPP dispersion sur-
face shown in Fig. 3b). Each branch of the SPP disper-
sion converges to [25]

ωk =
1

2
ωc cosφs +

1

2

√
2ω2

p + ω2
c

(
1 + sin2 φs

)
, (12)
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in the limit ks → ∞, derived using the quasi-static ap-
proximation. The maximum and minimum quasi-static
resonance, ω± = ωk (φs = 0), indicated in Figs. 3b and
5, correspond to an SPP mode which propagates perpen-
dicular to the bias. The dispersion is divided into four
frequency regions: in Regions I and IV, there is no com-
mon bulk bandgap, whereas in Regions II and III, there
exists a common bulk bandgap. In Region II, where the
EFC is hyperbolic (see Fig. 4c-f), we have directional
propagation and the SPP field pattern consists of two
narrow beams which are symmetric with respect to the
x axis (e.g. Fig. 6c,d), and since ω(−ks) 6= ω(ks), unidi-
rectional behavior is also possible, making this frequency
regime of central interest. Although in Region III there
still exists a common bulk bandgap, narrow beams do
not form in the SPP field pattern due to the fact that
the EFC is ellipsoidal (see Fig. 4b). Moreover, SPP
propagation is nearly reciprocal. In Region IV, the EFC
is circular (Fig. 4a), indicating that the expected SPP
field pattern is omni-directional (see Fig. 6a), and from
the dispersion shown in Fig. 5, it is evident that the SPP
is reciprocal, i.e. ω(−ks) = ω(ks).

As a partial summary, we have carefully studied the
recently-identified lower band dispersion of surface waves
on a dielectric-gyrotropic plasma interface, and have
identified four regions (I-IV in Figs. 3 and 5) with differ-
ent characteristics.

III. GREEN FUNCTION FOR A
FINITE-THICKNESS PLASMA, AND SPP BEAM

PATTERN IN SPACE

In the last section we considered a simple material-
gyrotropic plasma interface, the Green function for which
is provided in [25]. In this section, we expand that anal-
ysis to consider a finite-thickness gyrotropic layer. We
present a closed-form expression (as a Sommerfeld inte-
gral) for the Green function in the simple dielectric re-
gions above and below the slab, which we believe to be
a new result. Importantly, we also provide the Green
function coefficient in quotient form for each case, which
leads to the identification of the SPP dispersion equation
(setting the denominator to zero), and allows the residue
of the Green function, corresponding to the SPP, to be
evaluated.

The procedure to derive the Green function follows
that in [25, 29]. The incident field excited by an elec-
tric dipole source, with dipole moment pe = x̂px +
ŷpy + ẑpz, suspended a distance d above the first inter-
face, is given by Ep (r) =

(
∇∇+ Īk20εr,0

)
· πp (r), where

πp (r) denotes the principal hertzian potential due to the
dipole source, which we write in terms of the princi-
pal Green function, πp (r) = gp (r, r0) pe/ε0εr,0, where

gp (r, r0) = ejk0
√
εr,0|r−r0|/4π |r− r0| such that εr,0 is the

relative permitivitty of the top layer (see Fig. 1) and
r0 = (0, 0, d). Following [25], the principal and scattered
fields may be written similarly in Sommerfeld integral

form,

Ep (r) =

∫
d2kse

jks·r e
−γ|z−z0|

8π2ε0εr,0γ
C̄p
z≷d · p, (13)

Er (r) =

∫
d2kse

jks·r e
−γ(z+z0)

8π2ε0εr,0γ
C̄r · p, (14)

Et (r) =

∫
d2kse

jks·r eγ(z−z0)

8π2ε0εr,0γ
C̄t · p, (15)

where C̄p
z≷d and C̄r,t take the form,

C̄p
z≷d = Āz≷d · Īs · B̄, (16)

C̄r,t = Ār,t ·
{
R̄, T̄

}
· B̄, (17)

such that

Āz≷d = Īs ∓
1

kz
ẑks, (18)

Ār,t = Īs ∓
1

kr,tz
ẑks, (19)

B̄ = k20εr,0Īs − ksks + kzksẑ, (20)

where Īs = x̂x̂ + ŷŷ, kz = krz =
√
k20εr,0 − k2x − k2y, and

ktz =
√
k20εr,2 − k2x − k2y. The reflection and transmission

coefficients for a slab of finite depth, h, are denoted by
R̄ (ω,ks) and T̄ (ω,ks), respectively. It is shown in the
appendix that these 2×2 tensor coefficients take the form

R̄ = R̄01 + T̄10 · R̄′12 ·
(̄
Is − R̄10 · R̄′12

)−1 · T̄01, (21)

T̄ = T̄12 · P̄−E ·
(̄
Is − R̄10 · R̄′12

)−1 · T̄01, (22)

where T̄nn′ = Īs+R̄nn′ for (n, n′) ∈ {(0, 1) , (1, 0) , (1, 2)}
and

R̄′12 = P̄+
E · R̄12 · P̄−E , (23)

such that P̄m
E denotes the spacial propagator, which ac-

counts for the accumulated phase as the wave propa-
gates within the gyrotropic medium in the ±z direc-
tions. The single interface reflection coefficients associ-
ated with each interface, R̄nn′ , along with the spacial
propagator, P̄m

E , can alternatively be expressed in nu-
merator/denominator form as

R̄nn′ =
1

kyΩnn′

(
kyΠnn′

11 Πnn′

12

k2yΠnn′

21 kyΠnn′

22

)
, (24)

P̄m
E =

1

kyχm

(
ky∆m

11 ∆m
12

k2y∆21 ky∆m
22

)
, (25)

where the quantities Ωnn
′
, Πnn′

, χm, and ∆m are de-
fined in the appendix. For the single interface case, we
find that setting Ω01 to zero in R̄01 gives the expected
dispersion relation for the SPP (9).

In the special case where a z directed dipole moment,
pe = ẑpz, is placed at a height d above the first interface
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FIG. 6. Scattered electric field, |Er
z |, obtained from the Green

function (solid black lines) for a biased-plasma-vacuum inter-
face, with ρ = 0.7λ, z = 0.008λp, where λ = 2πc/ω and
λp = 2πc/ωp. For comparison, the electric field distribution
generated using COMSOL is also shown.

(z > 0), the z component of the scattered electric field
simplifies to

Erz (r) =

∫
d2ksF (ks, r, ω), (26)

where

F (ks, r, ω) = ejks·r e−γ(z+d)

8π2ε0εr,0γ
Crzzpz, (27)

such that, for a single interface,

Crzz =
−kx

(
Π01

12 + kxΠ01
11

)
Ω01

−
k2y
(
Π01

22 + kxΠ01
21

)
Ω01

. (28)

Using (26), the electric field distribution near the in-
terface of a half-space gyrotropic media for ρ = 0.7λ,
z = 0.008λp, and 0 < φ < 2π, is shown in Fig. 6. The
results obtained in COMSOL are also shown Fig. 6, and
agree with the Green function analysis.

As shown in Fig. 6a, the expected behavior of surface
wave propagation for operating frequencies that lie in
Region IV of the dispersion (see Figs. 3 and 5), is omni-
directional. In Region III, propagation is bi-directional,
with the SPP intensity concentrated to one half plane as
depicted in Fig. 6b. Transitioning from Region IV to Re-
gion I, the expected behavior increasingly tends toward
unidirectional. Interestingly, for frequencies that satisfy
the SPP resonant condition, ω− < ω < ω+ (Regions
I and II), Fig. 6c,d, show that narrow-beam directional

propagation is obtained, consistent with the previous dis-
cussion of equi-frequency contours; two representative re-
sults which satisfy the resonant condition, ω = 0.6ωp and
ω = 0.65ωp are shown. At ω = ω−, the field pattern
forms two narrow beams which approach each other as
the operating frequency increases. Eventually, the two
beams join to form a single beam at ω = 0.76ωp, cor-
responding to the saturation frequency of the φs = 90◦

branch in Fig. 5, and then split to form two beams for
0.76ωp < ω < ω+. Therefore, the angle of the beams
with respect to the x axis is adjustable with frequency as
well as the magnetic bias. Furthermore, if the direction
of the magnetic bias is flipped, the beams propagate in
the opposite direction.

To have an indication of the inherent robustness of the
SPP within the resonant range, a discontinuity in the
form of a hole/block is constructed in an attempt to im-
pede the SPP. A unidirectional SPP that crosses a band
gap in reciprocal space is immune to the effects of back-
scattering and diffraction. To illustrate this, Fig. 7a,b
shows the electric field due to a electric point source near
the vacuum-plasma interface of a plasma half-space. The
SPP passes through the discontinuity without reflection
or diffraction. Similarly, for a finite-thickness slab, the
SPP excited on the top surface, upon encountering the
end of the plasma, passes onto the bottom surface, as
shown in Fig. 7c (top view) and Fig. 7d (bottom view).

As shown above, the vacuum-plasma interface can sup-
port a uni-directional SPP. However, it is not clear if a
thin, finite-thickness slab can also support such an SPP.
Figure 8 shows the SPP pattern obtained by evaluat-
ing the scattered/reflected Green function field (14) as a
function of angular position in the xoy plane. For this
analysis, we consider a vertical dipole source, operating
with frequency ω = 0.65ωp and positioned at the upper
interface (z1 = 0) of a gyrotropic plasma slab with a fixed
thickness h = λp. Figure 8 shows the scattered field for
the fixed observation point (ρ, z) = (0.08λp, 0.008λp) and
several values of loss within the range 0 < Γ < 10−4ωp.
For a sufficient amount of loss, Γ = 10−4ωp, only two
beams appear in the field pattern, similar to those ob-
tained for a single interface (see Fig. 6d). As the loss
decreases from Γ = 10−4ωp to Γ = 0, we see the emer-
gence of two backward beams present on the upper in-
terface (due to the evanescent tail of the bottom-surface
SPP), which indicates the breakdown of uni-directional
behavior.

A. Quasi-Static Approximation

Further insight can be gained by a quasi static approxi-
mation, where the electric field is written in terms of the
electro-static potential, φk, such that Ek ≈ −∇φk, as-
suming the associated magnetic field is negligible. Solv-
ing Gauss’ law in both isotropic and gyrotropic media,
and applying boundary conditions for the tangential com-
ponents of the electric field at each interface, the electric
potential for a symmetric slab (centered at z = 0) is ob-
tained as
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FIG. 7. (a,b) Electric field (computed using COMSOL) at the interface of a thick (essentially infinite) gyrotropic plasma slab
in the presence of (a) a hole discontinuity and (b) a block discontinuity. (c,d) Electric field at the top (c) and bottom (d) of a
finite thickness slab (h = 0.12λp) in the presence of a discontinuity. The SPP, excited on the top interface by a point dipole,
propagates around the open surface to the bottom side of the plasma.

φk = ejks·r


[
jC1 sinh

(
k̃sh/2

)
+ C2 cosh

(
k̃sh/2

)]
e−ks(z−h/2) z > h/2

jC1 sinh
(
k̃sz
)

+ C2 cosh
(
k̃sz
)

−h/2 < z < h/2[
−jC1 sinh

(
k̃sh/2

)
+ C2 cosh

(
k̃sh/2

)]
e−ks(z−h/2) z < −h/2

, (29)

where k̃s =
√
k2x + εak2y/εt, h denotes the slab thick-

ness and C1 and C2 are parameters can be obtained by
applying the mode orthogonality condition. Enforcing
continuity of the normal components of electric displace-
ment at the two interfaces leads to the quasi-static SPP
dispersion relation

ε2gk
2
x − ε2t k̃2s − k2s = 2εtksk̃s coth

(
k̃sh
)
. (30)

The quasi-static approximation is valid only for SPPs
with short wavelength (ks → ∞). In the limit h → ∞,
the dispersion relation reduces to that derived for a single

interface [25],

ks + kxεg + k̃sεt = 0. (31)

Figure 9 shows the solutions to the quasi-static relation
(30) for several values of cyclotron frequency, represent-
ing the SPP resonance in the quasi-static limit. For a
given ω value, there are four values of φs, two of which
correspond to the forward beams and the other two cor-
respond to the backward beams (see Fig. 8). In the
presence of a magnetic bias, the SPP resonance depends
on the direction of the SPP modes, however, it is in-
dependent of the slab thickness for large values of ks.
Numerically we find that in the absence of magnetic bias
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FIG. 8. SPP beam pattern excited by a vertical dipole source
at the interface of a finite slab of thickness h = λp, obtained
by evaluating (14) for set observation height, z = 0.008λp

and in-plane radial distance, ρ = 0.08λp, λp = 2πc/ωp. Four
values of loss are considered such that Γ = 10−4ωp (a), Γ =
10−5ωp (b), Γ = 30−6ωp (c), and Γ = 0 (d). These results
are normalized with respect to the beam maximum extracted
from the field profile shown in (a).

(ωc = 0), the SPP resonance at lim
ωc→0

ωSPP = ωp/
√

2,

which shows that SPPs become direction independent in
this limit, as expected.

The quasi-static dispersion in Fig. 9 suggests that
four beams may be present in the scattered field pro-
file for operating frequencies that fall within the SPP
resonant range ω− < ω < ω+. For example, consider
an operating frequency of ω = 0.65ωp and cyclotron fre-
quency ωc = 0.4ωp. From the quasi static dispersion,
we find that the in-plane wave vector, and hence, phase
velocity, of the SPP (approximately) makes an angle
φs ∈ {60◦, 120◦, 240◦, 300◦} with respect to the x-axis.
The group velocity (i.e. the direction of energy flow as
indicated by the direction of the beams) of the SPP is
perpendicular to the phase velocity and therefore, makes
an angle φs + 90◦ ∈ {150◦, 210◦, 330◦, 30◦} with respect
to the x-axis. In the low loss limit, the scattered field
profile shows four beams with the expected aforemen-
tioned angles made with respect to the x-axis (see Fig.
8d). However, for a lossy slab, we find that only two
beams become present on any given surface at angles
φs + 90◦ ∈ {330◦, 30◦} (top) and φs + 90◦ ∈ {150◦, 210◦}
(bottom) (see Fig. 8a). That is, the quasi-static analy-
sis provides four symmetric beams, two of which will be
excited on a given interface (top or bottom).

c
=0.4

p

c
=0.1

p

c
=0

FIG. 9. Solutions to the quasi-static SPP dispersion relation
(30) for a finite thickness slab of thickness h = 0.25λp and
wavenumber ks = 10kp � 1/h. The cyclotron frequency
ranges from 0 to 0.4ωp. From these results, we find that
for a given operation frequency, a maximum of four beams
is possible in the SPP beam pattern. Additionally, we find
that as magnetic bias increases, the SPP resonant range also
increases.

IV. CONCLUSION

We have investigated the behavior of surface plas-
mon polaritons propagating at the interface between vac-
uum and gyrotropic plasma for both infinite- and finite-
thickness slab configurations. We have identified a bulk
bandgap, common to all propagation angles. The oper-
ating frequency is chosen to lie within the lower common
band gap, wherein omni-directional, bidirectional, and
narrow directional beam patterns are observed. Operat-
ing in the bandgap gives the SPP interesting properties
that protect it from back scatter and diffraction in the
presence of a discontinuity. The direction of the SPP
beams are adjustable with operation frequency and also
the bias magnetic field. The Green function and quasi-
static approximation to the dispersion have also been ob-
tained for a finite-thickness slab.

APPENDIX: DYADIC GREEN FUNCTION FOR
A FINITE THICKNESS SLAB

Here, we derive the plane wave reflection and transmis-
sion coefficients which relate the tangential field compo-
nents of the electric field reflected and transmitted from
a gyrotropic slab of finite thickness, h. As in [25], it
is important to define a convenient, orthogonal coordi-
nate system in which to expand the amplitude vector
of a plane wave propagating in the gyrotropic medium.
The set of orthogonal unit vectors which span this co-
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FIG. 10. Cross sectional view of Fig. 1. The top and bottom
interfaces are positioned at z = z1 = 0 and z = z2 = −h re-
spectively. Regions (0) and (2) are characterized by εr,0 and
εr,2 respectively, while Region (1) is characterized by the gy-
rotropic permitivitty tensor, ε̄r,1, defined in (1). The electric
fields associated with plane waves propagating in each region,
with group velocity in the ±z directions, are also shown.

ordinate system is given by
{

k̂mt,i, ŷ, k̂
m
t,i × ŷ

}
, where

k̂mt,i = x̂kx + ẑmkz,i for m ∈ {±} and i ∈ {1, 2}. The
fields above and below the interface, are simply expanded
in terms of the Cartesian basis, {x̂, ŷ, ẑ}. The relation-
ship between the electric and magnetic fields above and
below the slab is given by(

ωµ0H
m
y

ωµ0H
m
x

)
=
{
Ȳm, Ȳm

g

}
·
(
Emx
Emy

)
, (32)

where the electric and magnetic fields in the dielectric
regions are related using

Ȳm =
1

mkz

( (
k2x + k2z

)
kxky

−kxky −
(
k2y + k2z

) ) , (33)

while the electric and magnetic fields within the gy-
rotropic plasma are related using

Ym
g =

(
−δ1k2t,1 −δ2k2t,2
kyφ

m
1 kyφ

m
2

)
·
(

βm1 βm2
kyθ1 kyθ2

)−1
. (34)

Matching the tangential components of the electric and
magnetic fields at each interface yields

T̄01 ·E−0 (z1) =
(̄
Is + R̄01

)
·E−0 (z1) , (35)

T̄10 ·E+
1 (z1) =

(̄
Is + R̄10

)
·E+

1 (z1) , (36)

T̄12 ·E−1 (z2) =
(̄
Is + R̄12

)
·E−1 (z2) , (37)

Y−g · T̄01 ·E−0 (z1) = Ȳ− ·E−0 (z1)

+ Ȳ+ · R̄01 ·E−0 (z1) , (38)

Y+ · T̄10 ·E+
1 (z1) = Ȳ+

g ·E+
1 (z1)

+ Ȳ−g · R̄10 ·E+
1 (z1) , (39)

Y− · T̄12 ·E−1 (z2) = Ȳ−g ·E−1 (z2)

+ Ȳ+
g · R̄12 ·E−1 (z2) . (40)

From (35)-(40) we find T̄nn′ = Īs + R̄nn′ where

R̄nn′ =
(
Ȳm1 − Ȳm2

g

)−1 · (Ȳm3
g − Ȳm3

)
, (41)

such that

(m1,m2,m3) =

 (+,−,−) (n, n′) = (0, 1)
(+,−,+) (n, n′) = (1, 0)
(−,+,−) (n, n′) = (1, 2)

. (42)

Furthermore, it is noted that

E−1 (z1) = T̄01 ·E−0 (z1) + R̄10 ·E+
1 (z1) , (43)

E+
0 (z1) = R̄01 ·E−0 (z1) + T̄10 ·E+

1 (z1) , (44)

E+
1 (z2) = R̄12 ·E−1 (z2) , (45)

E−2 (z2) = T̄12 ·E−1 (z2) , (46)

where the electric field associated with a plane wave prop-
agating a distance, h = |z2 − z1|, along the ±z direction
within the gyrotropic slab, is given by

E−1 (z2) = P̄−E ·E
−
1 (z1) , (47)

E+
1 (z1) = P̄+

E ·E
+
1 (z2) , (48)

where P̄m
E denotes the spacial propagator, which effec-

tively propagates the electric field a distance h through
the slab and takes the form

P̄m
E = Ūm · P̄m · Ū−1m , (49)

where

Ūm =

(
βm1 /kt,1 βm2 /kt,2
kyθ1/kt,1 kyθ2/kt,2

)
, (50)

P̄m =

(
ejkz,1h 0

0 ejkz,2h

)
. (51)

Using (47)-(48) in (43)-(46) leads to

E+
0 (z1) = R̄ ·E−0 (z1) , (52)

E−2 (z2) = T̄ ·E−0 (z1) , (53)

where

R̄ = R̄01 + T̄10 · R̄′12 ·
(̄
Is − R̄10 · R̄′12

)−1 · T̄01, (54)

T̄ = T̄12 · P̄−E ·
(̄
Is − R̄10 · R̄′12

)−1 · T̄01, (55)

such that R̄′12 = P̄+
E · R̄12 · P̄−E . After some algebra, we

find that (41), (49), (54), and (55) may be written in
numerator/denominator form as

R̄nn′ =
1

Ωnn′

(
Πnn′

11 Πnn′

12 /ky
kyΠnn′

21 Πnn′

22

)
, (56)

P̄m
E =

1

χm

(
∆m

11 ∆m
12/ky

ky∆21 ∆m
22

)
, (57)

R̄ =
1

ΛΩ01

(
Ξ11 Ξ12/ky
kyΞ21 Ξ22

)
, (58)

T̄ =
Ω10χ+

ΛΩ01

(
Ψ11 Ψ12/ky
kyΨ21 Ψ22

)
, (59)

where we define
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Λ =
(
Ω10Φ−Θ11

) (
Ω10Φ−Θ22

)
−Θ12Θ21, (60)

Ξ11 = ΛΠ01
11 +

(
Ω10 + Π10

11

)
(Υ11Σ11 + Υ12Σ21) + Π10

12 (Υ21Σ11 + Υ22Σ21) , (61)

Ξ12 = ΛΠ01
12 +

(
Ω10 + Π10

11

)
(Υ11Σ12 + Υ12Σ22) + Π10

12 (Υ21Σ12 + Υ22Σ22) , (62)

Ξ21 = ΛΠ01
21 +

(
Ω10 + Π10

22

)
(Υ21Σ11 + Υ22Σ21) + Π10

21 (Υ11Σ11 + Υ12Σ21) , (63)

Ξ22 = ΛΠ01
22 +

(
Ω10 + Π10

22

)
(Υ21Σ12 + Υ22Σ22) + Π10

21 (Υ11Σ12 + Υ12Σ22) , (64)

Ψ11 =
(
Ω12 + Π12

11

) (
∆−11Σ11 + ∆−12Σ21

)
+ Π12

12

(
∆21Σ11 + ∆−22Σ21

)
, (65)

Ψ12 =
(
Ω12 + Π12

11

) (
∆−11Σ12 + ∆−12Σ22

)
+ Π12

12

(
∆21Σ12 + ∆−22Σ22

)
, (66)

Ψ21 =
(
Ω12 + Π12

22

) (
∆21Σ11 + ∆−22Σ21

)
+ Π12

21

(
∆−11Σ11 + ∆−12Σ21

)
, (67)

Ψ22 =
(
Ω12 + Π12

22

) (
∆21Σ12 + ∆−22Σ22

)
+ Π12

21

(
∆−11Σ12 + ∆−12Σ22

)
, (68)

Ωnn
′

= m1m3kzχ
m3 (nm2

E − εr,0χ
m2)

+ jm3χ
m3
[(
k2y + k2z

)
nA − kxnm2

B + kxk
2
yn

m2

C −
(
k2x + k2z

)
nm2

D

]
, (69)

Πnn′

11 = kz
[
εrχ

m2χm3 +m1m3k
2
0 (nAn

m2

D − n
m2

B nm3

C )
]

+ j
(
m1χ

m3
[(
k2x + k2z

)
nm2

D + kxn
m2

B

]
−m3χ

m2
[(
k2y + k2z

)
nA + kxk

2
yn

m3

C

])
, (70)

Πnn′

12 = m1m3kzk
2
0 (nm2

D nm3

B − n
m3

D nm2

B )

+ j
[
kxk

2
y (m1n

m2

D χm3 −m3n
m3

D χm2) +
(
k2y + k2z

)
(m1n

m2

B χm3 −m3n
m3

B χm2)
]
, (71)

Πnn′

21 = m1m3kzk
2
0nA (nm3

C − n
m2

C )

+ j
[
kxnA (m3χ

m2 −m1χ
m3) +

(
k2x + k2z

)
(m3n

m3

C χm2 −m1n
m2

C χm3)
]
, (72)

Πnn′

22 = kz
[
εr,0χ

m2χm3 +m1m3k
2
0 (nAn

m3

D − n
m2

C nm3

B )
]

+ j
(
m3

[
kxn

m3

B χm2 +
(
k2x + k2z

)
nm3

D χm2
]
−m1χ

m3
[
kxk

2
yn

m2

C +
(
k2y + k2z

)
nA
])
, (73)

such that

Φ = Ω12χ+χ−, (74)

Υ11 = ∆+
11

(
Π12

11∆−11 + Π12
12∆21

)
+ ∆+

12

(
Π12

21∆−11 + Π12
22∆21

)
, (75)

Υ12 = ∆+
11

(
Π12

11∆−12 + Π12
12∆−22

)
+ ∆+

12

(
Π12

21∆−12 + Π12
22∆−22

)
, (76)

Υ21 = ∆21

(
Π12

11∆−11 + Π12
12∆21

)
+ ∆+

22

(
Π12

21∆−11 + Π12
22∆21

)
, (77)

Υ22 = ∆21

(
Π12

11∆−12 + Π12
12∆−22

)
+ ∆+

22

(
Π12

21∆−12 + Π12
22∆−22

)
, (78)

Θ11 = Π10
11Υ11 + Π10

12Υ21, (79)

Θ12 = Π10
11Υ12 + Π10

12Υ22, (80)

Θ21 = Π10
21Υ11 + Π10

22Υ21, (81)

Θ22 = Π10
21Υ12 + Π10

22Υ22, (82)

Σ11 =
(
Ω10Φ−Θ22

) (
Ω01 + Π01

11

)
+ Θ12Π01

21, (83)

Σ12 =
(
Ω10Φ−Θ22

)
Π01

12 + Θ12

(
Ω01 + Π01

22

)
, (84)

Σ21 =
(
Ω10Φ−Θ11

)
Π01

21 + Θ21

(
Ω01 + Π01

11

)
, (85)

Σ22 =
(
Ω10Φ−Θ11

) (
Ω01 + Π01

22

)
+ Θ21Π01

12, (86)

and

nA = εgk
2
t,1k

2
t,2 ($1ξ2 −$2ξ1) , (87)

nmB = εg$1$2

(
k2t,1α

m
2 − k2t,2αm1

)
, (88)

nmC = k2t,1ζ
m
2 ξ1 − k2t,2ζm1 ξ2, (89)

nmD = ζm2 α
m
1 $1 − ζm1 αm2 $2, (90)

nmE = εgk
2
0

(
k2t,1ζ

m
2 $1 − k2t,2ζm1 $2

)
, (91)

ζmi = εgkx$i − jεaξimkz,i, (92)

αmi = kxξi − jεgk20mkz,i, (93)

χm = k2t,1$2ξ1α
m
2 − k2t,2$1ξ2α

m
1 , (94)

∆11 = k2t,1$2ξ1α
m
2 e

jkz,2h

− k2t,2$1ξ2α
m
1 e

jkz,1h, (95)

∆12 = $1$2α
m
1 α

m
2

(
ejkz,2h − ejkz,1h

)
, (96)

∆21 = k2t,1k
2
t,2ξ1ξ2

(
ejkz,1h − ejkz,2h

)
, (97)

∆22 = k2t,1$2ξ1α
m
2 e

jkz,1h

− k2t,2$1ξ2α
m
1 e

jkz,2h. (98)
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