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Abstract All-atom molecular dynamics simulations with stratified alchemical free
energy calculations were used to predict the octanol-water partition coefficient logPow
of eleven small molecules as part of the SAMPL6-logP blind prediction challenge
using four different force field parametrizations: standard OPLS-AA with transfer-
able charges, OPLS-AA with non-transferable CM1A charges, AMBER/GAFF, and
CHARMM/CGenFF. Octanol parameters for OPLS-AA, GAFF and CHARMM were
validated by comparing the density as a function of temperature to experimental val-
ues. The partition coefficients were calculated from the solvation free energy for the
compounds in water and pure (“dry”) octanol or “wet” octanol with 27 mol % wa-
ter dissolved. Absolute solvation free energies were computed by thermodynamic
integration (TI) and the Multistate Bennett Acceptance Ratio (MBAR) with uncorre-
lated samples from data generated by an established protocol using 5-ns windowed
alchemical free energy perturbation (FEP) calculations with the Gromacs molecular
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dynamics package. Equilibration of sets of FEP simulations was quantified by a new
measure of convergence based on the analysis of forward and time-reversed trajec-
tories. The accuracy of the logPow predictions was assessed by descriptive statistical
measures such as the root mean square error (RMSE) of the data set compared to the
experimental values. Discarding the first 1 ns of each 5-ns window as an equilibration
phase had a large effect on the GAFF data, where it improved the RMSE by up to 0.8
log units, while the effect for other data sets was smaller or marginally worsened the
agreement. Overall, CGenFF gave the best prediction with RMSE 1.2 log units, al-
though for only eight molecules because the current CGenFF workflow for Gromacs
does not generate files for certain halogen-containing compounds. Over all eleven
compounds, GAFF gave an RMSE of 1.5. The effect of using a mixed water/octanol
solvent slightly decreased the accuracy for CGenFF and GAFF and slightly increased
it for OPLS-AA. The GAFF and OPLS-AA results displayed a systematic error where
molecules were too hydrophobic whereas CGenFF appeared to be more balanced, at
least on this small data set.

Keywords molecular dynamics · solvation free energy · OPLS-AA force field ·
AMBER force field · CHARMM force field · ligand parametrization · free energy
perturbation · octanol-water partition coefficient

1 Introduction

One key consideration in the design of small-molecule drugs is to enable these molecules
to efficiently reach their site of action, which typically requires the crossing of the
lipid bilayer of the cell membrane such as in the epithelial lining of the gut or the
blood-brain barrier. Although in some cases active transport processes are co-opted
for drug transport [1], passive diffusion across the cell membrane remains the primary
route for drug absorption [2]. The ability of a molecule to partition into the water or
the lipid phase can be assessed by its water-octanol partition coefficient Pow (or its
decadic logarithm logPow, often just written as “logP”) where octanol is taken as a
simple approximation to the lipid membrane. A logPow < 0 indicates a hydrophilic
molecule, logPow ≈ 0 indicates equal distribution in water and octanol phase, and
logPow > 0 indicates lipophilicity. The logPow value is one of the quantities in the
“rule of five” guidelines to assess drug permeability [3], where logPow > 5 is in-
dicative of poor drug solubility and permeability (in conjunction with more than 5
hydrogen-bond donors/2×5 acceptors, and a molecular weight greater than 500).

Partition coefficients are physico-chemical quantities that are, in principle, straight-
forward to calculate with physics-based simulation approaches from the solvation
free energies of the solute in the two solvents (∆Gw in water and ∆Go in octanol)

logPow = (∆Gw−∆Go)(RT )−1 loge, (1)

where R = 8.31446261815×10−3 kJ ·mol−1 ·K−1 is the universal Gas constant (i.e.,
Boltzmann’s constant for 1 mol), T is the temperature, and e Euler’s number. Cal-
culation of partition coefficients requires (1) accurate representation of the interac-
tions between solvent and solute, (2) proper representation of the solute structure
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Fig. 1: Chemical structures of the SAMPL6-logP data set with the selected mi-
crostates.

(tautomers) and (3) correct sampling of the thermodynamic equilibrium. Therefore,
they make for good benchmark systems to assess the current state of the art in pre-
dictive free energy calculations, as evidenced by the 2016 SAMPL5 challenge on
cyclohexane partition coefficients [4] and the 2019 SAMPL6 challenge on the water-
octanol partition coefficients. The chemical structures of compounds included in the
SAMPL6-logP data set are shown in Figure 1. The logP values of the compounds
were measured by the organizers and had not been previously published [5]; partici-
pants submitted blind predictions for evaluation against the experimental values.

For the SAMPL6 challenge we used the same approach as for previous solvation-
free energy based challenges [6–8], namely classical molecular dynamics (MD) with
explicit solvent. We evaluated three widely used force fields, OPLS-AA, AMBER/GAFF,
and CHARMM/CGenFF. For all three force fields reasonably user-friendly parametriza-
tion tools exist and we wondered what performance a user could expect from just
using these tools. Additionally, we also used the same in-house approach to generate
OPLS-AA topologies that we had employed in previous challenges [6–8].

2 Methods

Our computational approach to calculating solvation free energies with classical MD
and our MDPOW Python package (https://github.com/Becksteinlab/mdpow/)
is similar to our previous SAMPL contributions [6–8]. Nevertheless, we will de-
scribe the details for completeness together with improvements that resulted from
lessons that we learned during this challenge. Previously, we only evaluated OPLS-

https://github.com/Becksteinlab/mdpow/
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AA parametrizations but for this challenge we also evaluated additional force fields
(AMBER and CHARMM) with the same protocol.

2.1 Force field parameters

Molecules included in the SAMPL6-logP data set (Figure 1) were parameterized
with different force fields, as detailed below. Three-dimensional coordinates for molecules
included in this study were obtained from our participation [9] in the SAMPL6 pKa
prediction challenge [10], the gas-phase geometry optimization being performed with
GAUSSIAN09 version D.01 [11] at the B3LYP/6-311+G(d,p) level.

The OPLS-AA [12–18] parameters for these compounds were generated either
with transferable charges using our in house MOL2FF algorithm (O. Beckstein and
B. I. Iorga, unpublished), based on the CACTVS Chemoinformatics Toolkit (http:
//www.xemistry.com/), or with CM1A charges (scaled with a factor of 1.14 for
neutral molecules) using the LigParGen web server [19] (http://zarbi.chem.
yale.edu/ligpargen/)

The parameters of SAMPL6-logP compounds for the CHARMM/CGenFF force
field [20] were obtained from the CGenFF server (https://cgenff.umaryland.
edu/) using the CGenFF program version 2.2.0 and CGenFF 4.0 [21, 22] with mol2
files as inputs. The resulting CHARMM files were converted to Gromacs files with
the Python script cgenff_charmm2gmx.py (downloaded from http://mackerell.
umaryland.edu/download.php?filename=CHARMM_ff_params_files/cgenff_
charmm2gmx.py, copyright notice from 2014). This version of the conversion script
cannot correctly process recent CGenFF parameters for lone pairs to represent com-
pounds with certain halogen substituents [23]. Because compounds SM04, SM12
and SM16 contained halogens with lone pairs, we were not able to obtain CGenFF
parameters in the Gromacs format and could not include them in the CGenFF re-
sults. Although it is possible to manually fix topologies and represent the lone pairs
with Gromacs virtual site constructs, we decided against doing so as the average user
would likely not be able to perform such topology hacking; furthermore, such func-
tionality should be automated and tested in the conversion script and not performed
on a case-by-case basis in order to aid reproducibility and applicability to large data
sets.

The AMBER/GAFF [24] parameters for the SAMPL6-logP data set were gen-
erated with AM1-BCC charges using AmberTools15 (http://ambermd.org) with
version 1.4 of GAFF and ACPYPE [25].

The OPLS-AA hydration free energies simulations were performed using the
TIP4P water model [26] and those using CHARMM36 [27] and AMBER99sb [28]
force fields were carried out using the TIP3P water model [29], which are the wa-
ter models used for the development of the corresponding force fields, respectively.
For simulations with octanol, we generated parameters for this solvent molecule for
OPLS-AA with MOL2FF, for GAFF with AmberTools17, and for CGenFF with the
CGenFF server, and tested them with simulations of bulk octanol, as described in
Results (Section 3.1).

http://www.xemistry.com/
http://www.xemistry.com/
http://zarbi.chem.yale.edu/ligpargen/
http://zarbi.chem.yale.edu/ligpargen/
https://cgenff.umaryland.edu/
https://cgenff.umaryland.edu/
http://mackerell.umaryland.edu/download.php?filename=CHARMM_ff_params_files/cgenff_charmm2gmx.py
http://mackerell.umaryland.edu/download.php?filename=CHARMM_ff_params_files/cgenff_charmm2gmx.py
http://mackerell.umaryland.edu/download.php?filename=CHARMM_ff_params_files/cgenff_charmm2gmx.py
http://ambermd.org


Prediction of octanol-water partition coefficients for SAMPL6 molecules 5

Besides the pure octanol solvent, we decided to use a water-octanol mixture for
solvation free energy calculations, as the experimental octanol-water partition coef-
ficients were measured in a way that the water and octanol phases might not be pure
water and octanol. The solubility of octanol in water is very low [30–32] so we only
considered pure water phases. On the other hand, the equilibrium solubility of water
in octanol at room temperature (298 K) is about 5 mass % [30–32]. Hence we also
prepared a mixed solvent water-octanol (“wet” octanol) box with a mole fraction of
water in octanol of 27 mol % and performed octanol solvation free energy calcula-
tions with either the pure octanol solvent (dry) or the wet octanol.

2.2 Solvation free energy and partition coefficient calculation

Solvation free energies were calculated as described previously [8] via stratified
all-atom alchemical free energy perturbation (FEP) MD simulations. All simula-
tions were performed with the MDPOW Python package (https://github.com/
Becksteinlab/mdpow/, 0.7.0 development version) with Gromacs 2018.2 [33] as
its MD engine. Autocorrelation analysis, thermodynamic integration (TI), and the
multistate Bennett acceptance ratio (MBAR) [34] were performed with the ALCHEMLYB
Python package (https://github.com/alchemistry/alchemlyb), release 0.3.0
[35].

A periodic cubic simulation cell was employed with at least 1.5 nm between
the solute and the box surfaces. The simulations were run as Langevin dynamics
(integration time step 2 fs) for temperature control, with the friction coefficient for
each particle computed as mass/0.1 ps [36]. All simulations were run in the NPT
ensemble, and the average pressure was maintained near the target value 1 bar with an
isotropic pressure Parinello-Rahman barostat [37] with relaxation time constant τp =
1 ps and compressibility κT = 4.6×10−5 bar−1 for both water and octanol. Lennard-
Jones interactions were calculated up to a cutoff of 1 nm without force-switching for
OPLS-AA and AMBER simulations and a cutoff of 1.2 nm with a force-switching
cutoff of 1.0 nm for CHARMM simulations, and a dispersion correction was applied
to energy and pressure to account for van der Waals interactions beyond the cutoff
in a mean field manner [38] for OPLS-AA and AMBER. Coulomb interactions were
evaluated with the SPME method [39] with an initial short range cutoff of 1 nm,
0.12 nm Fourier grid spacing, sixth order spline interpolation, and a relative tolerance
of 10−6. Each simulation was run on six CPU cores and a single GPU and Gromacs
was allowed to tune the Coulomb short range cut-off to optimize performance. All
bonds containing hydrogen atoms were constrained with the P-LINCS algorithm [40]
using a twelfth order expansion with a single iteration.

Solvated systems were energy minimized and relaxed with a NPT MD simulation
with a time step of 0.1 fs and duration of 5 ps. An initial NPT equilibrium simulation
at constant temperature and pressure (T = 300 K, P= 1 bar) was carried out for 15 ns.
The last frame of the equilibrium simulation served as the starting configuration for
the windowed FEP calculations. The FEP calculations were also carried out in the
NPT ensemble. Coulomb interactions (partial charges) were linearly switched off
over five windows (coupling parameter λCoul ∈ {0, 0.25, 0.5, 0.75, 1}) for water

https://github.com/Becksteinlab/mdpow/
https://github.com/Becksteinlab/mdpow/
https://github.com/alchemistry/alchemlyb
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simulations, and seven windows (coupling parameter λCoul ∈ {0, 0.125, 0.25, 0.375,
0.5, 0.75, 1}) for dry octanol or wet octanol simulations, while the van der Waals
(Lennard-Jones) interactions were maintained (i.e. λvdW = 0); sixteen windows were
used to switch off the Lennard-Jones term for the uncharged solute (λCoul = 1 and
λvdW ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}).
Each window was simulated for 5 ns. The van der Waals calculations used soft core
potentials with the values suggested by Mobley and colleagues [36] (α = 0.5, power
1, and σ = 0.3 nm). The calculations made use of the “couple-intramol = no”
feature in Gromacs [33, 41, 42], which maintains intramolecular interactions while
decoupling all intermolecular ones.

Autocorrelation analysis was applied to the simulation data to obtain uncorrelated
samples of the derivative of the Hamiltonian H with respect to the coupling parame-
ter λ , ∂H /∂λ , and energy differences ∆Ui,j [43, 44]. For a time series of N samples,
the autocorrelation function of the observable A at a given time frame i was defined
as

Ci =
〈AnAn+i〉−〈An〉2

〈A2
n〉−〈An〉2

(2)

The integrated autocorrelation time τac and statistical inefficiency g were given by

τac =
N

∑
i=1

(
1− 1

N

)
Ci (3)

g = 1+2τac (4)

Once the statistical inefficiency was found, every gth sample of the original data set
was selected to build up a set of uncorrelated samples. In practice, we used ∂H /∂λ

as the observable A. Solvation free energies and statistical errors for the discharging
and decoupling process were originally calculated with thermodynamic integration

∆G =
∫ 1

0

〈
∂H

∂λ

〉
λ

dλ , (5)

where the derivative of the Hamiltonian H with respect to the coupling parameter
λ , ∂H /∂λ , was saved for every time step. In the MDPOW implementation of TI,
Eq. 5 was integrated numerically with the composite Simpson’s rule [45] from SciPy
(http://www.scipy.org) [46]. The error on ∆G was calculated by propagating the
errors of the individual 〈∂H /∂λ 〉 FEP windows through Simpson’s rule as described
previously [6]. The TI implementation of ALCHEMLYB uses the trapezoid rule and
provides appropriate error estimates for uncorrelated data points. The ALCHEMLYB
library provides the MBAR estimator [34], which also requires uncorrelated data for
uncertainty estimates. We compared all three estimators and found that they generally
agreed with each other. The final results shown in this paper were calculated with
uncorrelated samples and the MBAR estimator [34].

The total solvation free energy (transfer from gas phase to aqueous phase at the
1M/1M Ben-Naim standard state)

∆Gsolv =−(∆GCoul +∆GvdW) (6)

http://www.scipy.org
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was calculated as the sum of the Coulomb and van der Waals contributions, with the
minus sign originating from the convention in Gromacs that λ = 0 corresponds to the
fully coupled (solvated) state while λ = 1 describes a fully decoupled (gas-phase)
solute.

In principle, the partition coefficient contains contributions from multiple tau-
tomers with significant populations. To simplify the calculations, we only picked a
single tautomer, typically with the lowest quantum mechanical ground state energy
[9] and neutral overall charge, and calculated the octanol-water partition coefficients
logPow, Eq. 1, for one fixed state of the compound via the solvation free energies
(Eq. 6).

2.3 Error analysis

As described previously [8], the error ε on logPow was calculated by error propaga-
tion from the errors of the individual free energies in Eq. 1 as

ε =
√

ε2
∆Go

+ ε2
∆Gw

(RT )−1 log10 e. (7)

The difference between experimental and computed octanol-water coefficients (“signed
error”) for each of the N compounds, labeled with its identification code α =SM02,SM04, . . . ,
was calculated as

∆α = logPow,α ,− logPexp
ow,α (8a)

ε∆ ,α =
√
(ε2

α + ε
exp
α )2, (8b)

with the uncertainty ε∆ of ∆ determined as the standard error from propagating the
experimental and simulation errors (Eq. 7) through Eq. 8a. The root mean square
error (RMSE) was determined from the individual errors ∆ as

RMSE =
√
〈∆ 2〉=

√
N−1 ∑

α

∆ 2
α , (9)

the absolute unsigned error (AUE) as

AUE = 〈|∆ |〉= N−1
∑
α

|∆α | , (10)

and the signed mean error (ME, also called the “mean signed error”, MSE) as

ME = 〈∆〉= N−1
∑
α

∆α . (11)

The standard errors of the RMSE, AUE, and ME were estimated via error propagation
of the individual uncertainties Eq. 8b through Eqs. 9–11 as

εRMSE =
1

N RMSE

√
∑
α

∆ 2
α ε2

∆ ,α =
1√
N

√
〈(∆ε∆ )2〉
〈∆ 2〉

, (12a)

εME = εAUE =
1√
N

√
〈ε2

∆
〉. (12b)

Eq. 12a followed the derivation of the root mean square error of prediction in Ref. [47]
but remains more conservative by omitting a correction factor of 1/

√
2.
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2.4 Data sharing

Data related to this work are shared in the GitHub repository Becksteinlab/SAMPL6_logP_data
that is archived on Zenodo at DOI 10.5281/zenodo.3549988. Input files for Gromacs
2018 and results in CSV format for the SAMPL6 submissions and the improved pro-
tocol discussed in Results are included.

3 Results and Discussion

3.1 Validation of octanol parameters

Octanol was parameterized (1) using MOL2FF and the standard OPLS-AA parameters
[13] distributed with the GROMACS package, (2) using AmberTools, ACPYPE [25]
and GAFF [24] and (3) using the CGenFF server [21, 22] for CHARMM/CGenFF
[20]. The parametrization was validated by (1) computing the density as a function
of temperature, (2) calculation of the chemical potential, (3) calculation of the hy-
dration free energy, and (4) calculation of the octanol-water partition coefficient and
comparison to experimental values.

The bulk density of octanol was calculated from simulations in a 5.6 nm-length
cubic box of dry octanol (512 octanol molecules) or wet octanol (374 octanol molecules
and 138 water molecules) of 100 ns length at five temperatures from 273 K to 373 K
and P = 1 bar (Figure 2 and Supplementary Table S1). The experimental data for dry
1-octanol were retrieved from REAXYS (https://www.reaxys.com, accessed on
10 September 2019). The simulations of dry and wet octanol with CGenFF, GAFF,
and OPLS-AA parameters gave similar results, with the exception of the wet octanol
simulation with OPLS-AA parameters at 273 K, as discussed below. The simulated
density slightly underestimated the experimental density between −1% at low tem-
peratures and −5.7% near the boiling point of water. The wet octanol density was
always higher than the dry octanol density.

The OPLS-AA wet octanol system underwent a phase transition to a dense solid
phase during the simulation at 273 K (Figure 2a). The experimental melting tem-
perature of pure octanol is 258.5 K and although water-octanol mixtures will have a
different melting temperature, the behavior that we observed here is likely unphysical
because similar behavior was recently reported and considered a consequence of ex-
aggerated attractive interactions between the alkane chains of the alcohols in standard
OPLS-AA [48]. Because we observed no phase transition in simulations at temper-
atures around our simulation temperature (300 K) we used the standard OPLS-AA
parameters of octanol for the OPLS-AA calculations in this work.

The chemical potential of octanol µoctanol is the transfer free energy of a oc-
tanol molecule from vacuum to the pure octanol solvent, ∆Goctanol

o . We calculated
∆Goctanol

o for all octanol parameters with the FEP protocol described above (Table 1).
The hydration free energy of octanol ∆Goctanol

w was calculated in a similar way and the
octanol-water partition coefficient was calculated using Eq. 1. The computed chem-
ical potential values were −7.63± 0.16 kcal/mol for GAFF, −8.59± 0.16 kcal/mol
for OPLS-AA, and −8.98±0.19 kcal/mol for CGenFF, which match the experimen-

https://github.com/Becksteinlab/SAMPL6_logP_data
https://doi.org/10.5281/zenodo.3549988
https://www.reaxys.com


Prediction of octanol-water partition coefficients for SAMPL6 molecules 9

280 300 320 340 360
Temperature (K)

0.75

0.80

0.85

0.90

0.95

De
ns

ity
 (g

/c
m

3 )

Dry octanol
Wet octanol
Experiment

2a OPLS-AA octanol parameters and TIP4P water
model

280 300 320 340 360
Temperature (K)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

De
ns

ity
 (g

/c
m

3 )

Dry octanol
Wet octanol
Experiment

2b GAFF octanol parameters and TIP3P water
model

280 300 320 340 360
Temperature (K)

0.74

0.76

0.78

0.80

0.82

0.84

De
ns

ity
 (g

/c
m

3 )

Dry octanol
Wet octanol
Experiment

2c CGenFF octanol parameters and TIP3P water
model

Fig. 2: Dependence of the density of dry and wet octanol on the temperature. Green
squares are experimental data; blue triangles were computed from 100-ns MD simu-
lations with dry octanol; orange diamonds were computed from 100-ns MD simula-
tions with wet octanol

tal value −8.13 kcal/mol fairly well. The calculated hydration free energy values of
−3.26±0.05 kcal/mol for OPLS-AA and−3.82±0.05 for CGenFF agree fairly well
(< 1 kcal/mol error) with the experimental value −4.09± 0.60 kcal/mol, while the
GAFF value −2.62±0.05 kcal/mol was 1.47 kcal/mol higher than the experimental
value. The calculated octanol-water partition coefficients for all three octanol models
ranged from 3.6 to 3.9 log-units, about 1 log-unit higher than the experimental value
2.92±0.09 kcal/mol.

For GAFF and CGenFF, the parametrization reproduced the density of octanol
satisfactorily. For OPLS-AA, we would not recommend using the parameters at lower
temperatures but they appear satisfactory at room and higher temperatures. The free
energies of solvation matched experimental data reasonably well, with GAFF show-
ing a trend towards undersolvating octanol in both water (like all three force fields)
and also in octanol itself. For all three force field parametrizations, the logPow is
about 1 unit too high, a trend that also became apparent for the SAMPL6 compounds
for the OPLS-AA and GAFF force fields, as discussed below.
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Table 1: Hydration free energies, chemical potentials and octanol-water partition coeffi-
cients for all octanol parameters were calculated and compared with experimental values.

Parametrization ∆Gw (kcal/mol) ∆ a µb (kcal/mol) ∆ a logPow ∆ a

GAFF −2.62(5) 1.47(60) −7.63(16) 0.50(16) 3.65(12) 0.73(15)
OPLS-AA −3.26(5) 0.83(60) −8.59(16) −0.46(16) 3.89(13) 0.97(16)
CGenFF −3.82(5) 0.27(60) −8.98(19) −0.85(19) 3.76(15) 0.84(17)
Expc −4.09(60) −8.13 2.92(9)

a The difference ∆ (Eq. 8a) between experimental and computed hydration free energies, chemical potentials and
octanol-water partition coefficients is shown for each octanol parametrization. The standard error of the mean in
the last significant digits is given in parentheses (Eq. 8b).
b The chemical potential of octanol µ is the transfer free energy of an octanol molecule from vacuum to the pure
octanol solvent ∆Go.
c Experimental logPowvalues were retrieved from REAXYS (https://www.reaxys.com). Multiple values
were averaged and errors were taken as the standard deviation of the mean. The experimental octanol chemical
potential µ (no reported uncertainty) and hydration free energy ∆Gw were retrieved from the Minnesota Sol-
vation Database (https://comp.chem.umn.edu/mnsol/); the latter agrees with the value from the FreeSolv
database (DOI 10.5281/zenodo.1161245).

3.2 Improvements to the FEP protocol

We started with our standard FEP protocol [6–8], with calculations in the NPT en-
semble for water, dry octanol, and wet octanol (27 mol % water in octanol) solutions.
All logPow values were computed from the solvation free energies according to Eq. 1.
After submission and release of the experimental values, we made two changes to our
protocol, which are discussed in more detail below: We switched our estimators to
use our new ALCHEMLYB library [35] and we added an equilibration phase to the
FEP windows by discarding the first nanosecond during preprocessing (also made
easy by the preprocessing module in ALCHEMLYB).

3.2.1 Estimator comparison

The logPow results submitted to the SAMPL6-logP challenge as entries cp8kv, 623c0
(OPLS-AA (mol2ff) dry/wet), eufcy, mwuua (OPLS-AA (LigParGen) dry/wet), sqosi,
6nmtt (GAFF dry/wet), and 3oqhx (CGenFF dry) (Supplementary Tables S4–S7
in the Supplementary Information) were calculated with the MDPOW-TI estimator,
which uses all data but decorrelates the data for the error estimation [6]. We have
been developing the ALCHEMLYB library [35] as a reference FEP analysis library
to be used as a drop-in replacement for in-house code. We took the analysis of the
SAMPL6 data as an opportunity to switch MDPOW to using ALCHEMLYB and in
particular, to use alchemlyb’s MBAR estimator. We first established that MDPOW-TI
(Simpson’s rule) and ALCHEMLYB-TI (trapezoid rule) gave similar results when ap-
plied to all data, with typical root mean square differences (RMSD) close to 0 (range
0.10–0.15; see Supplementary Figure S1). Furthermore, ALCHEMLYB-MBAR also
gave similar logPow-values as the two TI estimates (RMSDs 0.04–0.21). The esti-
mated uncertainties from ALCHEMLYB were, however, much smaller than the ones
from MDPOW because the raw data were highly correlated. To estimate the uncer-

https://www.reaxys.com
https://comp.chem.umn.edu/mnsol/
https://doi.org/10.5281/zenodo.1161245
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Table 2: RMSE, AUE and ME when all data in each λ window (0–5 ns) was used and
when the first nanosecond was discarded as equilibration (1–5 ns).

parameter oct all (0–5 ns) equilibrated (1–5 ns) Entrya

RMSE AUE ME RMSE AUE ME

OPLS-AA dry 2.83(5) 2.68(5) 2.68(5) 2.79(5) 2.61(5) 2.61(5) cp8kv
OPLS-AA wet 2.62(5) 2.50(4) 2.50(4) 2.72(5) 2.61(5) 2.61(5) 623c0
LigParGen dry 1.90(6) 1.79(6) 1.66(6) 1.71(6) 1.57(6) 1.57(6) eufcy
LigParGen wet 1.80(6) 1.68(6) 1.68(6) 1.62(6) 1.51(6) 1.51(6) mwuua
GAFF dry 2.36(8) 2.13(7) 2.13(7) 1.52(7) 1.28(7) 1.28(7) sqosi
GAFF wet 2.26(7) 2.07(7) 2.07(7) 1.71(8) 1.48(7) 1.48(7) 6nmtt
CGenFF dry 1.08(6) 0.90(6) 0.24(6) 1.17(5) 0.91(6) −0.32(6) 3oqhx
CGenFF wet 1.48(5) 1.21(5) 0.16(5) 1.42(5) 1.05(5) −0.10(5) —b

a The corresponding submission entry codes for the raw data used to calculate the results. Entries in this table
were processed with ALCHEMLYB-MBAR and are not the results that were submitted to SAMPL6; instead
see Tables S4–S7 in the Supplementary Information for the submitted results, which were processed with
MDPOW-TI (Simpson’s rule). b Results with CGenFF in wet octanol had not been submitted to SAMPL6
but were computed for this work to enable a complete comparison.

tainties free of bias, uncorrelated data were generated by applying the autocorrela-
tion analysis to simulations for all λ windows, according to Eqs. 2–4; the resulting
ALCHEMLYB uncertainties were comparable to the ones obtained with the MDPOW-
TI estimator.

This preliminary analysis established that we could safely replace the MDPOW-TI
estimator with the ALCHEMLYB ones. Given that ALCHEMLYB-TI and MBAR gave
similar answers (RMSDs 0.04–0.10) we focused on results with the MBAR estimator
which, at least in principle, makes better use of the available data [34].

3.2.2 The importance of equilibration

In our simulation protocol we used all data from each FEP window because in pre-
vious SAMPL challenges with water and cyclohexane we were concerned with suf-
ficient sampling and had no indication that windows might require appreciable equi-
libration time. However, David Mobley’s group shared with us their AMBER/GAFF
results, which were more accurate than our AMBER/GAFF results (their RMSE 1.6
compared to our 2.4, Table 2) even though the force field and overall protocol seemed
similar [49]. The root mean square difference (RMSD) between the two data sets for
dry octanol was 2.3 (our sqosi vs REF07 from Ref. [49]) with a similar RMSD of
2.4 for wet octanol (6nmtt vs REF02) as shown in Figure S5 in the Supplementary
Information. (Işık et al [49] discussed a comparison between the different simulations
in more detail and concluded that octanol equilibration period, assignment of charges
to carboxylic acids, and also tautomer selection all contributed to different results.)

One major difference between the protocols appeared to be that the Mobley group
followed their own best practices and eliminated any non-equilibrated region of the
trajectories [43], which was particularly important for the octanol simulations [49].
We therefore discarded the first 1 ns of all trajectories as equilibration and re-computed
all free energies and logPow from the data at 1–5 ns in each FEP window. Comparing
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Fig. 3:
〈

∂H
∂λ

〉
time-reversed and time-forward convergence plots for SM14. 3a The

calculated convergence time fraction Rc was 0.05, indicating a well equilibrated win-
dow. 3b The calculated Rc was 0.89, indicating that this window was not well equili-
brated.

the RMSE for using all data (0–5 ns) with the equilibrated (1–5 ns) values showed that
leaving out the first nanosecond lead to a large improvement for the GAFF results,
which decreased by 0.84 log units to 1.53 for dry octanol and by 0.55 log units to 1.71
for wet octanol (Table 2). The improvement for OPLS-AA (LigParGen) was modest
(decreased by 0.19 and 0.18), about within uncertainties for OPLS-AA (mol2ff) and
CGenFF, where it marginally worsened the RMSE by 0.09.

Because of the large improvement in the RMSE for the GAFF simulations we
sought to assess equilibration behavior. As an example we investigated SM14 for
which omitting the equilibration improved agreement with experiment by about 1.5
log units. Time-reversed convergence plots [43, 50] were used to determine the non-
equilibrated region in each λ window. We calculated the time-forward average and
time-reversed average of ∂H

∂λ
by〈
∂H

∂λ

〉
t
=

t
T

t

∑
t ′=0

∂H

∂λ

∣∣∣∣
t ′

(13)〈
∂H

∂λ

〉
−t

=
t
T

T

∑
t ′=T−t

∂H

∂λ

∣∣∣∣
t ′

(14)

For a simulation with a time length of T , the convergence time tc was defined as
the smallest time t for which both the forward and the reverse average were within
ε = 1 kJ/mol of the value computed over all T ,

tc = argmin
t

(∣∣∣∣〈∂H

∂λ

〉
t
−
〈

∂H

∂λ

〉
T

∣∣∣∣< ε ∧
∣∣∣∣〈∂H
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〉
−t
−
〈

∂H

∂λ

〉
T

∣∣∣∣< ε

)
.

(15)
For example, Figure 3a shows an example where the forward and reverse averages
rapidly approach the ε band around the final average, which is indicative of rapid
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Fig. 4: Cumulative distribution functions C (Rc) of the convergence time fraction Rc
for Coulomb and VDW λ windows from all data (0–5 ns) (dashed lines) and data
with the first 1 ns discarded as equilibration (1–5 ns) (solid lines) for SM14 (GAFF).

equilibration. On the other hand, Figure 3b shows an example that is poorly equili-
brated because forward and reverse averages only come close near the very end of
the simulation time.

To make the time point of convergence easily comparable, we defined the conver-
gence time fraction Rc as

Rc =
tc
T
. (16)

Rc denotes the fraction of the simulation time from which on the system appears to be
equilibrated, with Rc = 0 indicating the system is well equilibrated at the beginning,
and Rc = 1 that the whole trajectory is not equilibrated.

Using Rc as a measure of convergence, we analyzed the complete set of λ win-
dows for SM14 by computing Rc(λ ) for each window and then plotting a cumulative
probability distribution function C (Rc) = P

(
Rc(λ ) ≤ Rc

)
of these values, which

measures what fraction of windows has at least the given Rc. For a perfectly equili-
brated FEP calculation, C (Rc) resembles a unit step function near Rc = 0 because all
windows have Rc(λ ) ≈ 0. For a poorly equilibrated calculation, C (Rc) rises steeply
near Rc = 1.

The cumulative distributions of the convergence time fractions, C (Rc), of all
Coulomb and VDW windows from the whole data (all data, 0–5 ns) for SM14 and
GAFF showed that the water simulations equilibrated much faster than the dry and
the wet octanol simulations (Figure 4). This behavior was particularly apparent for
the Coulomb part of the calculation. The data discarding the first 1 ns (reduced data,
1–5 ns) showed the same trends, with water simulations reaching equilibrium after
about 20% of the simulation time (Figure 4). Discarding the first 1 ns as equilibration
improved the equilibration behavior of the Coulomb part of the octanol simulations as
shown by the “1–5 ns” C (Rc) graph (solid line) emerging above the “0–5 ns” graph
in Figure 4. Despite this improvement, overall convergence of the octanol simulation
windows remained poor.
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Table 3: Equilibration ratio Ac of all data (0–5 ns) and reduced
data (1–5 ns) for SM14 (GAFF), separated by FEP Coulomb
and VDW windows.

Water Dry Octanol Wet Octanol
Coulomb VDW Coulomb VDW Coulomb VDW

0–5 ns 0.95 0.90 0.44 0.51 0.27 0.66
1–5 ns 0.95 0.93 0.51 0.57 0.54 0.58

Instead of using visual comparison of C (Rc) graphs, we sought to define a quan-
titative quality measure for the convergence of a whole set of λ windows in the form
of a single number. The area Ac under the cumulative distribution C (Rc),

Ac =
∫ 1

0
C (Rc)dRc, (17)

turned out to be a suitable quantity with a simple interpretation. Ac is a number be-
tween 0 and 1 because it is based on a cumulative probability function (monotonically
increasing from 0 to 1) that is integrated over the range 0 to 1. Ac can be interpreted
as the ratio of the equilibrated simulation time to the whole simulation time for a
set of simulations. Ac = 1 means that all simulation time frames in all windows can
be considered equilibrated (with the meaning of Eq. 15), while Ac = 0 indicates that
nothing is equilibrated.

For example, the equilibration ratios Ac of all Coulomb and VDW windows from
both all data and reduced data for SM14 (Table 3) showed that over 90% of the
sampled time of water simulations was equilibrated. One the other hand, the dry and
the wet octanol simulations only had Ac ranging from 0.27 to 0.66, again indicating
poorly equilibrated octanol simulations.

Although dry octanol and wet octanol results indicated a lack of equilibration in
both data sets for SM14, discarding the first nanosecond improved the convergence
behavior of the Coulomb part. Specifically, Ac for the Coulomb windows in dry oc-
tanol improved from 0.44 to 0.51 and from 0.27 to 0.54 for wet octanol (Table 3). For
the wet octanol VDW simulations, discarding data slightly worsened equilibration as
seen in the equilibration ratio decrease from 0.66 to 0.68. Nevertheless, for all other
windows, discarding the initial part of the windows improved Ac (Table 3).

To test whether Ac could describe the equilibration of the simulations, we ran
longer FEP simulations for SM14 (GAFF) using a protocol with one initial 100 ns
NPT equilibrium simulation and 50 ns production simulations for each window. As
expected, the ten-fold longer simulation time improved convergence in all cases, with
the largest increase in Ac for the wet octanol Coulomb windows from 0.27 to 0.69
(Figure S4 and Table S3 in the Supplementary Information).

The picture across the whole data set of GAFF simulations was not as striking as
for SM14 although discarding the first nanosecond also improved Ac for the octanol
simulations from 0.44 to 0.46 (dry) and 0.40 to 0.47 (wet), as shown in Table S2 and
Figure S3 in the Supplementary Information. For almost all force fields, the reduced
data showed better equilibration ratios than the 0–5 ns data, with the occasional small
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decrease by up to 0.02. The OPLS-AA (LigParGen) simulations were the only ones
with exceptional behavior in that the reduced simulations had a markedly decreased
water Coulomb Ac from 0.85 to 0.76 but a substantially increased octanol Coulomb
Ac from 0.27 to 0.49 (dry) and 0.35 to 0.42 (wet).

These data suggested an overall improvement in convergence due to discarding an
initial equilibration phase in each λ -window, so we decided to take equilibration into
account, in line with FEP best practices [43]. For simplicity, we applied the 1 ns equi-
libration time to all data sets; in the future, this could certainly be optimized for indi-
vidual data sets, using, for instance Ac (Eq. 17). (We also attempted to use the equilib-
rium detection algorithm [44] as implemented in alchemlyb’s preprocessing.subsampling.equilibrium_detection()
function but did not manage to obtain consistent and robust results for the equilibra-
tion period.)

3.3 Predicted partition coefficients

For all eleven molecules (Figure 1), absolute solvation free energy calculations were
carried out using topologies generated with standard OPLS-AA atom types with
fixed charges (referred to as OPLS-AA (mol2ff) or simply OPLS-AA), OPLS-AA
with variable 1.14*CM1A charges (OPLS-AA (LigParGen) or just LigParGen), and
AMBER/GAFF (GAFF). CHARMM/CGenFF (CGenFF) topologies for eight of the
eleven molecules were used to calculate solvation free energies; three halogen-containing
molecules were omitted as explained in Methods (Section 2.1). We included the
CGenFF results for the eight compounds because when we calculated the RMSE
for the other three force fields for the same eight compounds as for CGenFF (Sup-
plementary Table S8), the difference compared to calculating it over all eleven values
(Table 2) was small.

As the effect of equilibration was sizable and the preliminary analysis in terms of
Ac (Eq. 17) indicated systematic improvements, we decided to treat the first 1 ns as
equilibration for all data sets. Thus, the following detailed results for logPow differ
from the submitted results in that (1) a 1 ns equilibration time was discarded for each
FEP window and (2) the free energies were calculated with the MBAR estimator.

The predictions were compared to the experimental values, with a summary for
all eight data sets shown in Table 2. In addition to RMSE, AUE, and ME, the Pearson
correlation coefficient and the Kendall rank correlation coefficients were calculated,
although the sample size might not be big enough to adequately capture the statistics.
In the following we discuss in more detail the individual data sets, sorted by force
field parametrization.

3.3.1 OPLS-AA (MOL2FF)

OPLS-AA with transferable charges did not perform well. The RMSE was 2.79±
0.05 for dry octanol and 2.72± 0.05 for wet octanol (Table 4). The correlation be-
tween experimental and computed values in Figure 5 showed none of the compounds
were within one log unit, most were off by 2 to 3 log units, with SM08 off by 5 log
units. The Pearson correlation coefficients r for the dry and the wet calculations were
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Fig. 5: Correlation between experimental and computed octanol-water coefficients
logPow for simulations performed with dry or wet octanol with OPLS-AA (mol2ff)
parameters. The gray band indicates ±1 log-units from ideal correlation, shown by
the dashed line. The root mean square error (RMSE), the absolute unsigned error
(AUE), and the (signed) mean error (ME) are indicated. Error bars represent the error
in the experiments or the error on the mean, derived from the simulations.

0.41 and 0.49 (with r = 1 indicating perfect correlation, 0 no correlation, and−1 per-
fect anticorrelation), summarizing the moderate success in quantitatively predicting
logPow. The Kendall rank correlation coefficient τ was computed to evaluate the abil-
ity to rank-order the data; a value of τ = 1 indicates that the simulations predict the
same ranking of compounds by logPow as the experimental data whereas if the rank-
ings were completely reversed τ would obtain the value −1 and if the simulations
produced random results, a value close to 0 would be expected. The dry octanol data
yielded τ = 0.60, better than the value of 0.38 for the wet octanol predictions. The dry
octanol simulations were moderately successful at rank-ordering compounds, while
the wet octanol ones did not perform well.

The AUE (2.61) was the same as the absolute value of ME for both the dry and
wet octanol, which corresponds to the visual inspection of the correlation plot (Fig-
ure 5) that all the prediction were larger than the experimental values. If we corrected
our results by shifting the values by the ME, then the shifted dry octanol data would
have had an RMSE of 0.97 instead of 2.79; the shifted wet octanol data would have
had an RMSE of 0.78 instead of 2.72, which would have constituted a dramatic im-
provement.

Overall, these results suggested a systematic error in OPLS-AA calculations that
overestimated the logPow. As in our previous work on cyclohexane distribution co-
efficients [8] (and unpublished data) we suspect that the primary problem lies with
the hydration free energy calculations, which are too positive, i.e., the molecules are
under-solvated in water.
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Table 4: Computed (logPow) and experimental (logPexp
ow )

octanol-water partition coefficients with error estimate for
the OPLS-AA (mol2ff) results processed with ALCHEMLYB-
MBAR. The same raw data processed with MDPOW-TI (Simp-
son’s rule) were submitted as entries cp8kv (Protocol Dry) and
623c0 (Protocol Wet), see Table S4 in the Supplementary In-
formation

id Exp. Dry Octanol Wet Octanol
logPexp

ow logPow ∆ a logPow ∆ a

SM02 4.09(3) 5.46(21) 1.37(21) 5.93(16) 1.84(16)
SM04 3.98(3) 6.12(13) 2.14(13) 7.31(14) 3.33(14)
SM07 3.21(4) 5.34(14) 2.13(14) 4.97(13) 1.76(13)
SM08 3.1(3) 8.54(20) 5.44(20) 7.18(20) 4.08(20)
SM09 3.03(7) 5.4(16) 2.37(17) 4.82(20) 1.79(21)
SM11 2.1(4) 4.99(15) 2.89(15) 5.06(13) 2.96(13)
SM12 3.83(3) 6.35(17) 2.52(17) 5.77(21) 1.94(21)
SM13 2.92(4) 5.24(18) 2.32(18) 5.11(18) 2.19(18)
SM14 1.95(3) 4.53(12) 2.58(12) 4.99(12) 3.04(12)
SM15 3.07(3) 5.73(14) 2.66(14) 5.3(15) 2.23(15)
SM16 2.62(1) 4.93(23) 2.31(23) 6.18(19) 3.56(19)
RMS Error (RMSE)b 2.79(5) 2.72(5)
Absolute Unsigned Error (AUE) 2.61(5) 2.61(5)
Mean Error (ME) 2.61(5) 2.61(5)

a The difference ∆ (Eq. 8a) between experimental and computed octanol-water
partition coefficients is shown for each compound. The standard error of the
mean in the last significant digits is given in parentheses (Eq. 8b).
b The root mean square error (RMSE), the absolute unsigned error (AUE), and
the signed mean error (ME) were calculated according to Eqs. 9–11.

3.3.2 OPLS-AA (LigParGen)

OPLS-AA with non-transferable charges performed somewhat better than OPLS-AA
with transferable charges, although the same tendencies remained: The RMSE was
1.71±0.07 for the dry octanol and 1.62±0.07 for wet octanol (Table 5). An improve-
ment of about 0.2 log units in RMSE was obtained by removing the equilibrium part.
While a few compounds such as SM14 and SM15 were within one log unit, most
were off by 1 to 2.5 log units (Figure 6). The Pearson correlation coefficients r for
the dry and the wet calculations were 0.78 and 0.60, summarizing the moderate suc-
cess in quantitatively predicting logPow. The dry octanol data yielded the Kendall
rank correlation coefficient τ = 0.64, slightly better than the value of 0.56 for the
wet octanol predictions. Both the dry and wet octanol simulations were moderately
successful at rank-ordering compounds.

Similar to the OPLS-AA (mol2ff) results, the AUE (1.57 for dry and 1.51 for
wet) was the same as the absolute value of ME for both the dry and wet octanol,
which again indicated a systematical shift in the calculated results. Shifting the val-
ues by the ME would have improved the dry octanol RMSE to 0.68 instead of 1.71
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Fig. 6: Correlation between experimental and computed octanol-water coefficients
logPow for simulations performed with dry or wet octanol with OPLS-AA (LigPar-
Gen) parameters.

and wet octanol RMSE to 0.59 instead of 1.61, which would have been a 1-log-unit
improvement.

Compared to OPLS-AA with transferable charges, OPLS-AA with non-transferable
CM1A charges produced a better prediction but still suffered from a large systematic
error, likely related to hydration. It appears that sacrificing the transferability of the
original OPLS-AA atom types can buy moderately higher accuracy at the cost of
having to parameterize the charges for every single molecule.

3.3.3 GAFF

As mentioned before, the GAFF parametrization benefited most from implementing
the equilibration preprocessing, which turned the poor initial GAFF accuracy into
a reasonably good one, by lowering the RMSE by 0.84 log units. The RMSE was
1.52±0.08 for the dry octanol and 1.71±0.08 for wet octanol (0.55 lower) (Table 6).
In Figure 7, several compounds like SM11, SM14 and SM15 were within one log
unit, most of the other compounds were off by 1 to 2 log units, with SM13 as far
as 3.6. The Pearson correlation coefficients r for the dry and the wet calculations
were 0.80 and 0.71, showing a better ability to quantitatively predict logPow. The
Kendall rank correlation coefficient for the dry octanol simulations was 0.53, slightly
worse than the wet octanol predictions with τ = 0.59. Both the dry and wet octanol
simulations were moderately successful at rank-ordering compounds.

Similar to both OPLS-AA results, the AUE (1.28 for dry and 1.48 for wet) was
the same as the absolute value of ME for both the dry and wet octanol, which also
indicated a systematical error in the calculated results. After subtracting the ME from
the results, the dry octanol data would have had an RMSE of 0.83 instead of 1.52;
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Table 5: Computed (logPow) and experimental (logPexp
ow )

octanol-water partition coefficients with error estimate for the
OPLS-AA (LigParGen) results processed with ALCHEMLYB-
MBAR. The same raw data processed with MDPOW-TI (Simp-
son’s rule) were submitted as entries eufcy (Protocol Dry) and
mwuua (Protocol Wet), see Table S5 in the Supplementary In-
formation

id Exp. Dry Octanol Wet Octanol
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 5.47(28) 1.38(28) 6.0(30) 1.91(30)
SM04 3.98(3) 5.77(23) 1.79(23) 5.01(17) 1.03(17)
SM07 3.21(4) 5.14(20) 1.93(20) 4.43(18) 1.22(18)
SM08 3.1(3) 5.15(20) 2.05(20) 5.45(22) 2.35(22)
SM09 3.03(7) 4.36(24) 1.33(25) 4.64(30) 1.61(30)
SM11 2.1(4) 4.62(20) 2.52(20) 4.31(18) 2.21(18)
SM12 3.83(3) 5.72(17) 1.89(17) 4.47(22) 0.64(22)
SM13 2.92(4) 5.13(27) 2.21(27) 3.67(22) 0.75(22)
SM14 1.95(3) 1.94(18) −0.01(18) 4.09(17) 2.14(17)
SM15 3.07(3) 3.85(14) 0.78(14) 4.03(18) 0.96(18)
SM16 2.62(1) 4.03(22) 1.41(22) 4.36(18) 1.74(18)
RMS Error (RMSE) 1.71(7) 1.62(7)
Absolute Unsigned Error (AUE) 1.57(7) 1.51(7)
Mean Error (ME) 1.57(7) 1.51(7)

the wet octanol data would have had an RMSE of 0.86 instead of 1.71, resulting in a
0.8-log-unit improvement.

Our calculations showed a systematic error in our GAFF calculations but it is
not clear that it has the same basis as the one for OPLS-AA. For OPLS-AA we can
draw on other data for the hypothesis that water-solute interactions might be at the
core of the problem. For GAFF we do not have the same data available but future
analysis of our data in the context of other SAMPL6-logP submissions might indicate
problematic areas. Nevertheless, the overall performance of GAFF, especially after
equilibration, was reasonably good.

3.3.4 CGenFF

The compounds SM04, SM12 and SM16 contained halogens with lone pairs and
could therefore not be processed with the cgenff_charmm2gmx.py script so that
we were not able to obtain Gromacs CGenFF parameters (see Section 2.1). Hence
we excluded these three compounds and only report results for the remaining eight
compounds.

The CGenFF results were qualitatively different from the OPLS-AA and AM-
BER/GAFF results in almost all aspects: The RMSE was 1.17±0.06 for the dry oc-
tanol and 1.42±0.06 for wet octanol (Table 7), and removing the equilibration period
showed no improvement. This behavior could indicate that the CGenFF simulations
equilibrated faster or that the set-up protocol prepared them in a state closer resem-
bling equilibrium. Either way, one of our lessons of this study is that careful analysis
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Fig. 7: Correlation between experimental and computed octanol-water coefficients
logPow for simulations performed with dry or wet octanol with GAFF parameters.

Table 6: Computed (logPow) and experimental (logPexp
ow )

octanol-water partition coefficients with error estimate for the
GAFF results processed with ALCHEMLYB-MBAR. The same
raw data processed with MDPOW-TI (Simpson’s rule) were sub-
mitted as entries sqosi (Protocol Dry) and 6nmtt (Protocol
Wet), see Table S6 in the Supplementary Information

id Exp. Dry Octanol Wet Octanol
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 5.54(20) 1.45(20) 5.75(19) 1.66(19)
SM04 3.98(3) 6.03(22) 2.05(22) 5.66(18) 1.68(18)
SM07 3.21(4) 4.37(27) 1.16(27) 4.55(23) 1.34(23)
SM08 3.1(3) 5.41(28) 2.31(29) 4.55(21) 1.45(21)
SM09 3.03(7) 3.79(24) 0.76(25) 4.74(24) 1.71(25)
SM11 2.1(4) 2.15(25) 0.05(25) 2.99(28) 0.89(28)
SM12 3.83(3) 5.0(19) 1.17(19) 5.24(23) 1.41(23)
SM13 2.92(4) 5.5(21) 2.58(21) 6.6(31) 3.68(31)
SM14 1.95(3) 2.32(21) 0.37(21) 2.62(26) 0.67(26)
SM15 3.07(3) 3.27(18) 0.20(18) 3.13(23) 0.06(23)
SM16 2.62(1) 4.56(31) 1.94(31) 4.3(36) 1.68(36)
RMS Error (RMSE) 1.52(8) 1.71(8)
Absolute Unsigned Error (AUE) 1.28(7) 1.48(8)
Mean Error (ME) 1.28(7) 1.48(8)

of convergence should be carried out regardless of the force field. In Figure 8, about
half of the compounds were within one log unit, with the others off by 1 to 2.5. The
Pearson correlation coefficients r for the dry and the wet calculations were 0.27 and
0.16. The dry octanol data yielded a Kendall rank correlation coefficient τ = 0.29,
and the value for the wet octanol predictions was 0.07. These coefficients indicated a
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logPow for simulations performed with dry or wet octanol with CGenFF parameters.

poor ability rank-ordering the data although eight samples might not be enough to ob-
tain reasonable results from these correlation analysis tools. Different from previous
results, no systematic shift in the CGenFF results was observed from the AUE (0.91
for dry and 1.05 for wet) and the absolute value of ME (−0.32 for dry and −0.10 for
wet).

In terms of RMSE, the CGenFF parametrization produced the best result. This
remained true when the RMSEs for the other three parametrizations were also only
calculated for the eight compounds for which CGenFF data were available (Supple-
mentary Table S8). However, eight data points might not be enough to properly assess
the true accuracy, as indicated by the poor Pearson and Kendall coefficients.

It is encouraging that CGenFF did not exhibit an obvious systematic shift, which
suggested that the observed shift for OPLS-AA and GAFF was not an inherent prob-
lem in our FEP protocol but was more closely tied to the specific force field imple-
mentation (including the water model). The use of different water models in simu-
lations with OPLS-AA (TIP4P) on the one hand, and GAFF or CGenFF (TIP3P) on
the other, could contribute to the differences that we observed in our predictions. As
noted previously [51, 52], TIP3P has a lower dielectric constant than TIP4P and this
could give rise to lower hydration free energies compared to TIP4P. More generally,
the OPLS-AA and AMBER/GAFF (and to some degree CHARMM/CGenFF) force
fields are known to be underpolarized [53, 54], which also leads to systematically too
positive hydration free energies for small molecules [54].

3.4 Effect of tautomers

For SM08 we originally chose and submitted micro010 (SM08_10), based on the
assumption that the aromaticity of the pyridine ring with the potential hydrogen bond
of the hydroxyl with the carboxylate would make it the most stable one. However,
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Table 7: Computed (logPow) and experimental (logPexp
ow )

octanol-water partition coefficients with error estimate for the
CGenFF results processed with ALCHEMLYB-MBAR. The
same raw data processed with MDPOW-TI (Simpson’s rule)
were submitted as entry 3oqhx for Protocol Dry (protocol Wet
was not submitted), see Table S7 in the Supplementary Infor-
mation

id Exp. Dry Octanol Wet Octanol
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 2.74(20) −1.35(20) 3.39(19) −0.70(19)
SM07 3.21(4) 1.37(15) −1.84(15) 0.88(18) −2.33(18)
SM08 3.1(3) 5.19(21) 2.09(21) 5.69(19) 2.59(19)
SM09 3.03(7) 3.32(16) 0.29(17) 3.09(20) 0.06(21)
SM11 2.1(4) 1.95(20) −0.15(20) 3.14(17) 1.04(17)
SM13 2.92(4) 2.24(21) −0.68(21) 3.0(19) 0.08(19)
SM14 1.95(3) 1.9(23) −0.05(23) 1.92(21) −0.03(21)
SM15 3.07(3) 2.22(21) −0.85(21) 1.52(17) −1.55(17)
RMS Error (RMSE) 1.17(6) 1.42(6)
Absolute Unsigned Error (AUE) 0.91(6) 1.05(6)
Mean Error (ME) −0.32(6) −0.10(6)
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Fig. 9: Chemical structures of the three microstates of compound SM08 evaluated in
this study.

contrary to our chemical intuition, the ground state energies from quantum chemical
optimization calculations with the CPCM continuous water model [9] showed that
micro011 (Figure 9) seemed to be the most stable (about 6 kcal/mol lower than mi-
cro010). In the same conditions, the zwitterionic micro008 (Figure 9) was about 3.5
kcal/mol more stable than micro010. We therefore also computed the octanol-water
coefficients for micro008 (SM08_08) and micro011 (SM08_11) (Figure 9). The
results in Table 8 indicated that micro011 gave closer predictions to the experimen-
tal values for both dry and wet octanol with the four parametrization methods with
a 0.2 to 1 log unit improvement in the RMSE, while were unable to reproduce the
experimental values with micro008.

These tautomer calculations indicated that the choice of tautomer could have a
large effect on calculated logPow values. However, from this single example it was
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Table 8: Computed (logPow) and experimental (logPexp
ow ) octanol-water partition

coefficients with error estimate for the three microstates of compound SM08.

id Exp. Dry Octanol Wet Octanol Parametrization
logPexp

ow logPow ∆ logPow ∆

SM08_08 3.1(3) −1.8(83) −4.90(83) 1.0(56) −2.10(56) OPLS-AA
SM08_08 3.1(3) 1.05(39) −2.05(39) 3.2(43) 0.10(43) LigParGen
SM08_08 3.1(3) 4.31(44) 1.21(44) 4.64(32) 1.54(32) GAFF
SM08_08 3.1(3) −0.78(85) −3.88(85) 1.6(43) −1.50(43) CGenFF
SM08_10 3.1(3) 8.54(20) 5.44(20) 7.18(20) 4.08(20) OPLS-AA
SM08_10 3.1(3) 5.15(20) 2.05(20) 5.45(22) 2.35(22) LigParGen
SM08_10 3.1(3) 5.41(28) 2.31(29) 4.55(21) 1.45(21) GAFF
SM08_10 3.1(3) 5.19(21) 2.09(21) 5.69(19) 2.59(19) CGenFF
SM08_11 3.1(3) 6.58(21) 3.48(21) 6.55(23) 3.45(23) OPLS-AA
SM08_11 3.1(3) 4.03(24) 0.93(24) 4.48(28) 1.38(29) LigParGen
SM08_11 3.1(3) 3.53(39) 0.43(39) 5.01(17) 1.91(17) GAFF
SM08_11 3.1(3) 4.11(33) 1.01(33) 5.59(21) 2.49(21) CGenFF

not clear that the quantum chemical calculations in implicit solvent provided the cor-
rect free energy differences between tautomers that would allow one to calculate
the proper statistical mechanical average over all tautomer free energies [9]. Clearly,
more work is needed to establish a consistent protocol that takes all important tau-
tomers into consideration.

4 Conclusions

We used explicit solvent all-atom MD simulations using four different force field
parametrizations (standard OPLS-AA with transferable charges, OPLS-AA with non-
transferable CM1A charges, AMBER/GAFF, and CHARMM/CGenFF) to predict
water-octanol partition coefficients for the eleven compounds included in the SAMPL6-
logP challenge. Force field parameters of the octanol solvent in OPLS-AA, GAFF
and CHARMM were validated by comparing computed against experimental values,
namely the density as a function of temperature, the hydration free energy, the chem-
ical potential, and the octanol-water partition coefficient. The partition coefficients
for the SAMPL6-logP compounds were calculated from the solvation free energy
of compounds in water and pure (dry) octanol or wet octanol with 27 mol % water
dissolved. We used 5-ns windowed alchemical free energy perturbation calculations
to compute absolute solvation free energies with thermodynamic integration (TI) and
the multistate Bennett acceptance ratio (MBAR) (from the ALCHEMLYB library) with
uncorrelated samples from the MD simulations.

An important lesson was that an initial equilibration period can have a large ef-
fect on the accuracy and we introduced a new quantity, the equilibration ratio Ac,
to assess equilibration of sets of alchemical λ windows. Discarding the first 1 ns of
each 5-ns window as an equilibration phase improved the RMSE of the GAFF logPow
predictions by up to 0.8 log units. The improved accuracy was due to improved con-
vergence in the Coulomb FEP windows with the octanol solvent. Equilibration (and
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sampling) of the octanol simulations appeared to be more demanding than the water
simulations.

Overall, CGenFF gave the best prediction with RMSE 1.2 log units although only
for a partial data set of eight compounds and with relatively low Pearson correla-
tion coefficient. When considering all eleven compounds, GAFF gave a respectable
RMSE of 1.5. The GAFF and OPLS-AA results displayed a systematic error where
molecules were too hydrophobic whereas CGenFF appeared to be more balanced, at
least on this small data set. For OPLS-AA this error is possibly related to under-
solvation; for GAFF its origin remains speculative although both force fields are
known to be underpolarized. Sufficient sampling appears to be especially important
for the octanol simulations whereas the force field accuracy appears the remaining
challenge for the hydration simulations. Thus, logP calculations represent a well-
balanced challenge for moving the field of molecular simulations forward.
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1 Solvent validation

The parametrization of octanol was validated by computing the density as a function
of temperature, ρ(T ), from MD simulations and comparison to experimental densi-
ties. Table S1 explicitly lists the computed values and compared to an average over
different experimental values. The relative error to the experiment ρsim/ρexp −1 was
below 4% at 298 K and 323 K and below 6% at 373 K. The only exception was the
density for wet octanol at 273 K with OPLS-AA, which increased by 11%, because
the mixture undergoes a freezing transition.

2 Estimator comparison

In our previous work [1–3] we used the TI estimator in MDPOW to calculate free ener-
gies. With the recent 0.3.0 release of alchemlyb, this library has matured sufficiently
for production use and we wanted to compare if the MDPOW-TI estimator and the
ALCHEMLYB estimators gave comparable results.
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Table S1: Density of octanol as a function of temperature.

Parametrization Octanol T (K) ρexp (g·cm−3) a ρsim (g·cm−3) b rel.error c

OPLS-AA dry 273 0.8383(10) 0.8359(44) -0.3
dry 298 0.8220(10) 0.8080(49) -1.7
dry 323 0.8068(26) 0.7822(53) -3.0
dry 348 0.7862(1) 0.7556(60) -3.9
dry 373 0.7697(33) 0.7274(68) -5.5
wet 273 0.8383(10)
wet 298 0.8220(10)
wet 323 0.8068(26)
wet 348 0.7862(1)
wet 373 0.7697(33)

GAFF dry 273 0.8383(10) 0.8214(41) -2.0
dry 298 0.8220(10) 0.7989(46) -2.8
dry 323 0.8068(26) 0.7757(50) -3.8
dry 348 0.7862(1) 0.7515(56) -4.4
dry 373 0.7697(33) 0.7258(62) -5.7
wet 273 0.8383(10)
wet 298 0.8220(10)
wet 323 0.8068(26)
wet 348 0.7862(1)
wet 373 0.7697(33)

CGenFF dry 273 0.8383(10) 0.8040(61) -4.1
dry 298 0.8220(10) 0.7902(66) -3.9
dry 323 0.8068(26) 0.7772(71) -3.7
dry 348 0.7862(1) 0.7645(74) -2.8
dry 373 0.7697(33) 0.7460(70) -3.1
wet 273 0.8383(10)
wet 298 0.8220(10)
wet 323 0.8068(26)
wet 348 0.7862(1)
wet 373 0.7697(33)

a Experimental density values for dry octanol were calculated by averaging the experimen-
tal values at the same temperature. Errors were estimated as the standard deviation of the
mean. b The simulated density was calculated from ρ =m/V , where m was the total mass
of the system and the volume V was the average volume of a 100 ns length simulation at
the given temperature. The error was estimated from the error propagation ∆ρ = m∆V

V 2 and
represents one standard deviation from the mean. c The relative error to experiment was
calculated as ρsim/ρexp −1.

Figure S1 shows that all three estimators give similar values for the logPow when
provided with all the data, i.e., without decorrelation preprocessing. The root mean
square difference (RMSD) over the whole data set for two estimators A and B

RMSD(A,B) =

√
N−1

N

∑
i=1

(
A[logP(i)

ow ]−B[logP(i)
ow ]
)2

(S1)

should ideally be 0, thus indicating that the two estimators give exactly the same
answer for each molecule. As shown in the annotations in Figure S1, the difference
between the estimators is typically about 0.1 log units and only for the OPLS-AA
(LigParGen) it rises to 0.21 when comparing MDPOW-TI to MBAR (Figure S1b).
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Fig. S1: Comparison between the MDPOW-TI estimator and the ALCHEMLYB-TI or -
MBAR estimators. Octanol-water coefficients logPow for simulations with dry or wet
octanol were calculated with the MDPOW-TI estimator as in our previous work and
compared to the ALCHEMLYB estimators. Data from all trajectory frames were used
without any subsampling. The root mean square differences (RMSD) over the whole
data set for the different combination of estimators are shown in the upper left hand
corner. A value of 0 indicates that the two estimators give exactly the same answer
for each molecule.

The major (expected) difference is that the MDPOW-TI estimator gives realistic
error bars even when working with correlated data because it decorrelates data for
its error estimation [1] (as seen in the figures) whereas ALCHEMLYB-TI and -MBAR
require decorrelated data for their error estimates and produce unrealistically small
error bars otherwise.

3 Analysis of convergence

Equations 15 and 16 in the main paper defined the “converged fraction” Rc of a FEP
trajectory where Rc = 0 indicates that the whole trajectory can be used to estimate
the free energy whereas Rc = 1 indicates that no parts of the trajectory are likely to
give reliable estimates.

While the interpretation of Rc = 0 is clear, it might not be obvious that a high Rc
reliably indicates poor convergence. Its value might fluctuate considerably because
there is only one way in which a simulation can be converged but a multitude of ways
in which it can fail to converge. Although we did not have independent statistical
repeats to investigate the distribution of Rc for the same λ , anecdotal evidence such



4 Shujie Fan et al.

0.0 0.2 0.4 0.6 0.8 1.0
fraction of simulation time

40

50

60

70

80

 (k
J/m

ol
)

forward
reverse

S2a octanol, λCoul = 0 and λvdW = 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of simulation time

10

20

30

40

50

 (k
J/m

ol
)

forward
reverse

S2b octanol, λCoul = 0.25 and λvdW = 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of simulation time

10

5

0

5

10

15

20

25

30

 (k
J/m

ol
)

forward
reverse

S2c octanol, λCoul = 0.375 and λvdW = 0

Fig. S2:
〈

∂H
∂λ

〉
time-reversed and time-forward convergence plots for SM14. All of

them showed poor convergence. S2a The calculated Rc is 0.95. S2b The calculated
Rc is 0.92. S2c The calculated Rc is 0.93.

as the one in Fig. S2 for different λ windows showed that trajectories that converge
poorly in different ways all produce Rc > 0.9.

3.1 Analysis of all simulations for all force fields

Similar to the results for SM14 in the main paper, the cumulative distributions of
the convergence time fractions C (Rc) of all Coulomb and VDW windows for all
molecules from the whole data (all data, 0–5 ns) with OPLS-AA, LigParGen, GAFF
and CGenFF parameters showed that the water simulations equilibrated much faster
than the dry and the wet octanol simulations (Figure S3). No obvious improvement in
the reduced data was observed in OPLS-AA (mol2ff), GAFF and CGenFF results. For
OPLS-AA (LigParGen), discarding data worsened equilibration for Coulomb win-
dows for water simulations and improved equilibration for Coulomb windows for
dry and wet octanol windows.
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Fig. S3: Cumulative distribution functions C (Rc) of Rc for Coulomb and VDW λ

windows from all data (0–5 ns) (dashed lines) and data with the first 1 ns discarded as
equilibration (1–5 ns) (solid lines) for all molecules with OPLS-AA (mol2ff), OPLS-
AA (LigParGen), GAFF and CGenFF parameters.

To quantify the difference, we calculated the overall equilibrated ratios Ac of all
Coulomb and VDW windows for all molecules from both all data and reduced data
for all parameters (Table S2). Discarding the first 1 ns slightly improved the equili-
bration of Coulomb windows for OPLS-AA (mol2ff) and GAFF. Corresponding to
the cumulative distributions of LigParGen results, the equilibrated ratio decreased by
0.09 for the 1–5 ns data for Coulomb windows of water simulations and increased by
0.22 and 0.07 for the 1–5 ns data for dry and wet octanol simulations. There was no
overall trend or difference larger than 0.05 observed in CGenFF results.

Table S2: Overall equilibrated ratio Ac of all data (0–5 ns) and reduced data
(1–5 ns) Coulomb and VDW windows of all data and reduced data for all
molecules.

Parametrization data set Water Dry Octanol Wet Octanol
Coulomb VDW Coulomb VDW Coulomb VDW

OPLS-AA 0–5 ns 0.93 0.82 0.43 0.55 0.50 0.51
OPLS-AA 1–5 ns 0.94 0.84 0.50 0.52 0.53 0.60
LigParGen 0–5 ns 0.85 0.84 0.27 0.51 0.35 0.56
LigParGen 1–5 ns 0.76 0.84 0.49 0.52 0.42 0.52
GAFF 0–5 ns 0.84 0.85 0.44 0.51 0.40 0.58
GAFF 1–5 ns 0.85 0.86 0.46 0.51 0.47 0.56
CHARMM 0–5 ns 0.96 0.84 0.39 0.51 0.44 0.57
CHARMM 1–5 ns 0.94 0.86 0.37 0.56 0.48 0.55
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Fig. S4: Cumulative distribution functions C (Rc) of Rc for Coulomb and VDW λ

windows from all data (0–5 ns) (dashed lines) and long simulation data (0–50 ns)
(solid lines) for SM14 (GAFF)

3.2 Comparison with long simulation time protocol

To test whether Ac could well describe the equilibration of the simulations, we ran
FEP simulations for SM14 (GAFF) using a protocol with a 100 ns NPT equilibrium
simulation and 50 ns production simulations. As shown in Figure S4, the water simu-
lations equilibrated much faster than the dry and the wet octanol simulations in both
Coulomb and VDW parts for 0–50 ns data, the same as the 0–5 ns data. Ac of dry and
wet octanol simulations for 0–50 ns data showed an overall improvement from 0.17
to 0.42 (Table S3), corresponding to the intuition that longer simulations improved
the equilibrated fraction of the simulations. Removing the first nanosecond from the
50-ns windows (“1–50 ns”) did not improve the equilibration behavior as measured
by Ac as seen in Table S3, possibly because that part of the trajectory only contributed
1/50 to the total.

The computed logPow values for SM14 with 0–50-ns windows were 3.08±0.08
(dry) and 3.09± 0.07 (wet). With discarding the first nanoseconds, these values be-
came 2.78± 0.07 (dry) and 2.98± 0.07 (wet). These numbers agreed less with the
experimental reference value (1.95±0.03) than the calculated ones from the shorter

Table S3: Equilibrated ratio Ac of all data (0–5 ns, 1–5 ns) and
long simulation data (0–50 ns, 1–50 ns) Coulomb and VDW
windows of all data and reduced data for SM14.

Water Dry Octanol Wet Octanol
Coulomb VDW Coulomb VDW Coulomb VDW

0–5 ns 0.95 0.90 0.44 0.51 0.27 0.66
1–5 ns 0.95 0.93 0.51 0.57 0.54 0.58
0–50 ns 1.00 0.95 0.67 0.85 0.69 0.83
1–50 ns 1.00 0.95 0.68 0.84 0.68 0.83
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simulations (2.32± 0.21 and 2.62± 0.26, see Table 6 in the main paper). However,
this value agreed well with the value of 2.8±0.2 by Işık et al [4] (presented in their
Table 5), which they obtained for the same micro state SM14_micro001 with their
indirect solvation-based free energy (IFE) protocol in dry octanol and the GAFF force
field (see also Section 7).

The statistical error estimates from the long uncorrelated data were smaller by
approximately a factor of three compared to the shorter runs. This increase in accu-
racy indicated that relevant system configurations were sampled better, thus leading
to a more consistent free energy estimate.

Both the Ac analysis and the decreased statistical errors indicated that the longer
calculations were better sampled than the shorter ones. Therefore, the better agree-
ment of the shorter simulations with experiments was fortuitous. Future work will
need to pay close attention to equilibration and convergence of individual λ -windows.
The Ac measure might provide a useful tool to decide how far individual FEP sim-
ulation windows would need to be extended to obtain satisfactory convergence, for
example, as part of automated iterative FEP workflows.

4 Comparison of dry and wet octanol simulations

As mentioned in the SAMPL6 log P Challenge Instructions (https://github.com/
samplchallenges/SAMPL6/blob/master/logP_challenge_instructions.md),
the experiments were performed in a phase-separated water/octanol environment but
after mixing, these might not any longer be pure phases. We assumed that the water
phase remained pure without any octanol. For the octanol phase we considered the
pure “dry” octanol phase and the “wet” octanol phase with a mole fraction of 0.2705
water in octanol at 298 K [5].

The difference in logPow between dry and wet simulations was generally within
1 log-unit, as shown in the correlation plots in Figure S5. As described in the main
paper, we did not observe a systematic improvement in logPow prediction by using
wet octanol over the pure phases.

5 Submitted SAMPL6 predictions

Our submitted predictions to the SAMPL6-logP challenge followed the protocol
that we had established for previous SAMPL challenges [1–3]. As part of the post-
analysis stage we implemented a number of improvements and “lessons learned” into
our analysis workflow that improved the agreement between our results and the exper-
imental values. In the main manuscript we discuss these improvements and primarily
present what we consider our current best approach. For completeness, we show the
originally submitted data in Tables S4–S7 together with the SAMPL6 submission IDs
and RMSE, AUE, and ME compared to the experimental values.

https://github.com/samplchallenges/SAMPL6/blob/master/logP_challenge_instructions.md
https://github.com/samplchallenges/SAMPL6/blob/master/logP_challenge_instructions.md
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Table S4: OPLS-AA (mol2ff) logPow results submitted as en-
tries cp8kv (Protocol Dry) and 623c0 (Protocol Wet), and ex-
perimental logPow with error estimate.

id Exp. Protocol Drya Protocol Wet
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 5.69(30) 1.60(30) 5.74(23) 1.65(23)
SM04 3.98(3) 6.67(23) 2.69(23) 6.64(26) 2.66(26)
SM07 3.21(4) 5.19(20) 1.98(20) 4.73(18) 1.52(18)
SM08 3.1(3) 8.55(24) 5.45(24) 7.59(25) 4.49(25)
SM09 3.03(7) 5.69(27) 2.66(27) 4.92(25) 1.89(25)
SM11 2.1(4) 4.96(20) 2.86(20) 4.76(22) 2.66(22)
SM12 3.83(3) 6.2(25) 2.37(25) 5.97(28) 2.14(28)
SM13 2.92(4) 5.55(25) 2.63(25) 5.32(28) 2.40(28)
SM14 1.95(3) 4.21(22) 2.26(22) 4.49(18) 2.54(18)
SM15 3.07(3) 5.72(18) 2.65(18) 5.33(17) 2.26(17)
SM16 2.62(1) 5.4(34) 2.78(34) 6.27(25) 3.65(25)
RMS Error (RMSE) 2.88(7) 2.67(7)
Absolute Unsigned Error (AUE) 2.72(7) 2.53(7)
Mean Error (ME) 2.72(7) 2.53(7)

The difference ∆ between experimental and computed octanol-water distribu-
tion coefficients is shown for each compound. The standard error of the mean
in the last significant digits is given in parentheses. The root mean square error
(RMSE), the absolute unsigned error (AUE), and the signed mean error (ME)
were calculated as described in the Methods in the main paper.

Table S5: OPLS-AA (LigParGen) logPow results submitted as
entries eufcy (Protocol Dry) and mwuua (Protocol Wet), and ex-
perimental logPow with error estimate.

id Exp. Protocol Dry Protocol Wet
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 6.01(40) 1.92(40) 6.26(46) 2.17(46)
SM04 3.98(3) 5.85(34) 1.87(34) 5.39(32) 1.41(32)
SM07 3.21(4) 4.93(26) 1.72(26) 4.53(30) 1.32(30)
SM08 3.1(3) 5.59(28) 2.49(29) 5.59(37) 2.49(37)
SM09 3.03(7) 4.83(42) 1.80(42) 5.24(64) 2.21(64)
SM11 2.1(4) 4.82(32) 2.72(32) 4.61(27) 2.51(27)
SM12 3.83(3) 5.83(26) 2.00(26) 4.61(44) 0.78(44)
SM13 2.92(4) 5.83(47) 2.91(47) 4.23(39) 1.31(39)
SM14 1.95(3) 1.32(28) −0.63(28) 3.82(40) 1.87(40)
SM15 3.07(3) 4.03(31) 0.96(31) 3.99(28) 0.92(28)
SM16 2.62(1) 4.28(32) 1.66(32) 4.67(32) 2.05(32)
RMS Error (RMSE) 1.99(10) 1.83(12)
Absolute Unsigned Error (AUE) 1.88(10) 1.73(11)
Mean Error (ME) 1.77(10) 1.73(11)
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Table S6: GAFF logPow results submitted as entries sqosi (Proto-
col Dry) and 6nmtt (Protocol Wet), and experimental logPow with
error estimate.

id Exp. Protocol Dry Protocol Wet
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 5.32(28) 1.23(29) 5.41(25) 1.32(25)
SM04 3.98(3) 5.9(27) 1.92(27) 5.98(23) 2.00(23)
SM07 3.21(4) 4.8(41) 1.59(41) 5.2(44) 1.99(44)
SM08 3.1(3) 5.88(40) 2.78(40) 4.77(23) 1.67(23)
SM09 3.03(7) 3.97(33) 0.94(33) 4.76(43) 1.73(43)
SM11 2.1(4) 2.25(27) 0.15(27) 3.18(24) 1.08(24)
SM12 3.83(3) 5.16(26) 1.33(26) 5.22(27) 1.39(27)
SM13 2.92(4) 5.95(47) 3.03(47) 6.72(31) 3.80(31)
SM14 1.95(3) 2.53(26) 0.58(26) 3.07(34) 1.12(34)
SM15 3.07(3) 2.99(21) −0.08(21) 3.13(44) 0.06(44)
SM16 2.62(1) 4.58(36) 1.96(36) 4.64(63) 2.02(63)
RMS Error (RMSE) 1.69(11) 1.87(11)
Absolute Unsigned Error (AUE) 1.42(10) 1.65(11)
Mean Error (ME) 1.42(10) 1.65(11)

Table S7: CGenFF logPow results submitted as entry 3oqhx for
Protocol Dry (Protocol Wet was not submitted), and experimental
logPow with error estimate.

id Exp. Protocol Dry Protocol Wet
logPexp

ow logPow ∆ logPow ∆

SM02 4.09(3) 2.54(51) −1.55(51) 1.85(21) −2.24(21)
SM04 3.98(3) 0.0(1000) −3.98(1000) 0.0(1000) −3.98(1000)
SM07 3.21(4) 4.08(38) 0.87(38) −6.84(19) −10.05(19)
SM08 3.1(3) 3.62(100) 0.52(100) −9.54(96) −12.64(96)
SM09 3.03(7) 0.2(134) −2.83(134) −9.54(122)−12.57(122)
SM11 2.1(4) 2.42(34) 0.32(34) −6.94(1000)−9.04(1000)
SM12 3.83(3) 0.0(1000) −3.83(1000) 0.0(1000) −3.83(1000)
SM13 2.92(4) 4.16(56) 1.24(57) −7.76(1000)−10.68(1000)
SM14 1.95(3) 1.93(39) −0.02(39) 0.0(0) −1.95(3)
SM15 3.07(3) 2.79(36) −0.28(36) 0.0(0) −3.07(3)
SM16 2.62(1) 0.0(1000) −2.62(1000) 0.0(1000) −2.62(1000)
RMS Error (RMSE) 1.06(8) 1.30(10)
Absolute Unsigned Error (AUE) 0.83(9) 0.94(9)
Mean Error (ME) −0.21(9) −0.08(9)

The compounds SM04, SM12 and SM16 contained halogens with lone pairs and
could therefore not be processed with the cgenff_charmm2gmx.py script so that
we were not able to obtain Gromacs CGenFF parameters. In the submitted results,
we set the logPow for these compounds as 0 with an uncertainty of 10 log units.
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Fig. S5: Correlation between octanol-water partition coefficients logPow computed
with dry or wet octanol. The dashed line indicates perfect correlation with the gray
band at ±1 logPow-unit.

6 Statistics for the reduced data set

As discussed in the main paper, we did not compute logPow values for the Cl-containing
compounds SM04, SM12, and SM16 with CHARMM/CGenFF because the cur-
rently available version of the cgenff_charmm2gmx.py script for the conversion
of the CGenFF server files in CHARMM format to Gromacs format did not sup-
port lone pairs that are required for some halogen-containing compounds. Therefore,
CGenFF results were only available for a reduced data set of the eight compounds
SM02, SM07, SM08, SM09, SM11, SM13, SM14, and SM15. In Table S8 we
computed the summary statistics for all force fields over this reduced data set. The
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statistics for OPLS-AA (mol2ff), OPLS-AA (LigParGen), and GAFF for the reduced
data set were not substantially different from the values over the whole data set and
thus omitting the three compounds would not dramatically change any of our conclu-
sions. Therefore, we chose to discuss the CGenFF results (eight compounds) together
with the other three parametrizations (eleven compounds) on equal footing, assum-
ing that the lower count of samples for CGenFF would not dramatically distort the
comparison.

7 Comparison with data from Ref. [4]

Mobley and colleagues performed alchemical free energy calculations as reference
calculations, including simulations with dry and wet octanol with the GAFF force
field and TIP3P water model [4]. Their calculations REF07 (dry) and REF02 (wet)
used a direct transfer free energy protocol whereas their simulation IFE (dry) used an
indirect solvation-free energy based method that is similar to the approach taken in
this work.

As shown in Fig. S6, the two approaches gave substantially different values,
with the root mean square difference (RMSD, which was calculated in the same
way as the RMSE) between the two different approaches consistently greater than
2 (dry sqosi/REF07 2.28 and sqosi/IFE 2.38; wet 6nmtt/REF02 2.40). The main
differences between these simulations were that our work used different tautomers
for some of the molecules, the reference calculations REF02 and REF07 assigned
partial charges to the carboxylic acid of SM08 inappropriately, and the reference
calculations included a much longer equilibration phase for the octanol simulations
(500 ns) [4]. As discussed in detail by Işık et al [4], partial charge assignment made a
large difference on a per molecule basis. However, across the data set, the difference
in octanol equilibration period appeared to be dominating the difference between
the methods. Our finding that longer sampling of our SM14_micro001 with GAFF

Table S8: RMSE, AUE and ME of results for the
eight compounds SM02, SM07, SM08, SM09,
SM11, SM13, SM14, SM15, which could be pa-
rameterized with CGenFF. Data were taken from 1–
5 ns (0–1 ns was discarded as equilibration), decor-
related, and processed with MBAR.

parameter octanol RMSE AUE ME

OPLS-AA dry 2.94(5) 2.72(5) 2.72(5)
OPLS-AA wet 2.60(5) 2.49(5) 2.49(5)
LigParGen dry 1.71(6) 1.53(6) 1.52(6)
LigParGen wet 1.74(6) 1.64(6) 1.64(6)
GAFF dry 1.42(7) 1.11(7) 1.11(7)
GAFF wet 1.75(8) 1.43(7) 1.43(7)
CGenFF dry 1.17(5) 0.91(6) −0.32(6)
CGenFF wet 1.42(5) 1.05(5) −0.10(5)
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Fig. S6: Comparison of submitted GAFF results with reference calculations. Our
original submissions sqosi and 6nmtt as well as our improved protocol (labeled
“protocol”) were compared to the reference calculations in data from Ref. [4], namely
the REF07 and REF02 data sets. The abscissa represents the reference calculations
and the ordinate the calculations discussed in this work or data set IFE. The RMSD
between data sets is shown in the inset. Left: dry octanol. Right: wet octanol.

and in dry octanol (see Section 3.2) reproduced their logPow value quantitatively
[2.78±0.07 (this work) vs. 2.8±0.2 (Ref [4])] also corroborated the conclusion that
sufficient sampling of the octanol solvent was an important difference between the
two sets of simulations.
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