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We introduce a local radiative heat-pumping effect between two bodies in a many-body system,
obtained by periodically modulating both the temperature and the position of an intermediate object
using an external source of energy. We show that the magnitude and the sign of energy flow can be
tuned by changing the oscillation amplitude and dephasing of the two parameters. This many-body
effect paves the way for an efficient and active control of heat fluxes at the nanoscale.

I. INTRODUCTION

Understanding and controlling heat exchanges at
nanoscale is of tremendous importance both in funda-
mental and applied physics. During the last decades
radiative heat exchanges between two bodies have been
intensively studied [1–20] and innovative solutions have
been proposed [21–32] for an active control of these trans-
fers.

In recent theoretical works the possibility to pump heat
in systems has been demonstrated [33–35]. This pump-
ing allows to transfer heat from the cold to the hot body
by modulating, by means of external work, an intensive
parameter such as the temperature or the chemical po-
tential within the system. This effect is intimately related
to a spatial symmetry breaking which allows to change
the natural propagation direction of energy in the system
using an external source of energy.

However, those pumping mechanisms require either the
presence of a negative differential resistance [34, 36] or
an exceptional point [37, 38] (i.e. a point at which two
eigenstates coalesce under the variation of system pa-
rameters). The former case can be observed in systems
made of phase-change materials [39–41] within tempera-
ture ranges around their critical temperature. As for the
latter, it exists in non-Hermitian systems [42] which ex-
hibit a singularity of eigeinstates in the space of system
parameters.

In the present letter we demonstrate the possibility
to locally pump heat in many-body systems [43–48] by
relaxing these constraints. More specifically, we show
that in a Hermitian three-body system the modulation
of both the position and the temperature of a body can
induce a pumping effect between the two others ones. We
show that the direction and amplitude of the energy flow
can be significantly modulated by acting on the oscilla-
tion amplitude of temperature and position, as well as
on their dephasing.
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FIG. 1. Geometry of the system. Particles 1 and 2 are placed
at distance d along the x axis, while particle 3 has coordinates
x3 and y3. The two individual contributions to the exchanged
powers are shown. We also show a schematics of the dynamic
oscillation of the x coordinate of particle 3 procuced by a tip.

II. PHYSICAL SYSTEM AND FORMALISM

To introduce this effect let us consider consider the
systesm sketched in Fig. 1. It is made of three spherical
nanoparticles of radius R, labelled with indices 1, 2 and
3. Particles 1 and 2 constitute our reference system, on
which the presence of particle 3 acts as an external source
of modulation of the radiative power exchanged between
1 and 2. Particles 1 and 2 are assumed to be perfectly
coupled with two thermostats at temperature T1 and T2,
respectively. They have position (−d

2 , 0, 0) and ( d
2 , 0, 0),

where d is the distance between the two particles, while
particle 3 has position (x3, y3, 0) and temperature T3.
Let us first introduce the formalism we are going to

use to describe the radiative heat exchange within our
three-particle system. We are going to calculate the en-
ergy transfer in the context of the dipolar approximation,
according to which each particle is described purely in
terms of a fluctuating and induced electric dipole. This
approximation has proved to be valid when the center-
to-center distance between the particles is larger than
4R, R being the radius of the particles [49]. Under
this approximation the optical response of each parti-
cle is described in terms of the electrical polarizability,
which in the quasi-static approximation has the Clausius-
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Mossotti-like form

α(ω) = 4πa3 ε(ω)− 1
ε(ω) + 2 , (1)

where ε(ω) is the dielectric permittivity of the material
of the particle.

The radiative power absorbed by each particle will be
calculated by means of a fluctuational-electrodynamics
approach, described in [43, 45]. In this theoretical frame-
work the power absorbed by particle i (Latin indices refer
to particles and take values 1, 2 and 3) reads

Pi =
∫ +∞

0

dω

2π ~ω
∑
j 6=i

4χiχj

|αi|2
nji(ω)Tr

(
T−1

ij T
−1†
ji

)
, (2)

where nij(ω) = n(ω, Ti) − n(ω, Tj) is the difference of
Bose–Einstein distributions

n(ω, T ) =
[
exp
(

~ω
kBT

)
− 1
]−1

, (3)

calculated at the temperature of particles i and j. More-
over, in Eq. (2) we have introduced the susceptibility χi

of each particle, defined as [50]

χi = Im(αi)−
ω3

6πc3 |αi|2, (4)

and T is a 3N × 3N block matrix defined in terms of the
(i, j) N ×N sub-matrices (i, j = 1, . . . , N)

Tij = δij1− (1− δij)ω
2

c2 αiGij , (5)

Gij being the Green function in vacuum evaluated at the
coordinates of dipoles i and j.

III. RESULTS

A. Pumping effect

In analogy with the electrical pumping that transfers
charge against a bias voltage by modulating system pa-
rameters [51], we demonstrate here the possibility of tai-
loring the net power absorbed by the two particles 1
and 2 by means of periodic variations of physical prop-
erties and interaction strengths with a third body. More
specifically, we are going to consider both the variation of
the temperature T3 of this body around its equilibrium
value T3,eq and the oscillation of its coordinate x3 along
the axis between the two thermostated particles. In a
scanning thermal microscopy setup this corresponds to a
transerse tapping mode. To demonstrate the potential of
such modulations we start by describing how the power
absorbed by particle 1 depends on this change of param-
eters. To this aim we develop this power using a Taylor

expansion, at the second order, with respect to these pa-
rameters around x3 = 0 and T3 = T3,eq. This formally
reads

P1 ' P1(0, T3,eq) + ∂P1

∂x3
x3 + ∂P1

∂T3
(T3 − T3,eq)

+ 1
2
∂2P1

∂x2
3
x2

3 + 1
2
∂2P1

∂T 2
3

(T3 − T3,eq)2

+ ∂2P1

∂x3∂T3
x3(T3 − T3,eq).

(6)

In the specific case where particles 1 and 2 are held at the
same temperature T1 = T2 = Teq,, then T3,eq = Teq and
the net power absorbed by particles 1 and 2 vanishes (i.e.
Pi = 0, i = 1, 2) for any value of x3. As a consequence,
the first, second and fourth terms are identically equal to
zero. Moreover, with the periodic modulation

T3(t) = T3,eq + ∆T sin(ωt), x3(t) = ∆x sin(ωt+φ), (7)

of parameters the third term has a vanishing average over
the oscillation period so that the average power reads

〈P1〉 '
∆T
2

(
∆x ∂2P1

∂x3∂T3
cosφ+ ∆T

2
∂2P1

∂T 2
3

)
, (8)

〈.〉 denoting the time averging. The second term of this
equation exists also when the temperature T3 is the only
varying parameter. In this case, as discussed in [34],
in the absence of a negative thermal differential resis-
tance, this contribution is necessarily positive. On the
contrary, it is manifest that the magnitude and sign of
the first term can be easily modulated simply by acting
on the dephasing φ between x3 and T3. This gives a clear
evidence of the remarkable advantage of exploiting the si-
multaneous variation of two parameters instead of one as
it is done in the classical shuttling mechanism [34].
For concretness , we consider a system made with three

particles of silicon carbide (SiC) [52], for which the dielec-
tric permittivity is well described by a Drude-Lorentz ex-
pression ε(ω) = ε∞(ω2

L−ω2−iΓω)/(ω2
T−ω2−iΓω), where

ε∞ = 6.7, ωL = 1.83×1014 rad/s, ωT = 1.49×1014 rad/s,
and Γ = 8.97 × 1011 rad/s. This model predicts the ex-
istence of a phonon-polariton resonance for a spherical
SiC nanoparticle at a frequency ω = 1.755 × 1014 rad/s,
giving λ ' 11µm, close to the emission peak of a black-
body at 300K. We also consider a period of oscillation
of parameters of 1 s (ω = 2π/1 s), which allow us to as-
sume an adiabiatic variation of both T3. Moreover, we
take ∆T = 5K, ∆x = 2R = 100 nm and φ = 0, with
d = 12R = 600 nm and y3 = d/2 = 300 nm. The power
absorbed by the three particles as a function of time dur-
ing one period is shown in Fig. 2(a). The analysis of P1
and P2 proves how we are able to exploit at the same
time the control of the sign of the flux through T3 and
the strong dependence of the flux on the distance through
the coordinate x3. More specifically, during the first half
of the period the temperature T3 is above the equilib-
rium temperature, resulting in a power absorption on
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FIG. 2. (a) Powers absorbed by particles 1 (solid red line), 2 (dashed black line) and 3 (blue dot-dashed line) as a function
of time for the periodic variation given by Eq. (7) with ω = 2π/1 s, φ = 0, ∆x = 2R = 100 nm and ∆T = 5K. (b) Absolute
value of the average power absorbed by particle 1 over one period as a function of the displacement and temperature oscillation
amplitudes ∆x and ∆T , respectively. (c) In the main part of the figure, efficiency of the pumping effect as a function of the
diplacement oscillation amplitude ∆x for y3 = 300 nm. In the inset, efficiency as a function of y3 for ∆x = 2R = 100 nm.

both particles 1 and 2, much higher on particle 2 because
of the positive coordinate x3. The opposite scenario hap-
pens during the second half of the period. As a result,
the average powers transferred to particles 1 and 2 during
one period equal (〈P1〉, 〈P2〉) = (−2.18, 2.30)× 10−14 W.
We are thus in the presence of a heat-pump effect, where
the energy transfer between particles 1 and 2, at ther-

mal equilibrium between each other, is produced by the
presence and modulation of properties of a third parti-
cle introduced in the system. We observe that, for the
parameters chosen here, the exchanged power is the one
the two particles would exchange in a two-body configu-
ration for a temperature difference ∆T = T2−T1 ' 20K,
while the value of T3 oscillates over ∆T/2 = 10K.

It is interesting at this stage to understand how the
variation of the temperature and displacement oscilla-
tion amplitudes, ∆T and ∆x respectively, affect the net
power received by particles 1 and 2. This is shown in
Fig. 2(b), where the absolute value of E1 is represented
as a function of ∆T and ∆x. We clearly see that not
only does this energy increase with respect to both am-
plitudes, but also that it vanishes when ∆T or ∆x go to
zero, confirming that the simultaneous variation of two
parameters is essential to produce a pumping effect.

In order to better characterize this pumping effect, it is
important to define its efficiency in terms of ratio between
the average power extracted from particle 1 or absorbed
by particle 2 and the external energy needed to produce
the periodic variation of x3 and T3. As far as the tem-
perature variation is concerned we start by considering
the equation governing the time variation of the internal
energy of particle 3

ρ3C3V3
dT3(t)
dt

= P3 + Pext,th, (9)

wher ρ3, C3, and V3 represent its mass density, heat ca-
pacity and volume, respectively, while P3 is the radiative
power transfer to particle 3 due to the presence of parti-
cles 1 and 2, whereas Pext is the external power injected
in the system. Since the temperature time dependence

is fixed by Eq. (7) and the radiative power P3 can be
calculated by using the formalism introduced above, we
can deduce the instantaneous power Pext and its average
over one period. Concerning the mechanical oscillation,
in order to give a realistic model of our system we as-
sume that a spherical particle (particle 3) is attached to
a cantilever and describe this system as a forced harmonic
oscillator [53]. The average power absorption during an
oscillation cycle reads

〈Pext,mech〉 = 1
2kX0∆xω sinϕ, (10)

where k = 3EI/L3 is the stifness of the cantilever (E be-
ing its Young modulus, I its second moment of area and
L its length), X0 the oscillation amplitude of the oscil-
lating applied force, ω its frequency, and ϕ the dephasing
between it and the displacement. By solving the mechan-
ical problem, X0 can be connected to ∆x, and assuming
for simplicity that the cantilever is made of SiC as well,
we conclude that the absorbed power is approximately
given by [53]

〈Pext,mech〉 '
√
ρ3E∆x2ω

2d3

QL
, (11)

where d is the side of the square section of the cantilever
and Q its quality factor (' 100 in air). For d = 1mm and
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FIG. 3. Average power absorbed by particle 1 as a function of
the dephasing φ between the temperature and position vari-
ations defined in Eq. (7). The red points are the numerical
resuts, compared to the black solid line associated with the
first term of Eq. (8).

L = 10 cm, this power is of the order of 10−15 W, and it
can be made even smaller by acting on the dimensions
and material of the cantilever. For this reason, we will
neglect from now on this contribution to the external
power and define the efficiency as η = |〈P1〉|/Pext,th. We
have observed that the calculated efficiency depends very
weakly on the temperature amplitude ∆T . This is not
surprising, since for small temperature differences all the
energy exchanges are linear with respect to ∆T and so is
their ratio as well. On the contrary, the dependence of
the efficiency on ∆x is shown in Fig. 2(c). It shows that

the efficiency (as the exchanged powers) goes to zero for
∆x approaching zero, and it reaches a remarkable value
around 30% for ∆x = 2R = 100 nm. In order to further
confirm the near-field nature of this pumping effect we
show in the inset of Fig. 2(c) the effiency as a function
of y3 for ∆x = 100 nm. We see that the efficiency is
maximized, as expeced, in the case y3 = 0 (corrisponding
to a linear chain), where it reaches 46%, while decreases
quickly and tends to zero, even for non-vanishing ∆x and
∆T , when increasing y3 above 500 nm.
We conclude by showing the effect of the dephasing φ

on the average absorbed power P1. Referring to Eq. (8),
we start by observing that the values of these two deriva-
tives can be deduced numerically. In our specific case,
we have ∂2P1/∂x3∂T3 = −8.11 × 10−8 Wm−1 K−1 and
∂2P1/∂T

2
3 = 7.01 × 10−17 WK−2 so that the second

term proves to be negligible with respect to the first one.
Moreover, in the approximation of weak temperature dif-
ference we can linearize the power transferred to particle
1 as P1 ' G12(T2 − T1) + G13(T3 − T1), where the first
term vanishes since T1 = T2. As a consequence, we have
∂2P1/∂x3∂T3 ' ∂G13/∂x3, which is negative since the
power transferred from particle 3 to particle 1 clearly de-
creases when increasing x3, thus the distance between the
two particles. Figure 3 shows the pumped power P1 as
a function of φ, confirming at the same time the modu-
lation in amplitude and sign due to the dephasing φ and
the good agreement between the numerical results (red
points) and the analytical approximation given by the
first term in Eq. (8).

B. Control of the direction of the flux

In the above discussions, particles 1 and 2 were in rela-
tive equilibrium. For practical applications it is also im-
portant to investigate the situation where a temperature
gradient exists between these two particles.

This situation is depicted in Figs. 4, in the case where
T2, vary above T1 and T1 = 300K . In these plots the
red solid lines show as a reference the power exchanged
between particle 1 and 2 in the absence of particle 3. The
black dashed line and the blue dot-dashed one show, re-
spectively, the average power absorved by particles 1 and
2 over a periodic oscillation of x3 and T3. The parameters
are ∆x = 2R = 100 nm, ∆T = 5K, d = 12R = 600 nm
and y3 = d/2 = 300 nm. Moreover, in order to demon-
strate the importance of the role played by the dephasing
φ between x3 and T3, the four cases φ = 0, π/4, π/2, π are
shown. We stress that, for each value of T2, T3 oscillates
around its equilibrium value defined by P3 = 0, which
depends on T2 and is always close, for small temperature

differences, to the average (T1 + T2)/2.
When the temperature gradient vanishes and the de-

phasing φ = 0 we recover the pumping shown pre-
viously, with average absorbed powers (〈P1〉, 〈P2〉) =
(−2.18, 2.30) × 1014 W. This effect is still present but
lower for φ = π/4, while no pumping effect happens for
π/2. Finally, for φ = π, the power absorbed is differ-
ent from zero, but goes in the opposite direction with
respect to φ = 0, coherently with the simple analytical
description given in Eq. (8).

In presence of temperature gradient it is relevant to dis-
tinguish the cases φ = 0, π/4 from the cases φ = π/2, π.
As a matter of fact, for φ = 0, π/4, we observe a re-
gion of T2 [up to values around 304K (302,K) for φ = 0
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FIG. 4. Average power absorbed by particle 1 (black dashed line) and particle 2 (blue dot-dashed line) compared to the
two-body power absorbed by particle 1 (red solid line). We have ∆x = 2R = 100 nm, ∆T = 5K, d = 12R = 600 nm and
y3 = d/2 = 300 nm. The four panels correspond to different dephasings φ between x3 and T3: (a) φ = 0, (b) φ = π/4, (c)
φ = π/2, (d) φ = π.

(φ = π/4)] for which the exchanged power remarkably
goes in the direction opposite to the temperature differ-
ence. This effect gets weaker when increasing T2 and we
also highlight the complementary result that, for φ = 0
and T2 ' 304K, particles 1 and 2 are thermally isolated
even though they are not at thermal equilibrium. On the
contrary, for φ = π/2, π the exchanged power always goes
in the direction of the temperature difference between
particles 1 and 2, but the amplitude of this power can be
clearly modulated by acting on the dephasing φ. More-
over, for any dephasing considered here, the exchanged
power is significantly amplified with respect to the two-
body value. This analysis shows that our scheme and the
introduction and active control of a third particle in the
system can be used to tailor in several different ways the
heat flux between two bodies.

IV. CONCLUSIONS

In conclusion, we have demonstrated that a heat
pumping current can be locally induced between two
bodies within a many-body system by periodically vary-
ing independently the temperature and the location of
an intermediate object. By changing the dephasing be-
tween these two parameters we have shown the possibil-
ity to control the magnitude and signed of pumped flux.
Unlike previously highlighted effects, our pumping effect
does not require the presence of channels with a negative
differential thermal resistance within the system neither
the existence of exotic topological characteristics such as
exceptional points. While in the present work we have
limited our study to the variation of temperature and po-
sition, the same effect could be realized by varying other
intensive parameters, such as the chemical potential, or
external fields, for example by exploiting magneto-optical
or ferroelectric properties.
As far as applications are concerned, the efficiency of
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the observed effect makes it promising for an active con-
trol of heat currents at the nanoscale, in the adiabatic

limit. It could also find applications in the field of en-
ergy conversion.
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